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Abstract

We study the typing properties of closure conversion for simply-typed and polymorphic �-calculi.
Unlike most accounts of closure conversion, which only treat the untyped �-calculus, we translate
well-typed source programs to well-typed target programs. This allows later compiler phases to
take advantage of types for representation analysis and tag-free garbage collection, and it facili-
tates correctness proofs. Our account of closure conversion for the simply-typed language takes
advantage of a simple model of objects by mapping closures to existentials. Closure conversion for
the polymorphic language requires additional type machinery, namely translucency in the style of
Harper and Lillibridge's module calculus, to express the type of a closure.
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1 Introduction

The usual operational models of programming languages based on the �-calculus compute by sub-
stituting terms for variables in other terms. But substitution is expensive because it requires
traversing and copying a term in order to �nd and replace all occurrences of the given variable.
A well-known technique for mitigating these costs is to delay substitution until the binding of the
variable is required during evaluation [18, 1]. This is accomplished by pairing an open term with an
environment providing values for the free variables in the term. The open term may be thought of
as immutable code that acts on the environment. Since the code is immutable, it can be generated
once and shared among all instances of a function.

Closure conversion [30, 35, 7, 17, 16, 3, 38, 9] is a program transformation that achieves such a
separation between code and data. Functions with free variables are replaced by code abstracted
on an extra environment parameter. Free variables in the body of the function are replaced by ref-
erences to the environment. The abstracted code is \partially applied" to an explicitly constructed
environment providing the bindings for these variables. This \partial application" of the code to
its environment is in fact suspended until the function is actually applied to its argument; the sus-
pended application is called a \closure", a data structure containing pure code and a representation
of its environment.

A critical decision in closure conversion is the choice of representation of the environment as
a data structure | for example, whether to use a \
at", \linked", or hybrid representation. This
decision is in
uenced by a desire to minimize closure creation time, the space consumed by an
environment, and the time to access a given variable in an environment [38, 31]. An important
property of closure conversion is that the representation of the environment is private to the closure,
and is not visible from the outside. This a�ords considerable 
exibility in the representation of
environments and is thus exploited to good advantage by Shao and Appel [31] and Wand and
Steckler [38].

Most accounts consider closure conversion as a transformation to untyped terms, irrespective of
whether or not the source term is typed [35, 17, 3, 38]. This is adequate for compilers that make
little or no use of types in the back end or at run time. However, when compiling typed languages,
it is often advantageous to propagate type information through each stage of the compiler, and to
make use of types at link or even run time. For example, Leroy's representation analysis [19, 32]
uses types to determine procedure calling conventions, and Ohori's record compilation [26] uses a
representation of types at run time to access components of a record. In current compilers, these
phases must occur before closure conversion because the output of closure conversion is untyped.
Compilation strategies for polymorphic languages, such as those proposed by Morrison et al. [25]
and Harper and Morrisett [14], rely on analyzing types at run time to support unboxed represen-
tations and non-parametric operators, including printing and structural equality. Tag-free garbage
collection [5, 37, 24] for both monomorphic and polymorphic programming languages also relies
upon types at run time to determine the size and the pointers of objects. To support any of these
implementation strategies, it is necessary to propagate type information through closure conver-
sion and into the generated code. Consequently, the purpose of this paper is to show how closure
conversion can be formulated as a type-preserving transform.

We are therefore interested in type-based transformations as a basis for compiling polymorphic
languages. The crucial idea is to de�ne a compiler as a series of transformations on both the program
and its type, possibly relying on type information to guide the transformation itself. Each stage of
the compiler is thus viewed as a type-preserving translation between typed intermediate languages.
Examples of such translations are given by Leroy [19], Ohori [26], Harper and Lillibridge [10], and
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Harper and Morrisett [14]. In addition to the practical advantages of propagating type information
through the stages of a compiler, type-directed translation also facilitates correctness proofs by
de�ning the invariants of the transformation as a type-indexed family of logical relations [36, 8, 28,
33, 34].

We describe closure conversion in two stages. The �rst stage, abstract closure conversion, is a
type-based translation from the source language into a target language with explicit closures. The
translation is described as a deductive system in which the representation of the environment may
be chosen independently for each closure. In this way various environment representations, such as
those used by the CAM [7] and the FAM [6], as well as hybrid strategies, such as those suggested
by Shao and Appel [31] can be explained in a uniform framework.

The second stage, closure representation, is a type-based translation in which the implementa-
tion of closures is determined. The main idea is to represent closures as objects (in contrast to the
proposed representation of objects as closures [29]). Following Pierce and Turner [27] we consider
objects to be packages of existential type consisting of a single method (the code part of the clo-
sure) together with a single instance variable (the environment part) whose type (the environment
representation) is held abstract. This captures the critical \privacy" property of environment rep-
resentations for closures. In the simply-typed case we make direct use of Pierce and Turner's model
of objects. In the polymorphic case we must in addition exploit the notion of translucency [11] (or
manifest types [20]) to express the type of a polymorphic closure.

The correctness of both the abstract closure conversion and the closure representation stages
are proved using the method of logical relations. The main idea is to de�ne a type-indexed family
of simulation relations that establish a correspondence between the source and target terms of the
translation. Once a suitable system of relations has been de�ned, it is relatively straightforward
to prove by induction on the de�nition of the compilation relation that the source and target of
the translation are related, from which we may conclude that a closed program and its compilation
evaluate to the same result.

Closure conversion is discussed in descriptions of various functional language compilers [35, 17,
4, 3, 31]. It is closely related to �-lifting [15] in that it eliminates free variables in the bodies of
�-abstractions but di�ers by making the representation of the environment explicit as a data struc-
ture. Making the environment explicit is important because it exposes environment construction
and variable lookup to an optimizer. Furthermore, Shao and Appel show that not all environment
representations are \safe for space" [31], and thus choosing a good environment representation is
an important part of compilation. Wand and Steckler [38] have consider two optimizations of the
basic closure conversion strategy, called selective and lightweight closure conversion, and provide a
correctness proof for each of these in an untyped setting. Hannan [9] re-casts Wand's work into
a typed setting, and provides correctness proofs for Wand's optimizations. Hannan's translation
is given, like ours, as a deductive system, but like �-lifting, he does not consider the important
issue of environment representation (preferring an abstract account), nor does he consider the typ-
ing properties of the closure-converted code. Finally, neither Wand nor Hannan consider closure
conversion under a type-passing interpretation of polymorphism.

We have put the ideas in this paper to practical use in two separate compilers for ML: one
compiler is being used to study novel approaches to tag-free garbage collection and the other
compiler provides a general framework for analyzing types at run time to determine the shapes
of objects. Propagating types through closure conversion is necessary for both compilers so that
types can be examined at run time. We have also found that typed closure conversion, along
with our other type-preserving translations, made it possible to �nd and eliminate compiler bugs
since we can automatically type-check the output of each compiler phase. Some compilers for
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ML based on representation analysis [19, 32] also propagate type information through closure
conversion. However, their information is not enough to type-check the resulting programs because
polymorphism is implemented by coercions and all polymorphic types are represented by a single
type.

We assume that the reader is familiar with standard �-calculus presentations, ML language syn-
tax, and various type-theoretic constructs including existential types [23], and the module calculus
of Harper and Lillibridge [11]. We have attempted to use standard notation whenever possible. For
example, we write e[v=x] to denote capture-avoiding substitution of the value v for the free variable
x within e.

The remainder of this paper is organized as follows: In Section 2, we give an overview of closure
conversion and the typing issues involved for the simply-typed �-calculus. In Section 3, we provide
the details of our type-preserving transform for the simply-typed case. In Section 4, we give an
overview of closure conversion and the typing issues involved for the predicative fragment of the
polymorphic �-calculus. The formal development of this conversion is given in Section 5.

2 Overview of Simply-Typed Closure Conversion

The main ideas of closure conversion may be illustrated by considering the following ML program:

let val x = 1

val y = 2

val z = 3

val f = �w.x + y + w

in

f 100

end

The function f contains free variables x and y, but not z. We may eliminate the references to
these variables from the body of f by abstracting on an environment env, and replacing x and y

by references to the environment. In compensation a suitable environment containing the bindings
for x and y must be passed to f before it is applied. This leads to the following translation:

let val x = 1

val y = 2

val z = 3

val f = (�env.�w.(#x env) + (#y env) + w) fx=x, y=yg
in

f 100

end

References to x and y in the body of f are replaced by projections (�eld selections) #x and #y

that access the corresponding component of the environment. Since the code for f is closed, it may
be hoisted out of the enclosing de�nition and de�ned at the top-level. We ignore this \hoisting"
phase and instead concentrate on the process of closure conversion.

In the preceding example the environment contains bindings only for x and y, and is thus as
small as possible. Since the body of f could contain an occurrence of z, it is also sensible to include
z in the environment, resulting in the following code:
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let val x = 1

val y = 2

val z = 3

val f = (�env.�w.(#x env) + (#y env) + w) fx=x, y=y, z=zg
in

f 100

end

In the above example we chose a \
at" (FAM-like [6]) representation of the environment as a
record with one �eld for each variable. Alternatively we could choose a \linked" (CAM-like [7])
representation in which, for example, each binding is a separate \frame" attached to the front of
the remaining bindings. This idea leads to the following translation:

let val x = 1

val y = 2

val z = 3

val f = (�env.�w.(#x(#link(#link env))) + (#y(#link env)) + w)

fz=z, link=fy=y, link=fx=xggg
in

f 100

end

The linked representation facilitates sharing of environments, but at the expense of introducing
link traversals proportional to the nesting depth of the variable in the environment. The linked
representation can also support constant-time closure creation, but this requires re-using the current
environment and can result in bindings in the environment for variables that do not occur free in
the function (such as z above), leading to space leaks.

These simple translations fail to delay the application of the code to its environment under
call-by-value evaluation. A natural representation of a delayed application or closure is an ordered
pair (code, env) consisting of the code together with its environment. Application of a closure to
an argument proceeds by projecting the code part from the closure and applying it simultaneously
to the environment and the argument according to some calling convention. For example:

let val x = 1

val y = 2

val z = 3

val code = �env.�w.#x(env) + #y(env) + w

val env = fx=x, y=yg
val f = (code, env)

in

(#1 f) (#2 f) 100

end

But since code has a type of the form �ve ! �1 ! �2, where �ve is the type of the environment
env, the closure as a whole would have type (�ve ! �1 ! �2) � �ve, showing the type of the
environment explicitly. That violates the \privacy" of the environment representation. As a result,
using this translation on a well-typed source program will not, in general, result in a well-typed
target program. For example, consider the following ML source program with type int! int:
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�;� ` e : �[�=t]

�; � ` pack � with e as 9t:�

�;� ` e1 : 9t:�
0

� ] ftg; � ] fx:�0g ` e2 : �

�;� ` open e1 as t with x in e2 : �

(t 62 FTV (�); t 62 �)

Figure 1: Typing Rules for Existentials

let val y = 1

in

if true then

�x.x+y
else

�z.z
end

Performing the translation above yields:

let val y = 1

in

if true then

(�env.�x. x + #y(e), fy=yg)
else

(�env.�z. z, fg)
end

This program fails to type-check because the then-arm of the if-expression has type (fy:intg !
int! int)� fy:intg while the else-arm has type (fg ! int! int)� fg.

In order to preserve types in the target language, the representation of the environment may
be hidden using existential types [23]. Figure 1 gives the typing rules for existentials. A pack

operation pairs a type � with a value e as an existential, holding � abstract as a type variable, t.
An open operation takes a package e1 and opens it, binding the abstract type to t and the value of
the package to x within the scope of e2. The abstract type t is constrained so that it cannot leave
the scope of the open construct, hence the restriction that t not appear in the free type variables
of �.

Using pack, we can hide the type of the environment for a closure value as follows:

pack �ve with (code; env) as 9tve:(tve ! �1 ! �2)� tve:

A closure of type �1 ! �2 is represented as a package of type 9tve:(tve ! �1 ! �2)� tve where the
type of the environment (�ve) is held abstract as tve. Under this translation, the example above
would be translated to:

5



let val y = 1

in

if true then

pack fy:intg with (�env.�x.x+#y(env),fy=yg)
as 9tve:(tve ! int! int)� tve

else

pack fg with (�env.�z.z, fg)
as 9tve:(tve ! int! int)� tve

end

Since the types of the arms of the if-expression agree, the target code is well-typed with type
9tve:(tve ! int! int)� tve.

An application e e' is correspondingly translated to the expression

open e as tve with z : (tve ! �1 ! �2)� tve
in

(#1 z) (#2 z) e'

end

which opens the package, extracts the code and environment, and applies the code to the environ-
ment and the argument.

This representation of closures bears a striking resemblance to the model of objects suggested
by Pierce and Turner [27]. In their model an object has a type of the form 9t:t�� [t], where t is the
type of the instance variable(s) and � [t] is the type of the method(s). According to the foregoing
account, closures may be thought of as objects with one instance variable (the environment) and
one method (the code).

