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Abstract

We study the typing properties of closure conversion for
simply-typed and polymorphic �-calculi. Unlike most ac-
counts of closure conversion, which only treat the untyped
�-calculus, we translate well-typed source programs to well-
typed target programs. This allows later compiler phases to
take advantage of types for representation analysis and tag-
free garbage collection, and it facilitates correctness proofs.
Our account of closure conversion for the simply-typed lan-
guage takes advantage of a simple model of objects by map-
ping closures to existentials. Closure conversion for the
polymorphic language requires additional type machinery,
namely translucency in the style of Harper and Lillibridge's
module calculus, to express the type of a closure.

1 Introduction

Closure conversion [30, 35, 6, 16, 15, 2, 38, 8] is a program
transformation that achieves a separation between code and
data. Functions with free variables are replaced by code
abstracted on an extra environment parameter. Free vari-
ables in the body of the function are replaced by references
to the environment. The abstracted code is \partially ap-
plied" to an explicitly constructed environment providing
the bindings for these variables. This \partial application"
of the code to its environment is in fact suspended until the
function is actually applied to its argument; the suspended
application is called a \closure", a data structure containing
pure code and a representation of its environment.

A critical decision in closure conversion is the choice of
representation of the environment as a data structure |
for example, whether to use a \
at", \linked", or hybrid
representation. This decision is in
uenced by a desire to
minimize closure creation time, the space consumed by an
environment, and the time to access a given variable in an
environment [38, 31]. An important property of closure con-
version is that the representation of the environment is pri-
vate to the closure, and is not visible from the outside. This
a�ords considerable 
exibility in the representation of envi-
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ronments and is thus exploited to good advantage by Shao
and Appel [31] and Wand and Steckler [38].

Most accounts consider closure conversion as a transfor-
mation to untyped terms, irrespective of whether or not the
source term is typed [35, 16, 2, 38]. This is adequate for com-
pilers that make little or no use of types in the back end or
at run time. However, when compiling typed languages, it is
often advantageous to propagate type information through
each stage of the compiler, and to make use of types at link
or even run time. For example, Leroy's representation analy-
sis [18, 32] uses types to determine procedure calling conven-
tions, and Ohori's record compilation [26] uses a representa-
tion of types at run time to access components of a record.
In current compilers, these phases must occur before closure
conversion because the output of closure conversion is un-
typed. Compilation strategies for polymorphic languages,
such as those proposed by Morrison et al. [25] and Harper
and Morrisett [13], rely on analyzing types at run time to
support unboxed representations and non-parametric oper-
ators, including printing and structural equality. Tag-free
garbage collection [4, 37, 24] for both monomorphic and
polymorphic programming languages also relies upon types
at run time to determine the size and the pointers of ob-
jects. To support any of these implementation strategies, it
is necessary to propagate type information through closure
conversion and into the generated code. Consequently, the
purpose of this paper is to show how closure conversion can
be formulated as a type-preserving transform.

We are therefore interested in type-based transformations

as a basis for compiling polymorphic languages. The crucial
idea is to de�ne a compiler as a series of transformations on
both the program and its type, possibly relying on type in-
formation to guide the transformation itself. Each stage of
the compiler is thus viewed as a type-preserving translation
between typed intermediate languages. Examples of such
translations are given by Leroy [18], Ohori [26], Harper and
Lillibridge [9], and Harper and Morrisett [13]. In addition
to the practical advantages of propagating type information
through the stages of a compiler, type-directed translation
also facilitates correctness proofs by de�ning the invariants
of the transformation as a type-indexed family of logical re-
lations [36, 7, 28, 33, 34].

We describe closure conversion in two stages. The �rst
stage, abstract closure conversion, is a type-based transla-
tion from the source language into a target language with
explicit closures. The translation is described as a deductive
system in which the representation of the environment may
be chosen independently for each closure. In this way vari-



ous environment representations, such as those used by the
CAM [6] and the FAM [5], as well as hybrid strategies, such
as those suggested by Shao and Appel [31] can be explained
in a uniform framework.

The second stage, closure representation, is a type-based
translation in which the implementation of closures is de-
termined. The main idea is to represent closures as objects
(in contrast to the proposed representation of objects as clo-
sures [29]). Following Pierce and Turner [27] we consider
objects to be packages of existential type consisting of a sin-
gle method (the code part of the closure) together with a
single instance variable (the environment part) whose type
(the environment representation) is held abstract. This cap-
tures the critical \privacy" property of environment repre-
sentations for closures. In the simply-typed case we make
direct use of Pierce and Turner's model of objects. In the
polymorphic case we must in addition exploit the notion of
translucency [10] (or manifest types [19]) to express the type
of a polymorphic closure.

The correctness of both the abstract closure conversion
and the closure representation stages are proved using the
method of logical relations. The main idea is to de�ne a
type-indexed family of simulation relations that establish a
correspondence between the source and target terms of the
translation. Once a suitable system of relations has been
de�ned, it is relatively straightforward to prove by induction
on the de�nition of the compilation relation that the source
and target of the translation are related, from which we may
conclude that a closed program and its compilation evaluate
to the same result. Due to a lack of space, the proofs of
correctness are omitted here. However, full details are given
in the companion technical report [22].

Closure conversion is discussed in descriptions of various
functional language compilers [35, 16, 3, 2, 31]. It is closely
related to �-lifting [14] in that it eliminates free variables in
the bodies of �-abstractions but di�ers by making the rep-
resentation of the environment explicit as a data structure.
Making the environment explicit is important because it ex-
poses environment construction and variable lookup to an
optimizer. Furthermore, Shao and Appel show that not all
environment representations are \safe for space" [31], and
thus choosing a good environment representation is an im-
portant part of compilation. Wand and Steckler [38] have
consider two optimizations of the basic closure conversion
strategy, called selective and lightweight closure conversion,
and provide a correctness proof for each of these in an un-
typed setting. Hannan [8] re-casts Wand's work into a typed
setting, and provides correctness proofs for Wand's opti-
mizations. Hannan's translation is given, like ours, as a de-
ductive system, but like �-lifting, he does not consider the
important issue of environment representation (preferring an
abstract account), nor does he consider the typing proper-
ties of the closure-converted code. Finally, neither Wand nor
Hannan consider closure conversion under a type-passing in-
terpretation of polymorphism.