3 A Formal Account of Simply-Typed Closure Conversion

In this section we present the details of closure conversion for the call-by-value, simply-typed �-
calculus. The conversion is described in increasing detail by three stages: The �rst stage, abstract
closure conversion, converts each function to a closure but holds the representation of the closure
abstract. To simplify the presentation, some freedom is allowed in the construction of environments,
but no shared environments are used. The second stage, environment sharing, adds more structure
to the translation thereby allowing environments to be shared. The third stage, closure representa-
tion, makes the representation of closures explicit through the use of translucent sums. Each stage
is de�ned as a type-directed translation and the correctness of the translations is established using
logical relations.

The syntax of the source language is de�ned as follows:

Types � ::= b j �1 ! �2
Expressions e ::= c j x j �x:�: e j e1 e2
Values v ::= c j �x:�: e

Types (�) consist of base types (b) and function types (!)1. Expressions (e) consist of constants
(c) of base type, variables, abstractions, and applications. We use � to denote a sequence of type
bindings of the form fx1:�1; : : : ; xn:�ng, (n � 0) where the xi are distinct. The judgement � ` e : �

1The results of this paper easily extended to other source types including products and sums.
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asserts that the expression e has type � under the type assignment �, and is derived from the
standard typing rules of the simply-typed �-calculus. We de�ne the dynamic semantics of the
language using a judgement of the form e ,! v (e evaluates to v). The judgement is derived from
the following standard inference rules for call-by-value evaluation:

v ,! v
e1 ,! �x:�1: e e2 ,! v2 e[v2=x] ,! v

e1 e2 ,! v

3.1 Abstract Closure Conversion

The target language for abstract closure conversion, �cl , is de�ned as follows:

Types � ::= b j �1 ! �2 j h�1 � : : :� �ni j code(�ve; �1; �2)
Expressions e ::= c j x j e1 e2 j he1; : : : ; eni j �i(e) j �xve:�ve: �x:�1: e j hhe1; e2ii
Values v ::= c j �xve:�ve: �x:�1: e j hv1; : : : ; vni j hhv1; v2ii

In the introduction we informally presented closures as partial applications. As noted, we wish
to delay this partial application until the closure is applied to an argument, so that the code and
environment remain separate and the code can be shared among each instantiation of the closure.
Therefore, in this account of closure conversion, we represent the delayed partial application as an
abstract closure of the form hhe; eveii where e is the code and eve is the environment. This allows
us to distinguish between delayed partial applications (closures) and closure application (e1 e2).
Code expressions, �xve:�ve:�x:�1:e, are a restricted form of closed �-expressions that abstract both
an environment (xve) and an argument (x). The types of code expressions are also distinguished
from the types of closures and are written as code(�ve; �1; �2) where �ve, �1, and �2 are the types of
the environment, the argument, and the return value respectively.

The typing rules for �cl are standard except for code and closures, which are de�ned as follows:

fxve:�ve; x:�1g ` e : �2
� ` �xve:�ve:�x:�1:e : code(�ve; �1; �2)

� ` e : code(�ve; �1; �2) � ` eve : �ve
� ` hhe; eveii : �1 ! �2

Since we require code to be closed in order that it may be hoisted to the top level, only xve:�ve
(the environment) and x:�1 (the argument) can be assumed when typing the body of the code. A
closure consisting of code of type code(�ve; �1; �2) and an environment of type �ve has type �1 ! �2,
corresponding directly to the typing of the partial application of the code to its environment. Tuple
types h�1 � : : :� �ni and tuples he1; : : : ; eni are introduced to represent environments of closures.

Evaluation of the language is de�ned using the following inference rules which allow us to
conclude a judgement of the form e ,! v.

v ,! v
e1 ,! v1 : : : en ,! vn
he1; : : : ; eni ,! hv1; : : : ; vni

e ,! hv1; : : : ; vni
�i(e) ,! vi

e1 ,! v1 e2 ,! v2
hhe1; e2ii ,! hhv1; v2ii

e1 ,! hh�xve:�ve:�x:�1:e; vveii e2 ,! v2 e[vve=xve; v2=x] ,! v

e1 e2 ,! v

When a closure is applied to an argument, the environment and the argument are substituted for
the corresponding variables and the body of the code is evaluated.

We de�ne abstract closure conversion as a type-directed translation from the source language
to �cl in Figure 2. The translation is formulated as a deductive system with judgements of the
form �; x:� . e ; e0, and �; x:� . �0 ; e0ve where � and �0 are source type assignments, � is
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(const) �; x:� . c; c (arg) �; x:� . x; x (env) fx1:�1; : : : ; xn:�ng; x:� . xi ; �i(xve)

(abs)
�; x0:� 0 . �0 ; eve �0; x:� . e; e0

�; x0:� 0 . �x:�:e; hh�xve:j�
0j: �x:�: e0; eveii

(app)
�; x:� . e1 ; e01 �; x:� . e2 ; e02

�; x:� . e1 e2 ; e01 e02

(context)
�; x:� . x1 ; e1 : : : �; x:� . xn ; en
�; x:� . fx1:�1; : : : ; xn:�ng; he1; : : : ; eni

(� ] fx:�g ` xi : �i)

Figure 2: Simply-Typed Abstract Closure Conversion

a source type, e is a source expression, and e0 and e0ve are target expressions. The variable x is
considered as the current argument while the other free variables in a source expression should be in
� and accessed through the current environment in the translation. The judgement �; x:� . e; e0

asserts that e0 is the translation of e under the assumption that �] fx:�g ` e : � 0 for some � 0. The
judgement �; x:� . �0 ; e0ve asserts that e0ve is an expression that evaluates to the environment
corresponding to �0 under the assumption that each binding in �0 occurs in � ] fx:�g. Note that
the order of bindings in � is important, and thus it is considered to be a sequence and not a set.

In a translated expression, xve is always used to hold the current local environment. Con-
sequently, the translation rule (env) maps a source variable xi found in the ith position of type
assignment � to the ith projection of the environment variable xve, while the rule (arg) translates
the argument variable x to itself.

The translation of an abstraction produces a closure consisting of code and an environment. To
construct the environment, we choose a type assignment �0 such that �; x0:� 0 . �0 ; eve is derivable
via the (context) rule and �0; x:� . e; e0. These two constraints can be summarized by saying that
every binding in �0 can also be found in � ] fx0:� 0g. In a more detailed formulation, �0 would be
obtained from �] fx0:� 0g via the application of strengthening and exchange rules. Furthermore, �0

is required to contain bindings for all of the free variables in the original function �x:�: e. However,
�0 may also contain bindings from � ] fx0:� 0g that do not occur free in the function. Therefore,
there are many choices for �0 and we can chose it so as to minimize the running time and/or
space consumed by the target code. The environment itself is constructed via the (context) rule
by translating each of the variables occurring in �0 (namely x1; � � � ; xn) to the target expressions
e1; � � � ; en. The resulting expressions are placed in a tuple (he1; : : : ; eni) to form the environment
data structure of the closure. The environment has type h�1 � � � � � �ni which we summarize by
writing j�0j.

To produce the code of the closure, we translate the body of the source function under the
strengthened assumptions �0; x :� , producing the body of the code, e0, and then we abstract the
environment and argument, resulting in �xve:j�

0j: �x:�: e0.
The derivation of a translation is very closely related to the typing derivation of the source

program. In particular, by an examination of the translation rules and by virtue of the source
language being explicitly typed, it is clear that if we have a derivation of �; x:� 0 . e ; e0, then
there exists a unique � such that we can construct a derivation of � ] fx:� 0g ` e : � . Consequently,
we can easily show that the translation preserves the type of a source program in the following
sense:
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Lemma 1 If � ] fx:� 0g ` e : � and �; x:� 0 . e; e0, then fxve : j�j; x:�
0g ` e0 : � .

Proof. By induction on the derivation of �; x:� 0 . e; e0.

Case (arg). �; x:� 0 . x; x and fxve:j�j; x:� 0g ` x : � 0.

Case (env). Let � be fx1:�1; : : : ; xn:�ng. Then � ] fx:� 0g ` xi : �i. Further, fxve:j�j; x:�
0g ` xve :

h�1 � : : :� �ni. Hence, fxve:j�j; x:� 0g ` �i(xve) : �i.

Case (abs). By the second induction hypothesis, fxve:j�0j; x:�1g ` e0 : �2. Thus fxve:j�j; x0:� 0g `
�xve:j�

0j:�x:�1:e
0 : code(j�0j; �1; �2). By the construction of eve, it is clear that � ` eve : j�

0j.
So by the typing rule for closures, fxve:j�j; x0:� 0g ` hh�xve:j�0j:�x:�:e0; eveii : �1 ! �2.

Case (app). We know that �; x:� 0 . e1 ; e01 and for some �1, � ] fx:�
0g ` e1 : �1 ! � , and by

induction this implies fxve:j�j; x:� 0g ` e01 : �1 ! � . We also know that �; x:� 0 . e2 ; e02
and � ] fx:� 0g ` e2 : �1, and by induction this implies fxve:j�j; x:�

0g ` e02 : �1. Hence,
fxve:j�j; x:� 0g ` e01 e02 : � .

2

Using a dummy argument (x:b) to translate an entire closed program, it is clear from the
previous lemma that the translation preserves the program's type.

Theorem 1 If ; ` e:� and ;; x:b . e; e0, then ; ` e0 : � .

To prove the operational correctness of the translation, we use a type-indexed family of logical
relations relating closed source expressions to closed target expressions (� ) and closed source values
to closed target values (� ). The relations are de�ned by induction on source types as follows:

e �� e0 i� e ,! v and e0 ,! v0 and v �� v0

c �b c
v ��1!�2 v

0 i� for all v1 ��1 v
0
1, v v1 ��2 v

0 v01.

We extend the relation to �nite source (
) and target substitutions (
0) mapping variables to their
respective class of values. These relations are de�ned as follows:


 �fx1:�1;:::;xn:�ng [hv1; : : : ; vni=xve] i� 
(xi) ��i vi for 1 � i � n.

 ��;x:� [v0=xve; v=x] i� 
 �� [v0=xve] and 
(x) �� v.

The following lemma shows that the translation of a variable and an environment evaluates to
the corresponding value.

Lemma 2 Let 
 ��;x:� 
0.

1. If �; x0:� 0 ` x:� and �; x0:� 0 . x; e0, then 
0(e0) ,! v and 
(x) �� v.

2. If �; x:� . �0 ; eve, then 
0(eve) ,! v and 
 ��0 [v=xve].

Proof. Claim 2 is clear from 1. So we only present the proof for 1.

Case (arg). It is clear that � � � 0. By de�nition, 
(x0) �� 0 
0(x0). Hence, 
(x0) �� 0 
0(x0).

Case (env). Let � be fx1:�1; : : : ; xn:�ng. 

0(�i(xve)) � �ihv1; : : : ; vni ,! vi. By de�nition, 
(xi) ��i

vi.
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2

With this lemma in hand, we can establish the correctness of the translation.

Theorem 2 (Operational Correctness) Let 
 ��;x0:� 0 
0. If � ] fx0:� 0g ` e : � and �; x0:� 0 .
e; e0, then 
(e) �� 
0(e0).

Proof. By induction on the derivation of �; x0:� 0 . e; e0.

Case (arg) and (env). Clear from Lemma 2.

Case (abs). Let v ��1 v0. By the �rst induction hypothesis, we know that �; x0:� 0 . �0 ; eve. It
is easy to show that for some vve, 


0(eve) ,! vve. By Lemma 2, 
[v=x] ��0;x:�1 [vve=xve; v
0=x].

By the second induction hypothesis, 
[v=x]e ��2 [vve=xve; v0=x]e0. Thus 
(�x:�1:e) ��1!�2


 0(hh�xve:j�
0j:�x:�1:e

0; eveii).

Case (app). By the induction hypothesis, 
(e1) ,! v1, 
0(e01) ,! v01, and v1 ��1!�2 v01 and

(e2) ,! v2, 


0(e02) ,! v02, and v2 ��1 v
0
2. Then by the de�nition of � , v1 v2 ��2 v

0
1 v02. Thus


(e1 e2) ��2 

0(e01 e02).

2

This theorem and the de�nition of the relations imply that for a closed program with a base
type, the results of evaluation of the original program and its translation are the same. As a
corollary, it is clear that various translations of a program have the same operational behavior.

Corollary 1 (Coherence) If ; ` e : b and ;; x:b . e ; e1 and ;; x:b . e ; e2, then e1 ,! c i�

e2 ,! c.

3.2 Sharing Environments

Some implementations of functional programming languages use environments with nested struc-
tures that may share some portions of the environment with other closures. Sharing environments
decreases the amount of space consumed by a closure and decreases the time to construct the
closure's environment. However, sharing can also require extra instructions to access a variable's
binding in the environment. Furthermore, sharing environments naively can lead to space problems
in the presence of a standard tracing garbage collector. In this section we extend our closure con-
version to allow for but not require shared environments. We do so by adding extra structure to the
typing contexts of the translation judgement and use this extra structure to guide the construction
of [possibly] shared environments. We then show how the resulting translation subsumes a wide
variety of environment representations used in practice.

In the previous section, translation judgements were of the form �; x:� . e; e0 where � was a

at type assignment of the form fx1:�1; : : : ; xn:�ng. Here, we add extra structure to the translation
judgement by using nested type assignments de�ned as follows:

� ::= fx:�g j h�1; : : : ;�mi

A nested type assignment is either a single type binding or a sequence of nested type assignments.
The environment corresponding to the type assignment � is represented in the target language by
type j�j where jfx:�gj = � and jh�1; : : : ;�mij = hj�1j � : : :� j�mji. Clearly, we can obtain a
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(arg) fx:�g; x0:� 0 . fx0:� 0g; x0 (env) �; x:� . �; xve (var)
�; x0:� 0 . fx:�g; e

�; x0:� 0 . x; e

(subenv)
�i; x:� . �; e

h�1; : : : ;�ni; x:� . �; e[�i(xve)=xve]

(env-tuple)
�; x:� . �1 ; e1 � � � �; x:� . �n ; en

�; x:� . h�1; : : : ;�ni; he1; : : : ; eni

Figure 3: Simply-Typed Closure Conversion using Nested Environments

non-nested type assignment (�) from a nested type assignment (�) simply by dropping the extra
structure. Hence, we consider � to represent a nested type assignment as well as its corresponding

at type assignment.

The relevant translation rules for closure conversion with nested environments are given in
Figure 3. The other translation rules are the same as in Figure 2, replacing � with �.

The (arg) rule translates a nested type assignment consisting of only the current argument to
the variable itself. The (env) rule gives us the current environment directly as xve allowing us to
avoid creating a copy. This rule, coupled with the (env-tuple) rule allows us to construct shared
environments as nested tuples. If we translate � to e under the type assignment �i, then the
(subenv) rule lets us translate � to e[�i(xve)=xve] under a type assignment which contains �i as
the ith component. Variable x is translated as a nested type assignment fx:�g by (var).

As an example, in the following translation the current environment is reused to construct the
environment of the closure:

hx1:int; x2:inti; x0:int . (�x:int:x0 + x1 + x2);
hh�xve:�:�x:int:�1(xve) + �1(�2(xve)) + �2(�2(xve)); hx

0; xveiii

where � is hint� hint � intii. The new environment for the closure is constructed by pairing the
current argument, x0, and the current environment, xve. By reusing a portion of an environment
we can reduce the cost of creation of a closure. If we use the translation given in Figure 2, then
constructing the new environment would require projecting the values for x1 and x2 out of the
current environment and then these values and the current argument would need to be placed in a
newly allocated tuple.

As with 
at type assignments, it is easy to prove that a translation of a program using nested
type assignments preserves the type of the program and the operational correctness of the transla-
tion may be proved by using logical relations.

Nested type assignments are 
exible enough to represent various environment representations
used in practice. For example, the Categorical Abstract Machine or CAM [7] uses linked lists to
represent environments. This is re
ected in our framework by restricting the shape of nested type
assignments and by restricting the (env-tuple) rule to \cons" the current argument onto the current
environment:

(CAM context) �c ::= fx:�g j hfx:�g;�ci

(env-tuple) �c; x:� . hx:�;�ci; hx; xvei

The advantage of the CAM strategy is that the cost of the construction of a new environment is
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constant. However, in the worst case accessing values in the environment takes time proportional
to the length of the environment.

In contrast, the FAM [6] uses 
at environments with no sharing. The closure conversion of Fig-
ure 2 accurately models the environment strategy of the FAM if we choose a speci�c strengthening
strategy in the (abs) rule where only the free variables of the function are preserved in the resulting
closure's environment. The advantage of the FAM environment representation is that the cost of
variable lookup is always constant and the representation is \safe for space" [3] according to Ap-
pel's de�nition. However, constructing the environment for a closure takes time proportional to the
number of free variables in the function and closures cannot share portions of their environment.

Clearly, there are a variety of other strategies for forming environments. For example, the shared
closure strategy described by Appel and Shao [31] that is also safe for space can also be formulated
in our framework. However, to determine a good representation for each closure's environment
requires a good deal more information including an estimate as to how many times each variable
is accessed, when garbage collection can occur, what garbage collection algorithm is used, etc.

3.3 Closure Representation

Abstract closure conversion chooses an environment representation for each closure and makes the
construction of closures explicit. We have shown how making the environment construction explicit
facilitates a variety of strategies that attempt to minimize the space consumed and running time
of the resulting program. Furthermore, by making environment construction explicit, we expose
operations that are implicit at the source level to an optimizer at the target level. In particular,
an optimizer might notice that the same environment is constructed in two places and replace the
second construction with a reference to the �rst. However, abstract closure conversion makes the
extraction of the code and environment in an application implicit in the operational semantics.
Ideally, these extraction operations should be explicit so that an optimizer can eliminate redundant
projections. For instance, if the same closure is repeatedly applied to some arguments in a loop,
we should be able to extract the code and environment of the closure one time, name these values,
and then use these names within the loop.

A �rst attempt at making the extraction of the code and environment explicit is to represent
closures as pairs (i.e., 2-tuples) in the target language and simply use projection (�). However,
we argued in the introduction that this naive translation does not preserve types. The di�culty is
that the environment's type is exposed in the translated type. Consequently, two expressions with
the same source type will not in general have the same target types when translated. This problem
is solved by hiding the type of the environment through the use of existential types [23], as Pierce
and Turner did for objects [27].

We therefore de�ne a target language �9 with existential types as follows:

Types � ::= b j t j h�1 � : : :� �ni j code(�ve; �1; �2) j 9t:�
Exp's e ::= c j e1(e2; e3) j �xve:�ve:�x:�1:e j he1; : : : ; eni j �i(e) j pack � with e as � j

open e1 as t with x:� in e2
Values v ::= c j �xve:�ve:�x:�1:e j hv1; : : : ; vni j pack �1 with v as �2

This language is the same as �cl except for the addition of package values of type 9t:� that pair
an abstract type (t) with a value of type � . Function types (!) are no longer necessary because
they can be represented using other type constructors (namely 9 and code(�ve; �1; �2)). In order to
prevent the partial application of the code to its environment, we restrict applications to the form
e1(e2; e3).
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Typing judgements for �9 are of the form �; � ` e : � where � is a list of type variables and
� is a type assignment. We assume that the free type variables of � and the free type variables of
e and � are contained in �. The typing rules for �9 are similar to the rules for �cl except for the
introduction and elimination-rules for existentials:

�; � ` e : � [� 0=t]

�; � ` pack � 0 with e as 9t:� : 9t:�

�;� ` e : 9t:� � ] ftg; �] fx:�g ` e0 : � 0 (t 62 FTV (� 0))

�; � ` open e as t with x:� in e0 : � 0

Similarly, the operational semantics of �9 is the same as for �cl except for rules involving existentials
and application:

e ,! v

pack � with e as � 0 ,! pack � with v as � 0

e1 ,! pack �1 with v as � 0 e2[�1=t][v=x] ,! v

open e1 as t with x:� in e2 ,! v

e1 ,! (�y:�ve:�x:�1:e) e2 ,! v2 e3 ,! v3 e[v2=y][v3=x] ,! v

e1(e2; e3) ,! v

We begin by de�ning a translation from �cl to �9 types, denoted j� j and de�ned as follows:

jbj = b

jh�1 � : : :� �nij = hj�1j � : : :� j�nji
jcode(�ve; �1; �2)j = code(j�vej; j�1j; j�2j)

j�1 ! �2j = 9tve:hcode(tve; j�1j; j�2j)� tvei:

The translation of an arrow type is a pair consisting of code and an environment, with the envi-
ronment type (tve) held abstract using an existential.

The translation mapping �cl terms to �9 terms is summarized in Figure 4. The translation
de�nes judgements of the form � . e : � ; e0 where �, e, and � are a �cl type assignment,
expression, and type respectively, and e0 is a �9 expression. The interesting rules are (closure) and
(app). The other rules simply map the other �cl constructs to their �9 counterparts. A closure is
translated to a pair of the code and the environment packed with the type of the environment. The
translation of an application extracts from a package the pair of a code and an environment and
applies the code to the environment and the argument.

It is easy prove that the translation preserves the type of a program up to the translation of
the type. We do so by �rst extending the type translation to type assignments, writing:

jfx1:�1; : : : ; xn:�ngj = fx1:j�1j; : : : ; xn:j�njg

Theorem 3 If � ` e : � and � . e : � ; e0, then ;; j�j ` e0 : j� j.

Proof. By induction on the derivation of � ` e : � ; e0.

2

Operational correctness of the translation is proven using logical relations between �cl and �9

expressions, �cl and �9 values, and �cl and �9 substitutions. The relations are de�ned in Figure 5.
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(var) � . x : � ; x (x:� 2 �) (const) � . c : b; c

(proj)
� . e : h�1; : : : ; �ni; e0

� . �i(e) : �i ; �i(e
0)

(tuple)
� . ei : �i ; e0i

� . he1; : : : ; eni : h�1; : : : ; �ni; he01; : : : ; e
0
ni

(code)
fxve:�ve; x:�1g . e; e0

� . �xve:�ve:�x:�1:e; �xve:j�vej:�x:j�1j:e0

(closure)
� . e : code(�ve; �1; �2); e0 � . eve : �ve ; e0ve

� . hhe; eveii : �1 ! �2 ; pack j�vej with he0; e0vei as j�1 ! �2j

(app)
� . e1 : �1 ! �2 ; e01 � . e2 : �1 ; e02

� . e1e2 : �2 ;
open e01 as tve with x:hcode(tve; j�1j; j�2j)� tvei in (�1x)(�2x; e02)

(x 62 Dom(�))

Figure 4: Important Rules of Simply-Typed Closure Representation

Theorem 4 (Operational Correctness) Let 
 �� 
0. If � ` e : � and � . e : � ; e0, then


(e) �� 
0(e0).

Proof. By induction on the derivation of � . e : � ; e0.

Case (var). Let � . x : � ; x. From 
 �� 
0, 
(x) �� 
0(x).

Case (closure). Let � . hhe; eveii : �1 ! �2 ; pack �ve with he0; e0vei as j�1 ! �2j. By the induc-
tion hypotheses, 
(e) �code(�ve;�1;�2) 


0(e0) and 
(eve) ��ve 

0(e0ve). Thus 
(e) ,! v, 
0(e0) ,!

v0, and v �code(�ve;�1;�2) v
0 and 
(eve) ,! vve, 
0(e0ve) ,! v0ve, and vve ��ve v

0
ve. Let v1 ��1 v

0
1.

Then hhv; vveii v1 ��2 v
0(v0ve; v

0
1). On the other hand, open 
0(pack �ve with he0; e0vei as j�1 !

�2j) as tve with x:h(tve ! �1 ! �2)� tvei in (�1x)(�2x; v
0
1) ,! v00 i� v0(v0ve; v

0
1) ,! v00. Hence


hhe; eveii ��1!�2 

0(pack �ve with he0; e0vei as j�1 ! �2j).

Case (code). Let � . (�xve:�ve:�x:�1:e) : code(�ve; �1; �2) ; �xve : j�vej:�x:j�1j:e
0 and let vve ��ve

v0ve and v1 ��1 v01. It is clear [vve=xve; v1=x] �fxve:�ve;x:�1g [v0ve=xve; v
0
1=x]. Then by the in-

duction hypothesis, [vve=xve; v1=x]e ��2 [v0ve=xve; v
0
1=x]e

0. Then hh�xve:�ve:�x:�1; vveii v1 ��2

(�xve:j�vej:�x:j�1j:e0)(v0ve; v
0
1). Hence �xve:�ve:�x:�1:e �code(�ve;�1;�2) �xve:j�vej:�x:j�1j:e

0.

Case (app). By the �rst induction hypothesis, 
(e1) ,! v1 and 
0(e01) ,! v01 and v1 ��1!�2 v
0
1. By

the second induction hypothesis, 
(e2) ,! v2 and 
0(e02) ,! v02 and v2 ��1 v
0
2. By the de�nition

of the relation, v1 v2 ��2 open v01 as tve with x:h(tve ! �1 ! �2) � tvei in (�1x)(�2x; v
0
2).

Thus, 
(e1 e2) ��2 

0(open e01 as tve with x:h(tve ! �1 ! �2)� tvei in (�1x)(�2x; e02).

Case (tuple) and (proj). By induction.

2
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e �� e0 i� e ,! v and e ,! v0 and v �� v0.

c �b c
v �code(�ve;�1;�2) v

0 i� for all vve ��ve v
0
ve and v1 ��1 v

0
1,

hhv; v0iiv1 ��2 v
0(v00; v

0
1)

v ��1!�2 v
0 i� for all v1 ��1 v

0
1,

v v1 ��2 open v0 as tve with x:� in (�1x)(�2(x); v01)
where � � h(code(tve; �1; �2))� tvei

hv1; : : : ; vni �h�1�:::��ni hv1; : : : ; v
0
ni i� for all 1 � i � n, vi ��i v

0
i.