We have put the ideas in this paper to practical use in
two separate compilers for ML: one compiler is being used
to study novel approaches to tag-free garbage collection and
the other compiler provides a general framework for analyz-
ing types at run time to determine the shapes of objects.
Propagating types through closure conversion is necessary
for both compilers so that types can be examined at run
time. We have also found that typed closure conversion,
along with our other type-preserving translations, made it

possible to �nd and eliminate compiler bugs since we can au-
tomatically type-check the output of each compiler phase.
Some compilers for ML based on representation analysis
[18, 32] also propagate type information through closure
conversion. However, their information is not enough to
type-check the resulting programs because polymorphism
is implemented by coercions and all polymorphic types are
represented by a single type.

The remainder of this paper is organized as follows: In
Section 2, we give an overview of closure conversion and
the typing issues involved for the simply-typed �-calculus.
In Section 3, we provide the details of our type-preserving
transform for the simply-typed case. In Section 4, we give an
overview of closure conversion and the typing issues involved
for the predicative fragment of the polymorphic �-calculus.
The formal development of this conversion is given in Section
5.

2 Overview of Simply-Typed Closure Conversion

The main ideas of closure conversion may be illustrated by
considering the following ML program:

let val x = 1
val y = 2
val z = 3
val f = �w. x + y + w

in
f 100

end

The function f contains free variables x and y, but not z.
We may eliminate the references to these variables from the
body of f by abstracting on an environment env, and replac-
ing x and y by references to the environment. In compen-
sation a suitable environment containing the bindings for x
and y must be passed to f before it is applied. This leads
to the following translation:

let val x = 1
val y = 2
val z = 3
val f = (�env.�w.(#x env) + (#y env) + w)

fx=x, y=yg
in

f 100
end

References to x and y in the body of f are replaced by
projections (�eld selections) #x and #y that access the corre-
sponding component of the environment. Since the code for
f is closed, it may be hoisted out of the enclosing de�nition
and de�ned at the top-level. We ignore this \hoisting" phase
and instead concentrate on the process of closure conversion.

These simple translations fail to delay the application of
the code to its environment under call-by-value evaluation.
A natural representation of a delayed application or closure
is an ordered pair (code, env) consisting of the code to-
gether with its environment. Application of a closure to
an argument proceeds by projecting the code part from the
closure and applying it simultaneously to the environment
and the argument according to some calling convention. For
example:
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let val x = 1
val y = 2
val z = 3
val code = �env.�w. #x(env) + #y(env) + w
val env = fx=x, y=yg
val f = (code, env)

in
(#1 f) (#2 f) 100

end

But since code has a type of the form �ve ! �1 ! �2, where
�ve is the type of the environment env, the closure as a
whole would have type (�ve ! �1 ! �2) � �ve, showing
the type of the environment explicitly. That violates the
\privacy" of the environment representation. As a result,
using this translation on a well-typed source program will
not, in general, result in a well-typed target program. For
example, consider the following ML source program with
type int! int:

let val y = 1
in

if true then
�x. x+y

else
�z. z

end

Performing the translation above yields:

let val y = 1
in

if true then
(�env.�x. x + #y(e), fy=yg)

else
(�env.�z. z, fg)

end

This program fails to type-check because the then-arm of
the if-expression has type (fy:intg ! int! int)�fy:intg
while the else-arm has type (fg ! int! int)� fg.

In order to preserve types in the target language, the
representation of the environment may be hidden using ex-
istential types [23]. Figure 1 gives the typing rules for exis-
tentials. A pack operation pairs a type � with a value e as
an existential, holding � abstract as a type variable, t. An
open operation takes a package e1 and opens it, binding the
abstract type to t and the value of the package to x within
the scope of e2. The abstract type t is constrained so that
it cannot leave the scope of the open construct, hence the
restriction that t not appear in the free type variables of �.

Using pack, we can hide the type of the environment for
a closure value as follows:

pack �ve with (code;env) as 9tve:(tve ! �1 ! �2)� tve:

A closure of type �1 ! �2 is represented as a package of type
9tve:(tve ! �1 ! �2)�tve where the type of the environment
(�ve) is held abstract as tve. Under this translation, the
example above would be translated to:

let val y = 1
in
if true then
pack fy:intg with (�env.�x. x+#y(env),fy=yg)
as 9tve:(tve ! int! int)� tve

else
pack fg with (�env.�z.z, fg)
as 9tve:(tve ! int! int)� tve

end

Since the types of the arms of the if-expression agree, the
target code is well-typed with type 9tve:(tve ! int! int)�
tve.

An application e e' is correspondingly translated to the
expression

open e as tve with z : (tve ! �1 ! �2)� tve
in

(#1 z) (#2 z) e'
end

which opens the package, extracts the code and environ-
ment, and applies the code to the environment and the ar-
gument.

This representation of closures bears a striking resem-
blance to the model of objects suggested by Pierce and
Turner [27]. In their model an object has a type of the form
9t:t�� [t], where t is the type of the instance variable(s) and
� [t] is the type of the method(s). According to the forego-
ing account, closures may be thought of as objects with one
instance variable (the environment) and one method (the
code).

3 A Formal Account of Simply-Typed Closure Conversion

In this section we present the details of closure conversion for
the call-by-value, simply-typed �-calculus. The conversion
is described in increasing detail by three stages: The �rst
stage, abstract closure conversion, converts each function to
a closure but holds the representation of the closure abstract.
To simplify the presentation, some freedom is allowed in the
construction of environments, but no shared environments
are used. The second stage, environment sharing, adds more
structure to the translation thereby allowing environments
to be shared. The third stage, closure representation, makes
the representation of closures explicit through the use of
translucent sums. Each stage is de�ned as a type-directed
translation and the correctness of the translations is estab-
lished using logical relations.