 �� 
0 i� for all x:� 2 �; 
(x) �� 
0(x)

Figure 5: Logical Relations for Simply-Typed Closure Representation

In our operational semantics, pack is considered as a pair of a type and an expression. Most
implementations would treat the type of the environment of a closure uniformly since it is held
abstract and thus expect that the environment value be compiled so as to �t into a single machine
word { that is, the environment must be boxed. Therefore, most implementations would conceptu-
ally erase any type information from pack before execution. However, in implementations where
abstract types are not treated in a uniform matter, a representation of the type of the environment
must remain as part of the data structure at runtime. In particular, the calculus described by
Harper and Morrisett [14] supports a typecase mechanism that allows the abstract type to be
examined and di�erent code can be selected according to this type. This can be used, for exam-
ple, to support calling conventions where the environment is unboxed (i.e., placed in registers).
As another example, tag-free garbage collection [5, 2, 37, 24] relies upon type information being
associated with closures so that the shape of values in the environment can be reconstructed during
garbage collection. In essence, garbage collection, like typecase, is a non-parametric operation
that is allowed to examine types and select code according to the type. Our type-based closure
conversion makes the type information needed to support such non-parametric operations explicit.
This provides further evidence that the treatment of closures as existentials is type-theoretically
proper.

4 Overview of Polymorphic Closure Conversion

Closure conversion for a language with ML-style (i.e., predicative [13]), explicit polymorphism
follows a similar pattern to the simply-typed case, but with the additional complication that we
must account for free type variables as well as free value variables in the code of an abstraction, and
both value abstractions (�-terms) and type abstractions (�-terms) induce the creation of closures.
In this section, we give an overview of the typing di�culties encountered when closure converting
value abstractions. The treatment of type abstractions is similar (see Section 5 for details).

To eliminate free occurrences of type variables and ordinary variables from the code, we abstract
with respect to a type environment and a value environment, replacing free variables by references
to the appropriate environment. By abstracting both free type variables and free value variables,
the code becomes closed and can be hoisted to the top level. The abstracted code is then \partially
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applied" to suitable representations of the type and value environments to form a polymorphic
closure. As in the simply-typed case, we need a data structure to represent the delayed partial
application of the code to its environments. Also, we need to abstract both the kind of the type
environment and the type of the value environment so that their representations remain private to
the closure. Without the abstraction, we run into the same typing problems that we encountered
with the simply-typed case.

As a running example, consider the expression:

�x:t1. (x:t1, y:t2, z:int)

of type t1 ! (t1 � t2 � int) where t1 and t2 are free type variables and y and z are free value
variables of type t2 and int respectively. After closure conversion, this expression is translated to
the partial application

let val code =

�tenv :: ft1::
, t2::
g.
�venv : fy:#t2 tenv, z:intg.
�x : (#t1 tenv).(x, #y venv, #z venv)

in

code ft1=t1, t2=t2g fy=y, z=zg
end

The code abstracts type environment (tenv) and value environment (venv) arguments. The actual
type environment, ft1=t1,t2=t2g, is a constructor record with kind ft1::
,t2::
g where 
 is the kind
of monotypes. The actual value environment, fy=y, z=zg is a record with type fy:t2, z:intg.
However, to keep the code closed so that it may be hoisted, all references to free type variables
in the type of venv must come from tenv. Thus, we give venv the type fy:#t2 tenv, z:intg.
Similarly, the code's argument x is given the type #t1 tenv. Consequently, the code part of the
closure is a closed expression of closed type �, where

� = 8tenv::ft1::
, t2::
g.
fy:#t2 tenv, z:intg!(#t1 tenv)!((#t1 tenv)�(#t2 tenv)�int)

It is easy to check that the entire expression has type t1 ! (t1 � t2 � int), and thus the type of
the original function is preserved.

We must now translate the partial application of the code to it environments into a data struc-
ture. The structure must be \mixed-phased" because it needs to hold a type (the type environment)
as well as values (the code and value environment). A �rst attempt is to represent the data structure
as a package e, where

e = pack ft1=t1, t2=t2g with (code, fy=y, z=zg) as 9tte::�te.� � �ve

and code is the code of the closure above and

�te = ft1::
, t2::
g
�ve = fy:#t2 tte, z:intg

It is easy to verify that e is well-typed under the typing rule for pack.
Unfortunately, there is a problem with this approach: an application of e to some argument

e0 : t1 must open the package to extract the code, type, and value environments prior to the call:
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open e as tte::�te with z:� � �ve
in

(#1 z) tte (#2 z) e0

end

Although this is the \obvious" translation of application, it fails to be well-typed! The di�culty is
that e0 is of type t1, whereas the expression (#1 z) tte (#2 z) has type:

(#t1 tte)!((#t1 tte)�(#t2 tte)�int).

Since tte is abstract, t1 is not provably equivalent to #t1 tte, and this translation of application fails
to typecheck.

The problem is that existentials provide a certain kind of mixed-phase data structure where the
type portion must be abstract. We can use this to hide representations but here, we need to know
what the type environment actually is in order to determine the type of the closure. In short, we
need a mixed-phase data structure that does not hide its type component.

This same problem has been encountered in the study of the ML-like module systems [12, 21, 22].
Recent solutions are based on the idea of translucent sums [11] or manifest types [20], which provide
the power of both existentials (weak sums), and transparent sums (strong sums). By ascribing the
translucent sum type

9tte =ft1=t1,t2=t2g.� � �ve

to the closure, the equation tte=ft1=t1,t2=t2g is propagated into the scope of the abstraction so
that in particular #t1 tte = #t1 ft1=t1,t2=t2g = t1, and thus the translation of application is type
correct.

The next step is to hide the representation of the value environment as we did in the simply-
typed case. If we simply abstract the type �ve from the above type expression we obtain

9tte =ft1=t1,t2=t2g.9tve::
.� � tve

where tve is the abstract type of the value environment. However, this fails to make type sense
because we have abstracted the type of the value environment in the closure, but not the cor-
responding argument type of the code of the closure. The translation of application is ill-typed
because the value environment has abstract type tve, but the domain type of (#1 z) tte is fy:t2,
z:intg. Since tve is abstract, these two types are considered distinct. In order to simultaneously
abstract the type of the value environment and the corresponding argument type in the code, we
need to replace both types with the same abstract type tve. To do this, we must show that the
two types are equivalent. This can be accomplished by requiring that the formal type environment
argument (tenv) is only instantiated with the type environment tte. One way to achieve this is to
perform the application of the code to tte, but the goal of closure conversion is to delay such partial
applications. An alternative approach is to use translucency again and coerce the code so that it
has the type �0, where:

�0 = 8tenv= tte::�te.

fy:#t2 tenv, z:intg!(#t1 tenv)!((#t1 tenv)�(#t2 tenv)�int)

Adding the constraint tenv= tte to the type of the code has the e�ect of performing the type
application at the type-level, but delays the application at the term-level. Note that �0 is a super-
type of the original code type � according to the rules of the translucent sum calculus. Consequently,
the code remains the same (i.e., closed) and can still be hoisted to the top level. In contrast, if
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we had performed the type application, the resulting code would not be closed (containing free
references to tte).

Since tenv= tte and tte =ft1=t1,t2=t2g, it follows that tenv=ft1=t1,t2=t2g and thus (#ti
tenv)= ti. Consequently, the data structure holding the components of the closure can be co-
erced to the equivalent type:

9tte =ft1=t1,t2=t2g.�00�fy:t1,z:intg

where �00 is

�00 = 8tenv= tte::�te.fy:t1, z:intg!t1 !(t1 � t2�int)

Since this equivalent type makes no mention of the type environment tte except in the constraint for
tenv, we may drop the constraint on tte, abstract the type of the value environment (fy:t1,z:intg),
and abstract the kind of the type environment �te to obtain the closure type:

9kte:9tte::kte:9tve::
.�000� tve

where

�000 = 8tenv= tte::kte.tve ! t1 !(t1 � t2�int)

It is easy to derive a type-preserving translation of application corresponding to this representa-
tion of closures. We simply open all of the existentials, and pass the type environment, value
environment, and argument to the code.

Careful consideration of the foregoing discussion reveals that only limited use is made of translu-
cency. The equational constraint on tte is dropped from the existential (to ensure privacy of envi-
ronment representation), and the universally quanti�ed variable tenv does not occur in the scope
of the abstraction. This suggests that a substantially simpler mechanism than the full translucent
sum calculus is more appropriate for closure conversion. Hence, we introduce a special type, writ-
ten � ) �, of functions that must be applied to the constructor � to yield a value of type �. The
following two rules govern this new type constructor:

� ` � :: � �;� ` e : 8t::�:�
�;� ` e : � ) �[�=t]

�; � ` e : � ) �

�;� ` e � : �

The �rst rule restricts the domain of type application to the speci�c constructor � . This corresponds
to restricting the type to 8t = �:� and propagating the equivalence t = � into �. The actual type
application for � ) � is permitted only for constructors equivalent to � . These two rules naturally
come from the necessity of delaying type applications for closure conversion. Using this notation,
the type translation of �1 ! �2 becomes

9kte:9tte::kte:9tve::
:(tte ) tve ! �1 ! �2)� tve:

The type of closures abstracts the kind of the type environment and the type of the value
environment, ensuring that these may be chosen separately for each closure in the system. As in
the simply-typed case we have obtained an \object oriented" representation of polymorphic closures
by exploiting a combination of the type systems proposed by Pierce and Turner [27] for objects
and by Harper and Lillibridge [11] for modules.
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5 A Formal Account of Polymorphic Closure Conversion

In this section, we present closure conversion for the predicative subset of the second order �-
calculus. It has been argued that the predicative fragment captures the \essence" of ML-style
polymorphism, since there is a strati�cation between monotypes (types not involving a quanti�er)
and polytypes, and instantiation of type variables is restricted to monotypes [13]. These restrictions
make it easy to use logical relations to argue correctness in the same fashion as we did for the
simply-typed �-calculus.

The syntax of our source language �8 is de�ned as follows:

Kinds � ::= 

Constructors � ::= b j t j �1 ! �2
Types � ::= � j �1 ! �2 j 8t::�:�
Expressions e ::= c j x j �x:�1:e j �t::�:e j e1 e2 j e �

Values v ::= c j �x:�1:e j �t::�:e

The type constructors (�) are described by kinds (�). There is only one kind (
) for �8 , but
subsequent languages have a richer kind structure, so we introduce kinds here for uniformity.
Closed constructors of kind 
 correspond to a subset of types (the monotypes), in particular the
types that do not include quanti�ers. Thus, constructors of kind 
 can be injected into types. We
leave this injection implicit and treat � as both a constructor and a type.

A kind assignment � is a sequence that maps type variables to kinds and is of the form
ft1::�1; : : : ; tn::�ng, (n � 0). Typing judgements are of the form �; � ` e : � where the free type
variables of �, e, and � are contained in the domain of �, and the free value variables of e are
contained in the domain of �. A typing judgement is derived from the standard typing rules of the
second-order �-calculus (see for example [13, 14]). The most interesting rules are the introduction
and elimination rules for quanti�ed types:

� ] ft::�g; � ` e : �

�;� ` �t::�: e : 8t::�: �
(t 62 Dom(�))

�; � ` e : 8t::�: �
�;� ` e � : �[�=t]

(FTV(�) � Dom(�))

The introduction rule allows us to conclude that a �-expression has a polymorphic type 8t::�:� if,
extending the kind assignment � with t::� allows us to conclude that the body of the �-expression
has type �. The elimination rule allows us to conclude that a type application e � has the type
�[�=t] if � is a monotype whose free type variables are contained in the domain of � and e is an
expression of type 8t::
:�.

The operational semantics of �8 is de�ned using the following inference rules:

v ,! v
e1 ,! �x:�1:e e2 ,! v2 e[v2=x] ,! v

e1e2 ,! v

e ,! �t::�:e0 e0[�=t] ,! v

e� ,! v

5.1 Abstract Closures

As in the simply typed case, we break closure conversion into abstract closure conversion and closure
representation stages2. The abstract closure conversion stage for �8 converts both �-abstractions
and �-abstractions into abstract closures consisting of code, a type environment and a value envi-
ronment.

2The material on environment sharing carries over in a straightforward manner.
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5.1.1 The Target Language

The syntax of the target language �8;cl is de�ned as follows:

Kinds � ::= 
 j h�1 � : : :� �2i
Con's � ::= b j t j �1 ! �2 j h�1 � : : :� �ni j

h�1; : : : ; �ni j �i � j
Types � ::= � j �1 ! �2 j 8t::�:� j h�1 � : : :� �ni j

vcode(tte::�te; �ve; �1; �2) j
tcode(tte::�te; �ve; t::�; �)

Exp's e ::= c j x j e1 e2 j e � j he1; : : : ; eni j �i e j
�tte::�te:�xve:�ve:�x:�1:e j
�tte::�te:�xve:�ve:�t::�:e j hhe1; �; e2ii

Values v ::= c j hv1; : : : ; vni j �tte::�te:�xve:�ve:�x:�1:e j
�tte::�te:�xve:�ve:�t::�:e j hhv1; �; v2ii

A product kind h�1 � : : : � �ni is used to specify the shape of type environments just as a
product type speci�es the shape of value environments. Given constructors �i with kind �i, the
constructor h�1; : : : ; �ni has kind h�1 � : : :� �ni and is used as a type environment consisting of
�1; : : : ; �n in a translated program.