The syntax of the source language is de�ned as follows:

Types � ::= b j �1 ! �2
Expressions e ::= c j x j �x:�: e j e1 e2
Values v ::= c j �x:�: e

Types (�) consist of base types (b) and function types (!)1.
Expressions (e) consist of constants (c) of base type, vari-
ables, abstractions, and applications. We use � to denote
a sequence of type bindings of the form fx1:�1; : : : ; xn:�ng,
(n � 0) where the xi are distinct. The judgement � ` e : �
asserts that the expression e has type � under the type as-
signment �, and is derived from the standard typing rules of
the simply-typed �-calculus. We de�ne the dynamic seman-
tics of the language using a judgement of the form e ,! v (e
evaluates to v). The judgement is derived from the following
standard inference rules for call-by-value evaluation:

v ,! v
e1 ,! �x:�1: e e2 ,! v2 e[v2=x] ,! v

e1 e2 ,! v

1The results of this paper easily extended to other source types
including products and sums.
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�;� ` e : �[�=t]
�;� ` pack � with e as 9t:�

�; � ` e1 : 9t:�
0

� ] ftg; � ] fx:�0g ` e2 : �
�; � ` open e1 as t with x in e2 : �

(t 62 FTV (�); t 62 �)

Figure 1: Typing Rules for Existentials

3.1 Abstract Closure Conversion

The target language for abstract closure conversion, �cl , is
de�ned as follows:

Types � ::= b j �1 ! �2 j h�1 � : : :� �ni j code(�ve; �1; �2)
Exp's e ::= c j x j e1e2 j he1; : : : ; eni j �i(e) j

�xve:�ve: �x:�1: e j hhe1; e2ii
Values v ::= c j �xve:�ve: �x:�1: e j hv1; : : : ; vni j hhv1; v2ii

In the introduction we informally presented closures as par-
tial applications. As noted, we wish to delay this partial ap-
plication until the closure is applied to an argument, so that
the code and environment remain separate and the code can
be shared among each instantiation of the closure. There-
fore, in this account of closure conversion, we represent the
delayed partial application as an abstract closure of the form
hhe; eveii where e is the code and eve is the environment. This
allows us to distinguish between delayed partial applications
(closures) and closure application (e1 e2). Code expressions,
�xve:�ve:�x:�1:e, are a restricted form of closed �-expressions
that abstract both an environment (xve) and an argument
(x). The types of code expressions are also distinguished
from the types of closures and are written as code(�ve; �1; �2)
where �ve, �1, and �2 are the types of the environment, the
argument, and the return value respectively.

The typing rules for �cl are standard except for code and
closures, which are de�ned as follows:

fxve:�ve; x:�1g ` e : �2
� ` �xve:�ve:�x:�1:e : code(�ve; �1; �2)
� ` e : code(�ve; �1; �2) � ` eve : �ve

� ` hhe; eveii : �1 ! �2

Since we require code to be closed in order that it may be
hoisted to the top level, only xve:�ve (the environment) and
x:�1 (the argument) can be assumed when typing the body
of the code.

Evaluation of closures and application proceeds as fol-
lows:

e1 ,! v1 e2 ,! v2
hhe1; e2ii ,! hhv1; v2ii

e1 ,! hh�xve:�ve:�x:�1:e; vveii e2 ,! v2 e[vve=xve; v2=x] ,! v
e1 e2 ,! v

We de�ne abstract closure conversion as a type-directed
translation from the source language to �cl in Figure 2. The
translation is formulated as a deductive system with judge-
ments of the form �;x:� . e ; e0, and �;x:� . �0 ; e0ve
where � and �0 are source type assignments, � is a source
type, e is a source expression, and e0 and e0ve are target
expressions. The variable x is considered as the current ar-
gument while the other free variables in a source expression
should be in � and accessed through the current environ-
ment in the translation. The judgement �;x:� . e ; e0

asserts that e0 is the translation of e under the assump-
tion that � ] fx:�g ` e : � 0 for some � 0. The judgement

�;x:� . �0 ; e0ve asserts that e
0
ve is an expression that eval-

uates to the environment corresponding to �0 under the as-
sumption that each binding in �0 occurs in � ] fx:�g. Note
that the order of bindings in � is important, and thus it is
considered to be a sequence and not a set.

In a translated expression, xve is always used to hold the
current local environment. Consequently, the translation
rule (env) maps a source variable xi found in the i

th position
of type assignment � to the ith projection of the environment
variable xve, while the rule (arg) translates the argument
variable x to itself.

The translation of an abstraction produces a closure con-
sisting of code and an environment. To construct the envi-
ronment, we choose a type assignment �0 such that �;x0:� 0 .
�0 ; eve is derivable via the (context) rule and �0;x:� .
e; e0. These two constraints can be summarized by saying
that every binding in �0 can also be found in � ] fx0:� 0g.
In a more detailed formulation, �0 would be obtained from
�]fx0:� 0g via the application of strengthening and exchange
rules. Furthermore, �0 is required to contain bindings for all
of the free variables in the original function �x:�: e. The
environment itself is constructed via the (context) rule by
translating each of the variables occurring in �0 (namely
x1; � � � ; xn) to the target expressions e1; � � � ; en. The result-
ing expressions are placed in a tuple (he1; : : : ; eni) to form
the environment data structure of the closure. The environ-
ment has type h�1�� � ���ni which we summarize by writing
j�0j.

To produce the code of the closure, we translate the
body of the source function under the strengthened assump-
tions �0;x :� , producing the body of the code, e0, and then
we abstract the environment and argument, resulting in
�xve:j�

0j: �x:�: e0.
Using a dummy argument (x:b) to translate an entire

closed program, it is easy to prove by induction on the
derivation of the translation that the translation preserves
the type of a program.

Theorem 1 If ; ` e:� and ;;x:b . e; e0, then ; ` e0 : � .

To prove the operational correctness of the translation,
we use a type-indexed family of logical relations relating
closed source expressions to closed target expressions (� )
and closed source values to closed target values (� ). The
relations are de�ned by induction on source types as follows:

e �� e0 i� e ,! v and e0 ,! v0 and v �� v0

c �b c
v ��1!�2 v0 i� for all v1 ��1 v01, v v1 ��2 v0 v01.