There are two types of codes: the code for ordinary abstraction, �tte::�te:�xve:�ve:�x:�1:e, and
the code for type abstraction, �tte::�te:�xve:�ve:�t::�:e. Codes take a type environment, a value
environment, and a type or value argument respectively. We introduce the types vcode and tcode,
to distinguish the types of codes from the types of closures and to avoid partial applications of
codes. Intuitively, they correspond to standard types as follows:

vcode(tte::�te; �ve; �1; �2) � 8tte::�te:�ve ! �1 ! �2
tcode(tte::�te; �ve; t::�; �) � 8tte::�te:�ve ! 8t::�:�

Only types excluding 8, vcode, and tcode can be named as a constructor. An abstract closure
hhe1; �; e2ii consists of a code e1, a type environment constructor � , and a value environment e2.

For the typing of �8;cl , kind assignments (�) map type variables to kinds while type assignments
(�) map value variables to types. The judgements of the static semantics are as follows:

� ` � :: � � is a well-formed constructor of kind �.
� ` � � is a well-formed type.
� ` �1 � �2 :: � �1 and �2 are equivalent constructors.
� ` �1 � �2 �1 and �2 are equivalent types.
�; � ` e : � e is a well-formed expression of type �.

The typing rules of the language are de�ned in Figures 6 and 7. We require that code values be
closed with respect to both type variables as well as value variables. This allows us to hoist code out
of inner de�nitions to the top level. We remark that the code e1 of a closure hhe1; �; e2ii with type
�1 ! �2 does not have the type vcode(tte::�te; �ve; �1; �2), but rather vcode(tte::�te; �

0
ve; �

0
1; �

0
2)

where �1 � �01[�=tte] and �2 � �02[�=tte].
The operational semantics for �8;cl is given in Figure 8. When a closure expression is evaluated,

the code, the type environment, and the value environment are evaluated and then a closure
consisting of these components is created. When an argument is applied to a closure, the type
environment, the value environment, and the argument are passed to the code of the closure.
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Well-formedness of constructors:

� ` b :: 
 � ] ft::�g ` t :: � (t 62 Dom(�))

� ` � 0 :: 
 � ` � :: 


� ` � 0 ! � :: 


� ` �1 :: 
 � � � � ` �n :: 


� ` h�1 � : : :� �ni :: 

� ` �1 :: �1 � � � � ` �n :: �n
� ` h�1; : : : ; �ni :: h�1 � : : :� �ni

� ` � :: h�1 � : : :� �ni
� ` �i � :: �i

Well-formedness of types:

� ` � ::


� ` �

� ] ft::�g ` �

� ` 8t::�: �
(t 62 Dom(�))

� ` �0 � ` �

� ` �0 ! �

� ` �1 � � � � ` �n
� ` h�1 � : : :� �ni

ftte::�teg ` �ve ftte::�teg ` �1 ftte::�teg ` �2
� ` vcode(tte::�te; �ve; �1; �2)

ftte::�teg ` �ve ftte::�te; t::�g ` �

� ` tcode(tte::�te; �ve; t::�; �)
(tte 6= t)

Primary rules for equivalence of constructors:

� ` h�1; : : : ; �ni :: h�1 � : : :� �ni
� ` �i(h�1; : : : ; �ni) � �i :: �i

(1 � i � n)

� ` � :: h�1 � : : :� �ni

� ` � � f�1 �; : : : ; �n �g :: h�1 � : : :� �ni

Figure 6: Formation and Equivalence of Types and Constructors
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�;� ` c : b �;� ` x : �(x)

�; � ` e1 : �1 � � � �;� ` en : �n
�;� ` he1; : : : ; eni : h�1 � � � � � �ni

�;� ` e : h�1 � � � � � �ni
�;� ` �i e : �i

(1 � � � n)

�; � ` e1 : �1 ! �2 �;� ` e2 : �1
�;� ` e1 e2 : �2

�;� ` e : 8t::�:� � ` � 0 :: �

�;� ` e � : �[�=t]

�; � ` e : �0 � ` � � �0

�;� ` e : �

ftte::�teg; fxve:�ve; x:�1g ` e : �2
�;� ` �tte::�te:�xve:�ve:�x:�1: e : vcode(tte::�te; �ve; �1; �2)

ftte::�te; t::�g; fxve:�veg ` e : �

�;� ` �tte::�te:�xve:�ve:�t::�: e : tcode(tte::�te; �ve; t::�; �)

�; � ` e1 : vcode(tte::�te; �ve; �1; �2) � ` � ::�te �;� ` e2 : �ve[�te=tte]

�; � ` hhe1; �te; e2ii : (�1 ! �2)[�te=tte]

�; � ` e1 : tcode(tte::�te; �ve; t::�; �) � ` �te::�te �;� ` e2 : �ve[�te=tte]

�; � ` hhe1; �te; e2ii : (8t::�: �)[�te=tte]

Figure 7: Typing Rules of �8;cl

v ,! v
e1 ,! v1 e2 ,! v2

hhe1; �; e2ii ,! hhv1; �; v2ii

e1 ,! v1 : : : en ,! vn
he1; : : : ; eni ,! hv1; : : : ; vni

e ,! hv1; : : : ; vni

�i e ,! vi

e1 ,! hh�tte::�te:�xve:�ve:�x:�1: e; �te; vveii e2 ,! v0 e[�te=tte; vve=xve; v
0=x] ,! v

e1 e2 ,! v

e1 ,! hh�tte::�te:�xve:�ve:�t::�: e; �te; vveii e[�te=tte; vve=xve; �=t] ,! v

e1 � ,! v

Figure 8: Operational Semantics of �8;cl
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Various strategies of evaluation of constructors including call-by-value, call-by-need, or lazy
evaluation can be used to reach a normal form. However, for simplicity in this paper we does not
evaluate constructors explicitly. The operational correctness for other strategies may be proved
with a few changes.

5.1.2 The Translation

�env; �arg . b; b ft1::
; : : : ; tn::
g; �arg . ti ; �i tte

�env; �arg . t; t (t 2 Dom(�arg))

�env; �arg . �1 ; �01 �env; �arg . �2 ; �02
�env; �arg . �1 ! �2 ; �01 ! �02

�env; �arg ] ft::
g . � ; �0

�env; �arg . 8t::�: �; 8t::�: �0

�env; �arg . t01 ; �1 � � � �env; �arg . t
0
n ; �n

�env; �arg . ft
0
1::
; : : : ; t

0
n::
g; h�1; : : : ; �ni

�env; �arg . �1 ; �01 � � � �env; �arg . �n ; �0n
�env; �arg . fx1:�1; : : : ; xn:�ng; fx1:�

0
1; : : : ; xn:�

0
ng

Figure 9: Polymorphic Abstract Closure Conversion: Types and Type Assignments

Abstract closure conversion for �8 is formulated as a type-directed translation to �8;cl by the
deductive system in Figures 9 and 10. The judgement �env; �arg . � ; �0 means that �0 is the
translation of � where �env is a kind assignment corresponding to a type environment and �arg is a
kind assignment corresponding to a type argument (if any). This judgement also implicitly de�nes
a translation from constructors to constructors, since source-level constructors (�) are a subset of
types (�) and the translation maps constructors to constructors. In translated programs, the type
variable tte is used for type environments.

The judgement �env; �arg; �env; �arg . e ; e0 means e0 is a translation of e where �env and
�arg are as in the type translation, and �env and �arg are type assignments corresponding to the
value environment and value argument respectively. Depending on whether we are translating
a type abstraction or value abstraction, either �arg or �arg will be empty. A type environment
corresponding to �env and a value environment corresponding to �env are implemented in the
target language by types of the form j�envj and j�envj respectively, de�ned below.

jft1::�1; : : : ; tn::�ngj = h�1 � : : :� �ni
jfx1:�1; : : : ; xn:�ngj = h�1 � : : :� �ni

For simplicity, only 
at representations of value and type environments are considered in this
translation.

The most interesting rules are the term translations of value and type abstractions. In each
case, an appropriate type environment and value environment must be constructed as part of the
closure. Thus, assignments �0

env and �0env must be chosen as subsets of the current assignments
�env ]�arg and �env ] �arg respectively. These assignments must be chosen so that all of the free
value variables of the term are contained in �0env and further, all of the free type variables of the
term and the value environment must be contained in �0

env.
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(const) �env; �arg; �env; �arg . c; c

(env) �env; �arg; fx1:�1; : : : ; xn:�ng; �arg . xi ; �i xve

(arg) �env; �arg; �env; �arg . x; x (x 2 Dom(�arg))

(abs)

�env; �arg; �env; �arg . �
0
env ; �te �env; �arg; �env; �arg . �

0
env ; eve

�0
env; ; . �

0
env ; �00env �0

env; ; . �1 ; �01
�0

env; ;; �
0
env; fx:�1g . e; e0

�env; �arg; �env; �arg . �x:�1:e; hh�tte::j�
0
envj:�xve:j�

00
envj:�x:�

0
1:e

0; �te; eveii

(tabs)
�env; �arg; �env; �arg . �

0
env ; �te �env; �arg; �env; �arg . �

0
env ; eve

�0
env; ; . �

0
env ; �00env �0

env; ft::
g; �
0
env; ; . e; e0

�env; �arg; �env; �arg . �t::
: e; hh�tte::j�0
envj:�xve:j�

00
envj:�t::
: e

0; �te; eveii

(app)
�env; �arg; �env; �arg . e1 ; e01 �env; �arg; �env; �arg . e2 ; e02

�env; �arg; �env; �arg . e1 e2 ; e01 e02

(tapp)
�env; �arg; �env; �arg . e; e0 �env; �arg . � ; �0

�env; �arg; �env; �arg . e � ; e0 �0

(context)
�env; �arg; �env; �arg . xi ; e0i

�env; �arg; �env; �arg . fx1:�1; : : : ; xn:�ng; he01; : : : ; e
0
ni

Figure 10: Polymorphic Abstract Closure Conversion: Terms
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The primary subtlety in these rules is that we need two type assignments �0env and �00env to
describe the value environment of the closure, depending upon the context. �0env is constructed
from the context �env; �arg; �env; �arg and is used to build the environment eve in the context
where we are constructing the closure. In contrast, �00env is obtained from �0env via the translation
�0

env; ; . �0env ; �00env and corresponds to the type of the value environment in the context of the
closure itself. This ensures that the code of the closure is closed since the type ascribed to the value
environment argument does not refer to free type variables in the context where the closure was
created.

5.1.3 Type Correctness

The following lemma shows that type translation commutes with substitution.

Lemma 3 If �env; �arg ] ft::
g . � ; �0, �env ] �arg ` � ::
, and �env; �arg . � ; � 0, then
�env; �arg . �[�=t]; �0[� 0=t].

Proof. By induction on the derivation of �env; �arg ] ft::
g . � ; �0.

Case �env; �arg ] ft::
g . t; t. From the assumption, �env; �arg . � ; � 0.

Case �env; �arg]ft::
g . t
0
; t0. From the de�nition of translation of types, �env; �arg . t0 ; t0.

Case �env; �arg ] ft::
g . ti ; �i(tte). Then ti 2 �env, so ti 6= t. Thus, �env; �arg . ti[�=t] ;
�i(tte).

Case �env; �arg]ft::
g . �1 ! �2 ; �01 ! �02. By the induction hypotheses, �env; �arg]ft::
g .
�1[�=t] ; �01[�

0=t] and �env; �arg ] ft::
g . �2[�=t] ; �02[�
0=t]. Thus, by the de�nition of

substitution and the type translation, �env; �arg]ft::
g . (�1 ! �2)[�=t]; (�01 ! �02)[�
0=t].

Case �env; �arg]ft::
g . 8t
0::
:�1 ; 8t0::
:�01 is derived from �env; �arg]ft::
; t

0::
g . �1 ; �01.
Through �-conversion, t0 can always be chosen to be di�erent from t. By the assumption and
the de�nition of the translation, �env; �arg ] ft0::
g . � ; � 0. Then by the induction
hypothesis, �env; �arg ] ft0::
g . �1[�=t] ; �1[� 0=t]. Thus by substitution, �env; �arg .

8t0::
:�1[�=t]; 8t0::
:�1[�
0=t].

2

The following lemma shows that types are suitably equivalent when translated under the current
kind assignment or a kind assignment derived from the current kind assignment.

Lemma 4 If �env; �arg . �0
env ; �te and �0

env; �
0
arg . � ; �1, then �env; �arg ]�0

arg . � ; �2
and ftte::j�envjg ]�arg ]�0

arg ` �2 � �1[�te=tte].