We extend the relation to �nite source (
) and target sub-
stitutions (
0) mapping variables to their respective class of
values. These relations are de�ned as follows:


 �fx1:�1 ;:::;xn :�ng;x:� [hv1; : : : ; vni=xve; v=x]
i� 
(xi) ��i vi for 1 � i � n and 
(x) �� v.
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(const) �;x:� . c; c (arg) �;x:� . x; x (env) fx1:�1; : : : ; xn:�ng; x:� . xi ; �i(xve)

(abs)
�;x0:� 0 . �0 ; eve �0;x:� . e; e0

�;x0:� 0 . �x:�:e; hh�xve:j�
0j: �x:�: e0; eveii

(app)
�;x:� . e1 ; e01 �;x:� . e2 ; e02

�;x:� . e1 e2 ; e01 e02

(context)
�;x:� . x1 ; e1 : : : �;x:� . xn ; en
�;x:� . fx1:�1; : : : ; xn:�ng; he1; : : : ; eni

(� ] fx:�g ` xi : �i)

Figure 2: Simply-Typed Abstract Closure Conversion

Theorem 2 (Operational Correctness) Let 
 ��;x0:� 0 

0.

If � ] fx0:� 0g ` e : � and �;x0:� 0 . e ; e0, then 
(e) ��


0(e0).

This theorem and the de�nition of the relations imply
that for a closed program with a base type, the results of
evaluation of the original program and its translation are
the same.

3.2 Sharing Environments

Some implementations of functional programming languages
use environments with nested structures that may share
some portions of the environment with other closures. Shar-
ing environments decreases the amount of space consumed
by a closure and decreases the time to construct the closure's
environment. However, sharing can also require extra in-
structions to access a variable's binding in the environment.
Furthermore, sharing environments naively can lead to space
problems in the presence of a standard tracing garbage col-
lector. In this section we extend our closure conversion to
allow for but not require shared environments. We do so by
adding extra structure to the typing contexts of the trans-
lation judgement and use this extra structure to guide the
construction of [possibly] shared environments. We then
show how the resulting translation subsumes a wide variety
of environment representations used in practice.

In the previous section, translation judgements were of
the form �;x:� . e ; e0 where � was a 
at type assign-
ment of the form fx1:�1; : : : ; xn:�ng. Here, we add extra
structure to the translation judgement by using nested type
assignments de�ned as follows:

� ::= fx:�g j h�1; : : : ;�mi

A nested type assignment is either a single type binding
or a sequence of nested type assignments. The environ-
ment corresponding to the type assignment � is represented
in the target language by type j�j where jfx:�gj = � and
jh�1; : : : ;�mij = hj�1j� : : :�j�mji. Clearly, we can obtain
a non-nested type assignment (�) from a nested type assign-
ment (�) simply by dropping the extra structure. Hence,
we consider � to represent a nested type assignment as well
as its corresponding 
at type assignment.

The relevant translation rules for closure conversion with
nested environments are given in Figure 3. The other trans-
lation rules are the same as in Figure 2, replacing � with
�.

The (arg) rule translates a nested type assignment con-
sisting of only the current argument to the variable itself.

The (env) rule gives us the current environment directly as
xve allowing us to avoid creating a copy. This rule, coupled
with the (env-tuple) rule allows us to construct shared envi-
ronments as nested tuples. If we translate � to e under the
type assignment �i, then the (subenv) rule lets us translate
� to e[�i(xve)=xve] under a type assignment which contains
�i as the i

th component. Variable x is translated as a nested
type assignment fx:�g by (var).

Nested type assignments are 
exible enough to repre-
sent various environment representations used in practice.
For example, the Categorical Abstract Machine or CAM [6]
uses linked lists to represent environments. This is re
ected
in our framework by restricting the shape of nested type as-
signments and by restricting the (env-tuple) rule to \cons"
the current argument onto the current environment:

(CAM context) �c ::= fx:�g j hfx:�g;�ci

(env-tuple) �c;x:� . hx:�;�ci; hx; xvei

The advantage of the CAM strategy is that the cost of the
construction of a new environment is constant. However,
in the worst case accessing values in the environment takes
time proportional to the length of the environment.

In contrast, the FAM [5] uses 
at environments with no
sharing. The closure conversion of Figure 2 accurately mod-
els the environment strategy of the FAM if we choose a spe-
ci�c strengthening strategy in the (abs) rule where only the
free variables of the function are preserved in the resulting
closure's environment. The advantage of the FAM environ-
ment representation is that the cost of variable lookup is
always constant and the representation is \safe for space"
[2] according to Appel's de�nition. However, constructing
the environment for a closure takes time proportional to the
number of free variables in the function and closures cannot
share portions of their environment.

Clearly, there are a variety of other strategies for form-
ing environments. For example, the shared closure strat-
egy described by Appel and Shao [31] that is also safe for
space can also be formulated in our framework. However,
to determine a good representation for each closure's envi-
ronment requires a good deal more information including
an estimate as to how many times each variable is accessed,
when garbage collection can occur, what garbage collection
algorithm is used, etc.

3.3 Closure Representation

Abstract closure conversion chooses an environment repre-
sentation for each closure and makes the construction of clo-
sures explicit. However, abstract closure conversion makes
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(arg) fx:�g;x0:� 0 . fx0:� 0g; x0 (env) �;x:� . �; xve (var)
�;x0:� 0 . fx:�g; e
�;x0:� 0 . x; e

(subenv)
�i;x:� . �; e

h�1; : : : ;�ni;x:� . �; e[�i(xve)=xve]
(env-tuple)

�;x:� . �1 ; e1 � � � �;x:� . �n ; en
�;x:� . h�1; : : : ;�ni; he1; : : : ; eni

Figure 3: Simply-Typed Closure Conversion using Nested Environments

the extraction of the code and environment in an application
implicit in the operational semantics. Ideally, these extrac-
tion operations should be explicit so that an optimizer can
eliminate redundant projections. For instance, if the same
closure is repeatedly applied to some arguments in a loop,
we should be able to extract the code and environment of
the closure one time, name these values, and then use these
names within the loop.

We therefore de�ne a target language �9 with existential
types as follows:

Types � ::= b j t j h�1 � : : :� �ni j code(�ve; �1; �2) j 9t:�
Exp's e ::= c j e1(e2; e3) j �xve:�ve:�x:�1:e j he1; : : : ; eni j

�i(e) j pack � with e as � j
open e1 as t with x:� in e2

This language is the same as �cl except for the addition
of package values of type 9t:� that pair an abstract type (t)
with a value of type � . Function types (!) are no longer
necessary because they can be represented using other type
constructors (namely 9 and code(�ve; �1; �2)). In order to
prevent the partial application of the code to its environ-
ment, we restrict applications to the form e1(e2; e3). The
typing rules and evaluation of pack and open expressions
are standard (see [23] and Figure 1).

We begin by de�ning a translation from �cl to �9 types,
denoted j� j and de�ned as follows:

jbj = b
jh�1 � : : :� �nij = hj�1j � : : :� j�nji
jcode(�ve; �1; �2)j = code(j�vej; j�1j; j�2j)

j�1 ! �2j = 9tve:hcode(tve; j�1j; j�2j)� tvei:

The translation of an arrow type is a pair consisting of code
and an environment, with the environment type (tve) held
abstract using an existential.

The translation mapping �cl terms to �9 terms is sum-
marized in Figure 4. The translation de�nes judgements of
the form � . e : � ; e0 where �, e, and � are a �cl type
assignment, expression, and type respectively, and e0 is a �9

expression. The interesting rules are (closure) and (app).
The other rules (not shown), simply map the other �cl con-
structs to their �9 counterparts. A closure is translated to a
pair of the code and the environment packed with the type
of the environment. The translation of an application ex-
tracts from a package the pair of a code and an environment
and applies the code to the environment and the argument.

It is easy prove that the translation preserves the type
of a program up to the translation of the type. We do so
by �rst extending the type translation to type assignments,
writing:

jfx1:�1; : : : ; xn:�ngj = fx1:j�1j; : : : ; xn:j�njg

Theorem 3 If � ` e : � and � . e : � ; e0, then ;; j�j `
e0 : j� j.

Operational correctness of the translation is proven using
logical relations between �cl and �9 expressions, �cl and
�9 values, and �cl and �9 substitutions. The de�nition of
relations and the proof of the operational correctness are
found in the technical report [22].

4 Overview of Polymorphic Closure Conversion

Closure conversion for a language with ML-style (i.e., pred-
icative [12]), explicit polymorphism follows a similar pattern
to the simply-typed case, but with the additional complica-
tion that we must account for free type variables as well
as free value variables in the code of an abstraction, and
both value abstractions (�-terms) and type abstractions (�-
terms) induce the creation of closures. In this section, we
give an overview of the typing di�culties encountered when
closure converting value abstractions. The treatment of type
abstractions is similar (see Section 5 for details).

To eliminate free occurrences of type variables and or-
dinary variables from the code, we abstract with respect to
a type environment and a value environment, replacing free
variables by references to the appropriate environment. By
abstracting both free type variables and free value variables,
the code becomes closed and can be hoisted to the top level.
The abstracted code is then \partially applied" to suitable
representations of the type and value environments to form a
polymorphic closure. As in the simply-typed case, we need a
data structure to represent the delayed partial application of
the code to its environments. Also, we need to abstract both
the kind of the type environment and the type of the value
environment so that their representations remain private to
the closure. Without the abstraction, we run into the same
typing problems that we encountered with the simply-typed
case.

As a running example, consider the expression:

�x:t1.(x:t1, y:t2, z:int)

of type t1 ! (t1 � t2 � int) where t1 and t2 are free type
variables and y and z are free value variables of type t2 and
int respectively. After closure conversion, this expression is
translated to the partial application

let val code =
�tenv :: ft1::
, t2::
g.
�venv : fy:#t2 tenv, z:intg.
�x : (#t1 tenv).(x, #y venv, #z venv)

in
code ft1=t1, t2=t2g fy=y, z=zg

end
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(closure)
� . e : code(�ve; �1; �2); e0 � . eve : �ve ; e0ve

� . hhe; eveii : �1 ! �2 ; pack j�vej with he0; e0vei as j�1 ! �2j

(app)
� . e1 : �1 ! �2 ; e01 � . e2 : �1 ; e02

� . e1e2 : �2 ;
open e01 as tve with x:hcode(tve; j�1j; j�2j)� tvei in (�1x)(�2x; e

0
2)

(x 62 Dom(�))

Figure 4: Important Rules of Simply-Typed Closure Representation

The code abstracts type environment (tenv) and value en-
vironment (venv) arguments. The actual type environment,
ft1=t1,t2=t2g, is a constructor record with kind ft1::
,t2::
g
where 
 is the kind of monotypes. The actual value envi-
ronment, fy=y, z=zg is a record with type fy:t2, z:intg.
However, to keep the code closed so that it may be hoisted,
all references to free type variables in the type of venv must
come from tenv. Thus, we give venv the type fy:#t2 tenv,
z:intg. Similarly, the code's argument x is given the type
#t1 tenv. Consequently, the code part of the closure is a
closed expression of closed type �, where

� = 8tenv::ft1::
, t2::
g.
fy:#t2 tenv, z:intg!

(#t1 tenv)!((#t1 tenv)�(#t2 tenv)�int)

It is easy to check that the entire expression has type
t1 ! (t1�t2�int), and thus the type of the original function
is preserved.

We must now translate the partial application of the code
to it environments into a data structure. The structure must
be \mixed-phased" because it needs to hold a type (the type
environment) as well as values (the code and value environ-
ment). A �rst attempt is to represent the data structure as
a package e, where

e = pack ft1=t1, t2=t2g with (code, fy=y, z=zg)
as 9tte::�te.� � �ve

and code is the code of the closure above and

�te = ft1::
, t2::
g
�ve = fy:#t2 tte, z:intg

It is easy to verify that e is well-typed under the typing rule
for pack.

Unfortunately, there is a problem with this approach:
an application of e to some argument e0 : t1 must open the
package to extract the code, type, and value environments
prior to the call:

open e as tte::�te with z:�� �ve
in

(#1 z) tte (#2 z) e0

end

Although this is the \obvious" translation of application, it
fails to be well-typed! The di�culty is that e0 is of type t1,
whereas the expression (#1 z) tte (#2 z) has type:

(#t1 tte)!((#t1 tte)�(#t2 tte)�int).