Proof. By induction on the derivation of �0
env; �

0
arg . � ; �1.

Case �0
env; �

0
arg . t; t. Clear.

Case �0
env; �

0
arg . t0i ; �i(tte). Let �env = ft1::
; : : : ; tn::
g and �arg = fs1::
; : : : ; sm::
g.

Subcase t0i = tj . Then �env; �arg ] �0
arg . t0i � tj ; �j(tte) and ftte::j�envjg ` �i(�te) �

�j(tte).

Subcase t0i = sj . Then �env; �arg ]�0
arg . t0i � sj ; sj and ftte::j�envjg ` �i(�te) � sj .
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Case �0
env; �

0
arg . �1 ! �2 ; �01 ! �02. Clear from induction hypotheses.

Case �0
env; �

0
arg . 8t::
:�; 8t::
:�1 is derived from �0

env; �
0
arg ] ft::
g . � ; �1.

Then �env; �arg ] �0
arg ] ft::
g . � ; �2 and ftte::j�envjg ] �arg ] �0

arg ] ft::
g ` �2 �
�1[�te=tte]. Thus, �env; �arg ] �0

arg . 8t::
:� ; 8t::
:�2 and ftte::j�envjg ] �arg ] �0
arg `

8t::
:�2 � 8t::
:�1[�te=tte] .

2

As in the simply typed case, the value environment produced from �0env has the type obtained
by translating �0env.

Lemma 5 If �env; �arg; �env; �arg . �
0
env ; eve and �env; �arg . �

0
env ; �000env, then

�env ]�arg; �env ] �arg ` eve : j�
000
envj.

The type correctness of the translation is proved by induction on the derivation of the transla-
tion.

Theorem 5 (Type Correctness) If �env; �arg; �env; �arg . e; e0 and �env]�arg; �env]�arg `
e : �, then ftte::j�envjg ]�arg; fxve:j�0envjg ] �0arg ` e0 : �0 where �env; �arg . � ; �0, �env; �arg .

�env ; �0env, and �env; �arg . �arg ; �0arg.

Proof. By induction on the derivation of �env; �arg; �env; �arg . e; e0.

Case (env). Let �env be fx1:�1; : : : ; xn:�ng. Then �0env is fx1:�
0
1; : : : ; xn:�

0
ng and �env; �arg .

�i ; �0i. Thus ftte::j�envjg ]�arg; fxve:j�0envjg ] �0arg ` �i(xve) : �0i.

Case (arg). Let �arg be fx1:�1; : : : ; xn:�ng. Then �0arg is fx1:�
0
1; : : : ; xn:�

0
ng and �env; �arg . �i ;

�0i. Thus ftte::j�envjg ]�arg; fxve:j�
0
envjg ] �0arg ` xi : �

0
i:

Case (abs). Let �0
env; ;; �

0000
env; x:�1 . e; e0 and �0

env; ; . �
0000
env ; �00env and �

0
env; ; . �1 ; �01. Since

�0
env; �

0000
env] fx:�1g ` e : �2, by the induction hypothesis, ftte::j�

0
envjg; fxve:j�

00
envj; x:�

0
1g ` e0 :

�02 where �
0
env; ; . �2 ; �02. Let � be fxve:j�0envjg ] �0arg. Then

ftte::j�envjg ]�arg; � ` �tte::j�
0
envj:�xve:j�

00
envj:�x:�

0
1:e

0 : vcode(tte::j�
0
envj; j�

00
envj; �

0
1; �

0
2)

Let �env; �arg . �1 ! �2 ; �0 and �env; �arg . �0000env ; �000env. Then by Lemma 4,
ftte::j�envjg]�arg ` �0 � (�01 ! �02)[�te=tte] and ftte::j�envjg]�

0 ` j�000envj � j�00envj[�te=tte]::h
�
: : :� 
i. Since ftte::j�envjg ]�arg; � ` eve : j�000envj,

ftte::j�envjg ]�arg; � ` hh�tte::j�
0
envj:�xve:j�

00
envj:�x:�

0
1:e

0; �te; eveii : �
0

Case (tabs). Let �0
env; ft::
g; �

0000
env; ; . e; e0 and �0

env; ; . �
0000
env ; �00env. Since �

0
env]ft::
g; �

0000
env `

e : �2, by the induction hypothesis, ftte::j�0
envj; t::
g; fxve:j�

00
envjg ` e0 : �02 where

�0
env; ft::
g . �2 ; �02. Let � be fxve:j�

0
envjg ] �0arg. Then

ftte::j�envjg ]�arg; � ` �tte::j�
0
envj:�xve:j�

00
envj:�t::
:e

0 : tcode(tte::j�
0
envj; j�

00
envj; t::
; �

0
2)

Let �env; �arg . 8t::
:�2 ; �0 and �env; �arg . �
0000
env ; �000env. Then by Lemma 4, ftte::j�envjg]

�arg ` �0 � 8t::
:�02[�te=tte] and ftte::j�envjg ] �arg ` j�000envj � j�00envj[�te=tte]::h
 � : : :� 
i.
Since ftte::j�envjg ]�arg; � ` eve : j�

000
envj,

ftte::j�envjg ]�arg; � ` hh�tte::j�
0
envj:�xve:j�

00
envj:�t::
:e

0; �te; eveii : �
0
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Case (tapp). Let �env]�arg; �env]�arg ` e : 8t::
:�1. By the induction hypothesis, ftte::j�envjg]
�arg; fxve:j�0envjg ] �0arg ` e0 : 8t::
:�01 such that �env; �arg ] ft::
g . �1 ; �01. Let
�env; �arg . � ; �0. Then ftte::j�envjg ] �arg; �

0
env ] �0arg ` e0 �0 : �01[�

0=t]. By Lemma 3,
�env; �arg . �1[�=t]; �01[�

0=t].

Case (app). By the �rst induction hypothesis, ftte::j�envjg]�arg; fxve:j�
0
envjg]�

0
arg ` e01 : �

0
1 ! �02

where �env; �arg . �i ; �0i for i = 1; 2. By the second induction hypothesis, ftte::j�envjg ]
�arg; fxve:j�

0
envjg ] �0arg ` e02 : �

0
1. Hence, ftte::j�envjg ]�arg; fxve:j�

0
envjg ] �0arg ` e01 e02 : �

0
2.

2

5.1.4 Operational Correctness

We can prove the operational correctness of the translation using logical relations in the same fashion
as we did for the simply typed case because the source language is restricted to the predicative
polymorphism. First we de�ne the relation between closed source and target constructors.

� ' � 0 i� for some � 00, ;; ; . � ; � 00 and ; ` � 0 � � 00::


Then we de�ne the logical relations inductively by the lexicographic order of the number 8-
quanti�ers in a type � and by the size of �. Since instantiation is restricted to types that do
not contain quanti�ers, this measure always decreases at a type application. The relations are
de�ned as follows:

e �� e0 i� e ,! v and e ,! v0 and v �� v0.
c �b c

v ��1!�2 v
0 i� for all v1 ��1 v

0
1, v v1 ��2 v

0 v01
v �8t::
:� v0 i� for all � ' � 0, then v � ��[�=t] v

0 � 0

We extend the relation to substitutions as follows:


 �fx1:�1;:::;xn:�ng [hv1; : : : ; vni=xve] i� 
(xi) ��i vi.

 ��;fx1:�1;:::;xn:�ng [v

0=xve; v1=x1; : : : ; vn=xn] i� 
 �� [v0=xve] and 
(xi) ��i vi.

We must also de�ne a relation between constructor substitutions indexed by source kind assign-
ments. Since source kind assignments only bind type variables to the kind 
, we omit the kinds
below:

� 'ft1;:::;tng [h�1; : : : ; �ni=tte] i� �(ti) ' �i.
� '�;ft1;:::;tng [�

0=tte; �1=t1; : : : ; �n=tn] i� � '� [� 0=tte] and �(ti) ' �i::
.

An important property of the type translation is that by applying related type substitutions, a
type and its translation result in types related by '.

Lemma 6 If � '�env;�arg �
0 and �env; �arg . � ; � 0, then �(�) ' �0(� 0).

Proof. By induction on the derivation of �env; �arg . � ; � 0.

Case: � is tj where �env is ft1; : : : ; tng. Then � 0 � �j(tte). By de�nition, �0(tte) � h�1; : : : ; �ni
such that �(ti) ' �i for 1 � i � n. Since ` �j(�

0(tte)) � �j , �(ti) ' �0(�j(tte)).

Case: � is t 2 �arg. Then � 0 � t. By de�nition �(t) ' �0(t).
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Case: � is �1 ! �2. By induction.

2

Lemma 7 If � '�env;�arg
�0 and �env; �arg . �

0
env ; �te, then � '�env

[�0(�te)=tte].

Proof. Let �0
env be ft1::
; : : : ; tn::
g. Then �te is h�1; : : : ; �ni such that �env; �arg . ti ; �i. Then

it is su�cient if we show �(ti) ' �0(�i). This follows from the previous lemma.

2

Lemma 8 Let � '�env;�arg
�0 and 
 ��(�env;�arg) 


0.

1. If �env ]�arg; �env ] �arg ` x : � and �env; �arg; �env; �arg . x ; e0, then 
0(e0) ,! v and


(x) ��(�) v.

2. If �env; �arg; �env; �arg . �
0
env ; eve, then 
0(eve) ,! v and 
 ��(�0

env)
[v=xve].

With these lemmas in hand, we may prove that the translation preserves the operational be-
havior of a program.

Theorem 6 (Operational Correctness)
Let � '�env;�arg �0 and 
 ��(�env;�arg) 


0. If �env; �arg; �env; �arg . e ; e0 and �env ]�arg; �env ]
�arg ` e : � then �(
(e))��(�) �

0(
0(e0)).

Proof. By induction of the derivation of �env; �arg; �env; �arg . e; e0.

Case (arg) and (env). Clear from Lemma 8.

Case (abs). Let v ��(�1) v
0 and �0(
0(eve)) ,! v0. By Lemma 8, 
[v=x]��(�0

env;fx:�1g)
[v0=xve; v

0=x].
Let ` �0(�te) � � . By Lemma 7, � '�0

env;;
[�=tte]. Then by the induction hypothesis,

�(
[v=x](e))��(�2) [�=tte]([v0=xve; v
0=x](e0)). Then

�(
(�x:�1:e)) ��(�1!�2) �
0(
0(hh�tte::j�

0
envj:�xve:j�

00
envj:�x:�

0
1:e

0; �; eveii)):

Case (tabs). Let �0(
 0(eve)) ,! v0. By Lemma 8, 
 ��(�0

env;;) [v0=xve]. Let ` �0 � � 00::
 and
` �0(�te) � � . By Lemma 7, �[�0=t] '�00 ;t [�=tte; � 00=t]. Then by induction hypothesis,
�[�0=t](
(e))��(�2) [�=tte; �

0
0=t]([v0=y](e

0)). Then,

�(
(�t::
:e)) ��(8t:�2) �
0(
0(hh�tte::j�

0
envj:�xve:j�

00
envj:�t::
:e

0; �; eveii)):

Case (tapp). Let �env; �arg; �env; �arg ` e� ; e0� 0. By induction hypothesis, �
(e) ,! v,
�0
0(e0) ,! v0, and v �8t:�2 v0. By Lemma 6, �(�) ' �0(� 0). Then v�(�) ��(�2[�=t]) v0� 0.
Hence �
(e�) ��(�2[�=t]) �

0
0(e0� 0).

Case (app). By induction hypothesis, �
(e1) ,! v1, �0
0(e01) ,! v01, and v1 ��1!�2 v01. By
induction hypothesis, �
(e2) ,! v2, �

0
0(e02) ,! v02, and v2 ��1 v02. Then v1v2 ��2 v01v
0
2.

Hence, �
(e1e2) ��2 �
0
0(e01e

0
2).

2
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5.2 Closure Representation

In this section we present closure representation for the second order language. We use types
with existential kinds to abstract the representation of type environments and existential types to
abstract the representation of value environments. Further, we introduce the type � ) �0, derived
from translucent types, to solve the typing problems discussed in the overview.

5.2.1 The Target Language

The target language for polymorphic closure representation, called �8;9 , is de�ned as follows:

Kinds � ::= k j 
 j h�1 � : : :� �ni
Types � ::= b j t j h�1 � : : :� �ni j h�1; : : : ; �ni j �i � j

8t::�:� j �1 ) �2 j �1 ! �2 j 9t::�:� j 9k:�
Exp's e ::= x j c j �x:�:e j e1 e2 j �t::�:e j e � j

he1; : : : ; eni j �i e j
pack � with e as �0 j
open e as t::� with x:� in e0

pack � with e as � j
open e as k with x:� in e0

There is no distinction between types and constructors for �8;9 because type application is no longer
restricted to just monotypes. �8;9 needs this impredicativity because some monotypes from the
source language are translated into types with quanti�ers. To simplify the language, we provide
full abstractions (� and �) instead of codes which abstract more than one argument at a time.