Since tte is abstract, t1 is not provably equivalent to #t1 tte,
and this translation of application fails to typecheck.

The problem is that existentials provide a certain kind
of mixed-phase data structure where the type portion must
be abstract. We can use this to hide representations but
here, we need to know what the type environment actually
is in order to determine the type of the closure. In short,
we need a mixed-phase data structure that does not hide its
type component.

This same problem has been encountered in the study
of the ML-like module systems [11, 20, 21]. Recent solu-
tions are based on the idea of translucent sums [10] or man-
ifest types [19], which provide the power of both existentials
(weak sums), and transparent sums (strong sums). By as-
cribing the translucent sum type

9tte =ft1=t1,t2=t2g.�� �ve

to the closure, the equation tte=ft1=t1,t2=t2g is propagated
into the scope of the abstraction so that in particular #t1
tte = #t1 ft1=t1,t2=t2g = t1, and thus the translation of
application is type correct.

The next step is to hide the representation of the value
environment as we did in the simply-typed case. If we simply
abstract the type �ve from the above type expression we
obtain

9tte =ft1=t1,t2=t2g.9tve::
.�� tve

where tve is the abstract type of the value environment.
However, this fails to make type sense because we have ab-
stracted the type of the value environment in the closure,
but not the corresponding argument type of the code of the
closure. The translation of application is ill-typed because
the value environment has abstract type tve, but the domain
type of (#1 z) tte is fy:t2, z:intg. Since tve is abstract,
these two types are considered distinct. In order to simul-
taneously abstract the type of the value environment and
the corresponding argument type in the code, we need to
replace both types with the same abstract type tve. To do
this, we must show that the two types are equivalent. This
can be accomplished by requiring that the formal type envi-
ronment argument (tenv) is only instantiated with the type
environment tte. One way to achieve this is to perform the
application of the code to tte, but the goal of closure con-
version is to delay such partial applications. An alternative
approach is to use translucency again and coerce the code
so that it has the type �0, where:

�0 = 8tenv= tte::�te.
fy:#t2 tenv, z:intg!

(#t1 tenv)!((#t1 tenv)�(#t2 tenv)�int)

Adding the constraint tenv= tte to the type of the code
has the e�ect of performing the type application at the type-
level, but delays the application at the term-level. Note that
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�0 is a super-type of the original code type � according to
the rules of the translucent sum calculus. Consequently,
the code remains the same (i.e., closed) and can still be
hoisted to the top level. In contrast, if we had performed
the type application, the resulting code would not be closed
(containing free references to tte).

Since tenv= tte and tte =ft1=t1,t2=t2g, it follows that
tenv=ft1=t1,t2=t2g and thus (#ti tenv)= ti. Consequently,
the data structure holding the components of the closure can
be coerced to the equivalent type:

9tte =ft1=t1,t2=t2g.�
00�fy:t1,z:intg

where �00 is

�00 = 8tenv= tte::�te.fy:t1, z:intg!
t1 !(t1 � t2�int)

Since this equivalent type makes no mention of the type
environment tte except in the constraint for tenv, we may
drop the constraint on tte, abstract the type of the value
environment (fy:t1,z:intg), and abstract the kind of the
type environment �te to obtain the closure type:

9kte:9tte::kte:9tve::
.�
000 � tve

where

�000 = 8tenv= tte::kte.tve ! t1 !(t1 � t2�int)

It is easy to derive a type-preserving translation of appli-
cation corresponding to this representation of closures. We
simply open all of the existentials, and pass the type envi-
ronment, value environment, and argument to the code.

Careful consideration of the foregoing discussion reveals
that only limited use is made of translucency. The equa-
tional constraint on tte is dropped from the existential (to
ensure privacy of environment representation), and the uni-
versally quanti�ed variable tenv does not occur in the scope
of the abstraction. This suggests that a substantially sim-
pler mechanism than the full translucent sum calculus is
more appropriate for closure conversion. Hence, we intro-
duce a special type, written � ) �, of functions that must
be applied to the constructor � to yield a value of type �.
The following two rules govern this new type constructor:

� ` � :: � �;� ` e : 8t::�:�
�;� ` e : � ) �[�=t]

�;� ` e : � ) �
�;� ` e � : �

The �rst rule restricts the domain of type application to the
speci�c constructor � . This corresponds to restricting the
type to 8t = �:� and propagating the equivalence t = � into
�. The actual type application for � ) � is permitted only
for constructors equivalent to � . These two rules naturally
come from the necessity of delaying type applications for
closure conversion. Using this notation, the type translation
of �1 ! �2 becomes

9kte:9tte::kte:9tve::
:(tte ) tve ! �1 ! �2)� tve:

The type of closures abstracts the kind of the type en-
vironment and the type of the value environment, ensuring
that these may be chosen separately for each closure in the
system. As in the simply-typed case we have obtained an
\object oriented" representation of polymorphic closures by
exploiting a combination of the type systems proposed by
Pierce and Turner [27] for objects and by Harper and Lil-
libridge [10] for modules.

5 A Formal Account of Polymorphic Closure Conversion

In this section, we present closure conversion for the predica-
tive subset of the second order �-calculus. It has been argued
that the predicative fragment captures the \essence" of ML-
style polymorphism, since there is a strati�cation between
monotypes (types not involving a quanti�er) and polytypes,
and instantiation of type variables is restricted to mono-
types [12]. These restrictions make it easy to use logical
relations to argue correctness in the same fashion as we did
for the simply-typed �-calculus.

The syntax of our source language �8 is de�ned as fol-
lows:

Kinds � ::= 

Constructors � ::= b j t j �1 ! �2
Types � ::= � j �1 ! �2 j 8t::�:�
Expressions e ::= c j x j �x:�1:e j �t::�:e j e1 e2 j e �
Values v ::= c j �x:�1:e j �t::�:e

The type constructors (�) are described by kinds (�). There
is only one kind (
) for �8 , but subsequent languages have a
richer kind structure, so we introduce kinds here for unifor-
mity. Closed constructors of kind 
 correspond to a subset
of types (the monotypes), in particular the types that do
not include quanti�ers. Thus, constructors of kind 
 can
be injected into types. We leave this injection implicit and
treat � as both a constructor and a type.

A kind assignment � is a sequence that maps type vari-
ables to kinds and is of the form ft1::�1; : : : ; tn::�ng, (n � 0).
Typing judgements are of the form �; � ` e : � where the
free type variables of �, e, and � are contained in the do-
main of �, and the free value variables of e are contained
in the domain of �. A typing judgement is derived from the
standard typing rules of the second-order �-calculus (see for
example [12, 13]).

5.1 Abstract Closures

As in the simply typed case, we break closure conversion
into abstract closure conversion and closure representation
stages2. The abstract closure conversion stage for �8 con-
verts both �-abstractions and �-abstractions into abstract
closures consisting of code, a type environment and a value
environment.

The syntax of the target language �8;cl is de�ned as fol-
lows:

Kinds � ::= 
 j h�1 � : : :� �2i
Con's � ::= b j t j �1 ! �2 j h�1 � : : :� �ni j

h�1; : : : ; �ni j �i � j
Types � ::= � j �1 ! �2 j 8t::�:� j h�1 � : : :� �ni j

vcode(tte::�te; �ve; �1; �2) j
tcode(tte::�te; �ve; t::�; �)

Exp's e ::= c j x j e1 e2 j e � j he1; : : : ; eni j �i e j
�tte::�te:�xve:�ve:�x:�1:e j
�tte::�te:�xve:�ve:�t::�:e j hhe1; �; e2ii

A product kind h�1 � : : : � �ni is used to specify the
shape of type environments just as a product type speci�es
the shape of value environments. Given constructors �i with
kind �i, the constructor h�1; : : : ; �ni has kind h�1� : : :��ni
and is used as a type environment consisting of �1; : : : ; �n in
a translated program.

2The material on environment sharing carries over in a straight-
forward manner.
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There are two types of codes: the code for ordinary ab-
straction, �tte::�te:�xve:�ve:�x:�1:e, and the code for type
abstraction, �tte::�te:�xve:�ve:�t::�:e. Codes take a type
environment, a value environment, and a type or value argu-
ment respectively. We introduce the types vcode and tcode,
to distinguish the types of codes from the types of closures
and to avoid partial applications of codes. Intuitively, they
correspond to standard types as follows:

vcode(tte::�te; �ve; �1; �2) � 8tte::�te:�ve ! �1 ! �2
tcode(tte::�te; �ve; t::�; �) � 8tte::�te:�ve ! 8t::�:�

Only types excluding 8, vcode, and tcode can be named
as a constructor. An abstract closure hhe1; �; e2ii consists of
a code e1, a type environment constructor � , and a value
environment e2.

For the typing of �8;cl , kind assignments (�) map type
variables to kinds while type assignments (�) map value
variables to types. The judgements of the static semantics
are as follows:

� ` � :: � � is a well-formed constructor of kind �.
� ` � � is a well-formed type.
� ` �1 � �2 :: � �1 and �2 are equivalent constructors.
� ` �1 � �2 �1 and �2 are equivalent types.
�;� ` e : � e is a well-formed expression of type �.

The formation rules of types are standard. We have to in-
troduce de�nitional equality of constructors and types to
account for projections of constructors from product kinds.
They consist of the equivalence rules for projections below
as well as the standard rules for equivalence and congruence.

� ` �ih�1; : : : ; �ni � �i :: �i
� ` h�1(�); : : : ; �n(�)i � � :: h�1 � : : :� �ni

The typing rules for expressions are standard except for the
rules for codes and closures. They are de�ned in Figure 5.
We require that code values be closed with respect to both
type variables as well as value variables. This allows us to
hoist code out of inner de�nitions to the top level.

Abstract closure conversion for �8 is formulated as a
type-directed translation to �8;cl by the deductive system in
Figures 6 and 7. The judgement �env; �arg . � ; �0 means
that �0 is the translation of � where �env is a kind assign-
ment corresponding to a type environment and �arg is a
kind assignment corresponding to a type argument (if any).
This judgement also implicitly de�nes a translation from
constructors to constructors, since source-level constructors
(�) are a subset of types (�) and the translation maps con-
structors to constructors. In translated programs, the type
variable tte is used for type environments.

The judgement �env;�arg; �env; �arg . e ; e0 means
e0 is a translation of e where �env and �arg are as in the
type translation, and �env and �arg are type assignments
corresponding to the value environment and value argument
respectively. A type environment corresponding to �env and
a value environment corresponding to �env are implemented
in the target language by types of the form j�envj and j�envj
respectively, de�ned below.

jft1::�1; : : : ; tn::�ngj = h�1 � : : :� �ni
jfx1:�1; : : : ; xn:�ngj = h�1 � : : :� �ni

The most interesting rules are the term translations of
value and type abstractions. In each case, an appropri-
ate type environment and value environment must be con-
structed as part of the closure. Thus, assignments �0

env and

�0env must be chosen as subsets of the current assignments
�env ]�arg and �env]�arg respectively. These assignments
must be chosen so that all of the free value variables of the
term are contained in �0env and further, all of the free type
variables of the term and the value environment must be
contained in �0

env.
The primary subtlety in these rules is that we need two

type assignments �0env and �00env to describe the value envi-
ronment of the closure, depending upon the context. �0env
is constructed from the context �env; �arg; �env; �arg and is
used to build the environment eve in the context where we
are constructing the closure. In contrast, �00env is obtained
from �0env via the translation �0

env; ; . �
0
env ; �00env and cor-

responds to the type of the value environment in the context
of the closure itself.

The type correctness of the translation is proved by in-
duction on the derivation of the translation.

Theorem 4 (Type Correctness) If�env;�arg; �env; �arg .
e; e0 and�env]�arg; �env]�arg ` e : �, then ftte::j�envjg]
�arg; fxve:j�

0
envjg]�

0
arg ` e0 : �0 where �env;�arg . � ; �0,

�env;�arg . �env ; �0env, and �env;�arg . �arg ; �0arg.

We can prove the operational correctness of the trans-
lation using logical relations in the same fashion as we did
for the simply typed case because the source language is
restricted to the predicative polymorphism.