To provide types with existential kinds, we need to introduce kind variables k and kind contexts
for the typing judgements of �8;9 . A kind context K is simply a sequence of kind variables,
fk1; : : : ; kng, (n � 0). The typing judgements of the language consist of the following:

K; � ` � :: � � has kind �.
K; � ` �1 � �2 :: � �1 and �2 are equal types of kind �.
K; �; � ` e : � e has type �.

The typing rules are de�ned in Figures 11 and 12. As described in the overview, the typing rule
for type applications is split into two rules: (ins) and (tapp). The rule (ins) restricts the domain
of type application to the speci�c type �0. This corresponds to restricting the type from 8t::�:� to
8t = �0::�:� and propagating the equivalence t � �0 into �. The actual type application for �0 ) �

is permitted only for the type �0 in the rule (tapp). Other interesting rules are (kpk) and (kop) for
types with existential kinds. They are almost analogous to the rules for ordinary existential types.
However, we have to check that the type abstracted on a kind, 9k:�, is well-formed because this is
not necessarily true even if �[�=k] is well-formed. For example, 8t::h
 � 
i:�1(t) is a well-formed
type, but 9k:8t::k:�1(t) is not.

The operational semantics of the language is de�ned in Figure 13.

Lemma 9 (Substitution)

1. If K ] fkg; �; � ` e : �, then K; �[�=k]; �[�=k] ` e[�=k] : �[�=k].

2. If K; �] ft::�g; � ` e : � and K; � ` �0 :: � , then K; �; �[�0=t] ` e[�0=t] : �[�0=t].

3. If K; �; �] fx:�0g ` e : � and K; �; � ` e0 : �0 , then K; �; � ` e[e0=x] : �.
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Well-formedness of types:

K; � ` b :: 
 K; �] ft::�g ` t :: � (t 62 Dom(�))

K; � ` �0 :: 
 K; � ` � :: 


K; � ` �0 ! � :: 


K; � ` �1 :: �1 � � � K; � ` �n :: �n
K; � ` f�1; : : : ; �ng :: h�1 � : : :� �ni

K; � ` � :: h�1 � : : :� �ni
K; � ` �i � :: �i

(1 � i � n)
K; � ` �1 � � � K; � ` �n
K; � ` h�1 � : : :� �ni :: 


K; �] ft::�g ` � :: 


K; � ` 8t::�:� :: 

(t 62 Dom(�))

K; � ` �0 :: � K; � ` � :: 


K; � ` �0 ) � :: 


K; �] ft::�g ` � :: 


K; � ` 9t::�:� :: 

(t 62 Dom(�))

K ] fkg; � ` � :: 


K; � ` 9k:� :: 

(k 62 K)

Primary rules for equivalence of types:

K; � ` �i(f�1; : : : ; �ng) � �i :: �i K; � ` f�1(�); : : : ; �n(�)g � � :: h�1 � : : :� �ni

Figure 11: Formation and Equivalence of Types for �8;9

The following lemma is implicitly used throughout the proof of the Type Preservation Theorem
(below).

Lemma 10

1. If K; � ` �1 ! �2 � �01 ! �02 :: 
, then K; � ` �1 � �01 :: 
 and K; � ` �2 � �02 :: 
.

2. If K; � ` �1 ) �2 � �01 ) �02 :: 
, then K; � ` �1 � �01 :: 
 and K; � ` �2 � �02 :: 
.

Proof. The lemma is proved by de�ning reduction of types by �ih�1; : : : ; �ni 7! �i and
h�1(�); : : : ; �n(�)i 7! �. The reduction is Church-Rosser and strong-normalizing. Thus, we have a
decision procedure for K; � ` �1 � �2::�.

2

Theorem 7 (Type Preservation) If ;; ;; ; ` e : � and e ,! v, then ;; ;; ; ` v : �.

Proof. By induction on the derivation of e ,! v. In the proof, we write ` e : � instead of
;; ;; ; ` e : �. We assume the last rule used to drive ` e : � is not the rule (teq).

If the last rule is (teq), there exists a derivation of ` e : �0 such that ` � � �0::
 and the last
rule is not (teq). Then, ` v : �0. Hence, ` v : �.

Here we show only cases for application, type application, and open expressions.

Case: e1 e2 ,! v is derived from e1 ,! (�x:�1:e) and e2 ,! v2 and e[v2=x] ,! v. Let ` e1 e2:�2 be
derived from ` e1 : �1 ! �2 and ` e2 : �2. By the �rst induction hypothesis, ` (�x:�1:e) :
�1 ! �2. and ` v2 : �1. Then ;; ;; fx:�1g ` e : �2. Hence, by the substitution lemma,
` e[v2=x] : �2. Then by the second induction hypothesis, ` v : �2.
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(ins)
K; � ` �0::� K; �; � ` e : 8t::�:�

K; �; � ` e : �0 ) �[�0=t]
(tapp)

K; �; � ` e : �0 ) �

K; �; � ` e �0 : �

(var) K; �; �] fx:�g ` x : � (const) K; �; � ` c : b

(tuple)
�; � ` e1 : �1 � � � �;� ` en : �n
�;� ` he1; : : : ; eni : h�1; : : : ; �ni

(proj)
�; � ` e : h�1 � : : :� �ni

�;� ` �i e : �i
(1 � i � n)

(abs)
K; �; �] fx:�0g ` e : �

K; �; � ` �x:�0:e : �0 ! �
(x 62 Dom(�))

(app)
K; �; � ` e1 : �0 ! � K; �; � ` e2 : �0

K; �; � ` e1e2 : �

(tabs)
K; �] ft::�g; � ` e : �

K; �; � ` �t::�:e : 8t::�:�
(t 62 Dom(�))

(teq)
K; �; � ` e : �0 K; � ` � � �0::


K; �; � ` e : �

(tpk)
K; � ` �0::� K; �; � ` e : �[�0=t]

K; �; � ` pack �0 with e as 9t::�:� : 9t::�:�

(top)
K; �; � ` e : 9t::�:� K; �] ft::�g; � ] fx:�g ` e0 : �0

K; �; � ` open e as t::� with x:� in e0 : �0
(t 62 FTV (�0); x 62 Dom(�))

(kpk)
K; � ` 9k:�::
 K; �; � ` e : �[�=k]

K; �; � ` pack � with e as 9k:� : 9k:�

(kop)
K; �; � ` e : 9k:� K ] k; �; �] fx:�g ` e0 : �0

K; �; � ` open e as k with x:� in e0 : �0
(k 62 FKV (�0); x 62 Dom(�))

Figure 12: Typing Rules of �8;9
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v ,! v

e1 ,! v1 : : : en ,! vn
he1; : : : ; eni ,! hv1; : : : ; vni

e ,! hv1; : : : ; vni
�i e ,! vi

e1 ,! �x:�1:e e2 ,! v2 e[v2=x] ,! v

e1 e2 ,! v

e1 ,! �t::�:e e[�=t] ,! v

e1 � ,! v

e ,! v

pack � with e as �00 ,! pack � with v as �00

e1 ,! pack �1 with v as �0 e2[�1=t][v=x] ,! v

open e1 as t::� with x:� in e2 ,! v

e ,! v

pack � with e as �0 ,! pack � with v as �0

e1 ,! pack � with v as �0 e2[�=k][v=x] ,! v

open e1 as k with x:� in e2 ,! v

Figure 13: Operational Semantics of �8;9

Case: e1 �2 ,! v is derived from e1 ,! (�t::�:e) , and [�2=t]e ,! v. Let ` e1 �2 : � be derived
from ` e1 : �2 ) �. By the �rst induction hypothesis, ` �t::�:e : �2 ) �. Hence, `
�t::�:e : 8t::�:�0 such that �0[�2=t] � �. Then ;; ft::�g; ; ` e : �0. By the substitution lemma,
` e[�2=t] : �

0[�2=t]. Hence ` e[�02=t] : �. Then by induction hypothesis, ` v : �.

Case: open e1 as k with x:�1 in e2 ,! v is derived from e1 ,! pack � with v1 as 9k1:�1 and
e2[�=k][v1=x] ,! v. By the de�nition of the typing derivation, ` e1 : 9k1:�1. By the induction
hypothesis, ` pack � with v1 as 9k1:�1 : 9k1:�1. Hence, ` v1 : �[�=k]. On the other hand,
from fkg; ;; fx:�1g ` e2 : �, then by the substitution lemma, ` e2[�=k][v1=x] : �, taking
advantage of the fact that k 62 FKV (�). Thus, ` v : �.

Case: open e1 as t::� with x:�1 in e2 ,! v is derived from e1 ,! pack �2 with v1 as 9k1:�1
and e2[�2=k][v1=x] ,! v. By the de�nition of the typing derivation, ` e : 9t::�:�1. By the
induction hypothesis, ` pack �2 with v1 as 9t::�:�1 : 9t::�:�1. Hence, ` v1 : �[�2=t]. On the
other hand, from ;; ft::�g; fx:�1g ` e2 : �, then by the substitution lemma, ` e2[�2=t][v1=x] :
�, taking advantage of the fact that t 62 FTV (�). Thus, ` v : �.

2
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5.2.2 The Translation

We de�ne the closure representation stage as a type-directed translation from �8;cl to �8;9 . We
begin by de�ning a translation from source constructors and types to target type as follows:

jtj = t

jbj = b
jh�1; : : : ; �nij = hj�1j; : : : ; j�nji

j�i �j = �i j�j
jh�1 � : : :� �nij = hj�1j � : : :� j�nji

jvcode(t::�; �ve; �1; �2)j = 8t::�:j�vej ! j�1j ! j�2j
jtcode(t::�; �ve; s::�

0; �2)j = 8t::�:j�vej ! 8s::�0:j�2j
j�1 ! �2j = 9k:9t::k:9t0::
:h(t) t0 ! j�1j ! j�2j)� t0i
j8s::�:�2j = 9k:9t::k:9t0::
:h(t) t0 ! 8s::�:j�2j)� t0i

The code types are translated to the corresponding types described in the previous section.
The translation of a function type abstracts the kind of the type environment, k, and the type of
the value environment, t0. The type environment t is paired with the code by using an existential
type. Since the type of a code is instantiated by t, only the type environment of the closure can
be given to the code. The code and the value environment are paired as in the simply-typed case.
The translation of 8 has the same structure as that of an arrow type.

The translation of expressions is given in Figure 14. To simplify the presentation, we introduce
the following derived forms for expressions:

pack �; �1; �2 with e as 9k:9t::k:9t0::
:� �
pack � with

pack �1 with

pack �2 with e as 8t0::
:�[�=k][�1=1]
as 9t::�:9t0::
:�[�=k]

as 9k:9t::k:9t0::
:�

open e as k; t; t0 with x:� in e0 �
open e as k with y:9t::k:9t0::
:�

in open y as t::k with z:9t0::
:�
in open z as t0::
 with x:� in e0

The kind of the type environment, the type environment, and the type of the value environment
are packed with the pair of the code and the value environment. In the translation of applications,
the type environment is obtained from a closure by an open expression and the code and the value
environment are obtained by projections. Then the type environment, the value environment, and
the argument of application are passed to the code.

It is straightforward to show that the type translation preserves the equality of types and
commutes with substitutions.

Lemma 11 1. If � ` � � �0 in �8;cl , then ;; � ` j�j � j�0j::
 in �8;9 .

2. If � ` � � � 0::� in �8;cl , then ;; � ` j� j � j� 0j::� in �8;9 .

Lemma 12 j�j[j� j=t]� j�[�=t]j.
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(var) �; � . x : � ; x (const) �; � . c : b; c

(prod)
�; � . e1 : �1 ; e01 � � ��;� . en : �n ; e0n

�;� . he1; : : : ; eni : h�1 � : : :� �ni; he01; : : : ; e
0
ni

(proj)
�; � . e : h�1 � : : :� �ni; e0

�;� . �i e : �i ; �i e
0 (1 � i � n)

(vcode)

ftte::�teg; fxve:�ve; x:�1g . e : �2 ; e0

�;� . (�tte::�te:�xve:�ve:�x:�1:e) : vcode(tte::�te; �ve; �1; �2);
�tte::�te:�xve:j�vej:�x:j�1j:e

0

(tcode)

ftte::�te; t::�g; fxve:�veg . e : � ; e0

�;� . (�tte::�te:�xve:�ve:�t::�:e) : tcode(tte::�te; �ve; t::�; �);
�tte::�te:�xve:j�vej:�t::�:e

0

(vcl)
�; � . e : vcode(tte::�te; �

0
ve; �

0
1; �

0
2); e0 �;� . eve : �ve ; e0ve

�;� . hhe; �; eveii : �1 ! �2 ; pack �te; j� j; j�vej with he0; e0vei as j�1 ! �2j

(app)

�; � . e1 : �1 ! �2 ; e01 �;� . e2 : �1 ; e02
�;� . e1 e2 : �2 ; open e01 as kte; tte; tve

with y : htte ) tve ! j�1j ! j�2j � tvei
in (�1 y) tte (�2 y) e02

(tcl)
�; � . e : tcode(tte::�te; �

0
ve; t::�; �

0); e0 �;� . eve : �ve ; e0ve
�;� . hhe; �; eveii : 8t::�:�2 ; pack �te; j� j; j�vej with he0; e0vei as j8t::�:�j

(tapp)

�; � . e : 8t::�:� ; e0

�;� . e � : �[�=t]; open e0 as kte; tte; tve
with y : htte ) tve ! 8t::�:j�j � tvei

in (�1 y) tte (�2 y) j� j

Figure 14: Closure Representation
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Proof. By induction on the structure of �.
Case j8s::�:�j[j� j=t] � 9k:9t::k:9t0::
::h(t) t0 ! 8s::�:j�j[j� j=t])� t0i.
By the induction hypothesis, j�j[j� j=t]� j�[�=t]j. Then j8s::�:�j[j� j=t]� j8s::�:�[�=t]j.

2

The type correctness of the translation is proven by induction on the derivation of the transla-
tion. The typing rules for � ) �0 are essential to prove the cases for the translations of closures.

Theorem 8 (Type Correctness) If �;� . e : � ; e0, then ;; �; j�j ` e0 : j�j.

Proof. By induction on the derivation of the translation. We only show some important cases
below. The other cases are clear from the de�nition or the induction hypothesis.

Case (vcl). By the induction hypothesis. ;; �; j�j ` e0 : 8tte::�te:j�
0
vej ! j�01j ! j�02j. and

;; �; j�j ` e00 : j�vej. Then

;; �; j�j ` e0 : j� j ) (j�0vej ! j�01j ! j�02j)[j� j=tte]

By Lemma 12, ;; �; j�j ` e0 : j� j ) j�vej ! j�1j ! j�2j. Let �0 be 9t0::
:h(j� j ) t0 ! j�1j !
j�2j)� t0i. Then

;; �; j�j ` pack j�vej with he0; e00i as �0 : �0

Let �00 be 9t::�te:9t0::
:h(t) t0 ! j�1j ! j�2j)� t0i. Then

;; �; j�j ` pack j� j with pack j�vej with he0; e00i as � as �00 : �00

Let �000 be 9k:9t::k:9t0::
:h(t) t0 ! j�1j ! j�2j)� t0i. Then

;; �; j�j ` pack � with pack j� j with pack j�vej with he0; e00i as �0 as �00 as �000 : �000

Case (tcl). By the induction hypothesis. ;; �; j�j ` e0 : 8tte::�te:j�
0
vej ! 8s::�0:j�02j. and ;; �; j�j `

e00 : j�vej. Then
;; �; j�j ` e0 : j� j ) (j�0vej ! 8s::�0:j�02j)[j� j=tte]

By Lemma 12, ;; �; j�j ` e0 : j� j ) j�vej ! 8s::�0:j�2j. The rest is similar to the case above.

Case (app). Let e be e1 e2 and �; � . e ; e0. By induction hypothesis, ;; �; j�j ` e01 : j�1 ! �2j
and ;; �; j�j ` e02 : j�1j. Then fkteg; �] ftte; tveg; j�j ] fy:htte ) tve ! j�1j ! j�2j � tveig `
(�1 y) tte (�2 y) e

0
2 : j�2j. Then ;; �; j�j ` e0 : j�2j.

Case (tapp). Similar to the case of (app).

Case (teq). By the induction hypothesis, ;; �; j�j ` e0 : j�0j. By Lemma 11, ;; � ` j�j � j�0j::
.
Hence, ;; �; j�j ` e0 : j�j.

2
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5.2.3 Operational Correctness

Next, we prove that the translation from �8;cl to �8;9 preserves the operational behavior of a
program. We de�ne logical relations indexed by sources types as before. However, the de�nition is
more complicated due to the presence of types of the form �i(�) in the source language. Consider
the reduction of types generated by orienting the type equivalences as follows: �ih�1; : : : ; �ni 7! �i
and h�1(�); : : : ; �n(�)i 7! �. It is clear that this reduction is Church-Rosser and strong normalizing.
Thus for all ` �, there exists a unique �0 in normal form such that ` � � �0 ::. Further, if ` � � �0,
then the normal forms of � and �0 are syntactically equal. Thus, we write NF (�) for the normal
form of �.

The logical relation for type � that is not in formal form is de�ned by the relation for NF (�).
In the de�nition of the relations, we make use of the fact that if � is a normal form, then � is not of
the form �i(�0). The relations are de�ned inductively using the lexicographic order of the number
of 8, vcode, and tcode constructors in � and the size of �.

e �� e0 i� e ,! v and e ,! v0 and v �� v0.

v �� v i� v �NF (�) v
0 where � is not in normal form.

c �b c
v �vcode(t::�;�ve;�1;�2) v

0 i� for all ` � : �, v0 ��ve[�=t] v
0
0 and v1 ��1 [�=t] v

0
1;

hhv; �; v0ii v1 ��2[�=t] v
0 j� j v00 v01

v �tcode(t::�;�ve;s::�0;�2)
v0 i� for all ` � : �;` �1 : �0 and v0 ��ve[�=t] v

0
0;

hhv; �; v0ii �1 ��2[�=t;�1=s] v
0 j� j v00 j�1j

v ��1!�2 v
0 i� for all v1 ��1 v

0
1,

v v1 ��2 open v0 as k; t; t0
with x:h(t) t0 ! �1 ! �2)� ti
in (�1 x) t (�2 x) v01

v �8s::�:�2 v
0 i� for all ` � :: �,

v � ��2[�=s] open v0 as k; t; t0
with x:h(t) t0 ! 8s::
:�2)� ti
in (�1 x) t (�2 x) j� j

hv1; : : : ; vni �h�1�:::��ni hv
0
1; : : : ; v

0
ni i� for all 1 � i � n, vi ��i v

0
i.

From the de�nition, it is clear that if ` � � �0, then ��=��0 and ��=��0 . The value relation
extends to substitutions (
) in a straightforward manner.

We write ` � :: � if for all t::� 2 �, ; ` �(t) :: �. The operational correctness of the translation
is proved by induction on the derivation of the translation.

Theorem 9 (Operational Correctness) Let ` � :: � and 
 ��(�) 

0. If �;� . e : � ; e0 then

�(
(e))��(�) j�j(

0(e0)).

Proof. By induction on the derivation of �; � . e : � ; e0.

Case (var) and (const). Clear from the de�nition.

Case (prod) and (proj). Clear from the induction hypothesis.

Case (teq). By induction hypothesis, �
(e) ��0 j�j
0(e0). Since ��=��0 , �
(e) �� j�j

0(e0).
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Case (vcl). By induction hypothesis, �(
(e))��(vcode(t::�;�0

ve ;�
0

1
;�0

2
)) j�j(
(e

0)) and �(
(eve)) ��(�ve)

j�j(
0(e0ve)). Then �
(e) ,! v, j�j
0(e0) ,! v0, and v ��(vcode(t::�;�0

ve;�
0

1
;�0

2
)) v

0 and �
(eve) ,!

v0, j�j

0(e0ve) ,! v00, and v0 ��(�ve) v

0
0. Let v1 ��(�1) v

0
1. Then hhv; �; v0iiv1 ��(�2) v

0j� jv0v1.

On the other hand, let e1 be pack �; j� j; j�vej with he0; e0vei as j�1 ! �2j and � be ht) t0 !
j�1j ! j�2j � t0i. Then,

open j�j(
0(e1)) as k; t; t0 with x:� in �1(x)t�2(x)v
0
1 ,! v03 i� v0j� jv00v

0 ,! v03:

Hence �
(hhe; �; eveii) ��(�1!�2) j�j

0(e1).

Case (vcode). Let ` � ::�, �0 be [�=tte], v0 ��ve[�=tte] v
0
0, and v1 ��1[�=tte] v

0
1. Then,

[v0=xve; v1=x] ��0(fxve:�ve;x:�1g) [v
0
0=xve; v

0
1=x]. Then by induction hypothesis,

�0([v0=xve; v1=x]e) ��0(�2) j�
0j([v00=xve; v

0
1=x]e

0). Since FV (e) � fx; xveg and FTV (e) � ftteg,
hh�(
(�tte::�te:�xve:�ve:�x:�1:e)); �; v0iiv1 ��(�2)[�=tte] j�j


0(�tte::�te:�xve:j�vej:�x:j�1j:e
0)j� jv00v

0
1.

Then,
�(
(�tte::�te:�xve:�ve:�x:�1:e)) ��(vcode(tte::�te;�ve;�1;�2)) j�j


0(�tte::�:�xve:j�vej:�x:j�1j:e
0).

Case (app). By induction hypothesis, �(
(e1)) ,! v1 and j�j(
0(e01)) ,! v01 and v1 ��(�1!�2) v
0
1.

By induction hypothesis, �(
(e2)) ,! v2 and j�j(

0(e02)) ,! v02 and v2 ��(�2) v

0
2.

By the de�nition, v1v2 ��(�2) open v01 as kte; tte; tve with y:h(tte ) tve ! �2 ! �2) �
tvei in �1(y)tte�2(y)v2. Thus, �
(e1e2) ��(�2) j�j


0(open e01 as kte; tte; tve with y:h(tte )
tve ! �1 ! �2)� tvei in �1(y)tte�2(y)e2).

Case (tcl). By induction hypothesis, �(
(e)) ��(tcode(t::�;�0

ve;s::�
0;�0

2))
j�j(
(e0)) and �(
(eve)) ��(�ve)

j�j(
0(e0ve)). Then �
(e) ,! v, j�j
0(e0) ,! v0, and v ��(tcode(t::�;�0

ve;s::�
0 ;�0

2))
v0 and �
(eve) ,!

v0, j�j

0(e0ve) ,! v00, and v0 ��(�ve) v

0
0. Then hhv; �; v0ii�

0 ��2 v
0j� jv0j�

0j.

On the other hand, let e1 be pack �; j� j; j�vej with he0; e00i as j8s�0:�2j and � be ht ) t0 !
8s::�0:j�2j � t0i. Then

open j�j(
0(e1)) as k; t; t0 with x:� in �1(x)t�2(x)j�
0j ,! v03 i� v0j� jv00j�

0j ,! v03:

Hence �
(hhe; �; eveii) ��(8s::�0:�2) j�j

0(e1).

Case (tcode). Let ` � ::�, ` � 0::�0, �0 be [�=tte; �
0=s], and v0 ��ve[�=tte] v

0
0. Then, [v0=xve] ��0(fxve:�veg)

[v00=xve]. Then by induction hypothesis, �0([v0=xve]e) ��0(�2) j�
0j([v00=xve]e

0). Since FV (e) �
fxveg and FTV (e) � ftte; sg,
hh�(
(�tte::�te:�xve:�ve:�s::�0:e)); �; v0ii� 0 ��(�2)[�=tte;� 0=s] j�j


0(�tte::�:�xve:j�vej:�s::�0:e0)j� jv00j�
0j.

Then,
�(
(�tte::�:�xve:�ve:�s::�0:e)) ��(tcode(tte::�;�ve;s::�0;�2)) j�j


0(�tte::�:�xve:j�vej:�s::�0:e0).

Case (tapp). By induction hypothesis, �(
(e)) ,! v and j�j(
0(e0)) ,! v0 and v ��(8t::�:�) v0.
By the de�nition, v�(�) ��(�)[�(�)=s] open v0 as kte; tte; tve with y:h(tte ) tve ! 8s::�:�) �
tvei in �1(y)tte�2(y)j�(�)j. By Lemma 12, j�(�)j � j�j(j� j). Thus, �
(e�) ��(�[�=s])

j�j
0(open e0 as kte; tte; tve with y:h(tte ) tve ! 8s::�:�)� tvei in �1(y)tte�2(y)j� j).

2
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6 Summary and Conclusions

We have presented a type-theoretic account of closure conversion for the simply-typed and polymor-
phic �-calculi. Our translations are unique in that they map well-typed source terms to well-typed
target terms. This facilitates correctness proofs, allows other type-directed transforms such as CPS
conversion or unboxing to be applied after closure conversion, and supports run-time examination
of types for tag-free garbage collection.

We have put the ideas in this paper to practical use in two separate compilers for ML: one
compiler is being used to study novel approaches to tag-free garbage collection and the other
compiler provides a general framework for analyzing types at run time to determine the shapes
of objects. Propagating types through closure conversion is necessary for both compilers so that
types can be examined at run time. For simplicity, the current implementations of our compilers
use abstract closure conversion. As many compilers, our compilers avoid creation of closures for
known-functions. Such optimization does not introduce any problem.

Lightweight closure conversion proposed by Wand and Steckler [38] may also be formulated
as type-preserving translation as our closure conversions. However, the de�nition of translation
may become complicated because the type of the closure as well as the translation of abstraction
depends on which free variables passed directly.

In some implementation, a closure is represented by folding code pointer into the environment
record [3]. Such representation may be formulated as abstract closure conversion with some mod-
i�cations. However, closure representation for such closures seems to need more powerful type
system.
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