5.2 Closure Representation

In this section we present closure representation for the sec-
ond order language. We use types with existential kinds to
abstract the representation of type environments and exis-
tential types to abstract the representation of value environ-
ments. Further, we introduce the type � ) �0, derived from
translucent types, to solve the typing problems discussed in
the overview.

The target language for polymorphic closure representa-
tion, called �8;9 , is de�ned as follows:

Kinds � ::= k j 
 j h�1 � : : :� �ni
Types � ::= b j t j h�1 � : : :� �ni j h�1; : : : ; �ni j �i � j

8t::�:� j �1 ) �2 j �1 ! �2 j 9t::�:� j 9k:�
Exp's e ::= x j c j �x:�:e j e1 e2 j �t::�:e j e � j

he1; : : : ; eni j �i e j
pack � with e as �0 j
open e as t::� with x:� in e0

pack � with e as � j
open e as k with x:� in e0

There is no distinction between types and constructors for
�8;9 because type application is no longer restricted to just
monotypes. �8;9 needs this impredicativity because some
monotypes from the source language are translated into types
with quanti�ers. To simplify the language, we provide full
abstractions (� and �) instead of codes which abstract more
than one argument at a time.

To provide types with existential kinds, we need to in-
troduce kind variables k and kind contexts for the typing
judgements of �8;9 . A kind context K is simply a sequence
of kind variables, fk1; : : : ; kng, (n � 0). The typing judge-
ments of the language consist of the following:

K;� ` � :: � � has kind �.
K;� ` �1 � �2 :: � �1 and �2 are equal types of kind �.
K;�;� ` e : � e has type �.
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ftte::�teg; fxve:�ve; x:�1g ` e : �2
�;� ` �tte::�te:�xve:�ve:�x:�1:e : vcode(tte::�te; �ve; �1; �2)

ftte::�te; t::
g; fxve:�veg ` e : �
�;� ` �tte::�te:�xve:�ve:�t::
:e : tcode(tte::�te; �ve; t; �)

�;� ` e1 : vcode(tte::�te; �ve; �1; �2) � ` � : �te �;� ` e2 : �ve[�=tte]
�;� ` hhe1; �; e2ii : (�1 ! �2)[�=tte]

�;� ` e1 : tcode(tte::�te; �ve; t; �) � ` � : �te �;� ` e2 : �ve[�=tte]
�;� ` hhe1; �; e2ii : (8t:�2)[�=tte]

Figure 5: Typing Rules for Code and Closures

�env;�arg . b; b ft1::
; : : : ; tn::
g;�arg . ti ; �i tte

�env;�arg . t; t (t 2 Dom(�arg))

�env;�arg . �1 ; �01 �env;�arg . �2 ; �02
�env;�arg . �1 ! �2 ; �01 ! �02

�env;�arg ] ft::
g . � ; �0

�env;�arg . 8t::�: � ; 8t::�: �0

�env;�arg . t01 ; �1 � � � �env;�arg . t0n ; �n
�env;�arg . ft01::
; : : : ; t

0
n::
g; h�1; : : : ; �ni

�env;�arg . �1 ; �01 � � � �env;�arg . �n ; �0n
�env;�arg . fx1:�1; : : : ; xn:�ng; fx1:�

0
1; : : : ; xn:�

0
ng

Figure 6: Polymorphic Abstract Closure Conversion: Types and Type Assignments

(const) �env;�arg; �env; �arg . c; c

(env) �env;�arg; fx1:�1; : : : ; xn:�ng; �arg . xi ; �i xve

(arg) �env;�arg; �env; �arg . x; x (x 2 Dom(�arg))

(abs)

�env;�arg; �env; �arg . �
0
env ; �te �env;�arg; �env; �arg . �

0
env ; eve

�0
env; ; . �

0
env ; �00env �0

env; ; . �1 ; �01
�0

env; ;; �
0
env; fx:�1g . e; e0

�env;�arg; �env; �arg . �x:�1:e; hh�tte::j�
0
envj:�xve:j�

00
envj:�x:�

0
1:e

0; �te; eveii

(tabs)
�env;�arg; �env; �arg . �0

env ; �te �env;�arg; �env; �arg . �0env ; eve
�0

env; ; . �
0
env ; �00env �0

env; ft::
g; �
0
env; ; . e; e0

�env;�arg; �env; �arg . �t::
: e; hh�tte::j�
0
envj:�xve:j�

00
envj:�t::
: e

0; �te; eveii

(app)
�env;�arg; �env; �arg . e1 ; e01 �env;�arg; �env; �arg . e2 ; e02

�env;�arg; �env; �arg . e1 e2 ; e01 e02

(tapp)
�env;�arg; �env; �arg . e; e0 �env;�arg . � ; �0

�env;�arg; �env; �arg . e �; e0 �0

(context)
�env;�arg; �env; �arg . xi ; e0i

�env;�arg; �env; �arg . fx1:�1; : : : ; xn:�ng; he01; : : : ; e
0
ni

Figure 7: Polymorphic Abstract Closure Conversion: Terms
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The de�nition of the formation rules, de�nitional equal-
ity of types, and typing rules are standard except that poly-
morphic type 8t :: �:� can be instantiated to � ) �[�=t] for
type � with kind � as described in the overview. The details
of the typing rules are found in the technical report [22].

We de�ne the closure representation stage as a type-
directed translation from �8;cl to �8;9 . We begin by de�ning
a translation from source constructors and types to target
type as follows:

jtj = t
jbj = b

jh�1; : : : ; �nij = hj�1j; : : : ; j�nji
j�i�j = �ij�j

jh�1 � : : :� �nij = hj�1j � : : :� j�nji
jvcode(t::�; �ve; �1; �2)j = 8t::�:j�vej ! j�1j ! j�2j

jtcode(t::�; �ve; s::�
0; �2)j = 8t::�:j�vej ! 8s::�0:j�2j

j�1 ! �2j = 9k:9t::k:9t0::
:h(t) t0 ! j�1j ! j�2j)� t0i
j8s::�:�2j = 9k:9t::k:9t0::
:h(t) t0 ! 8s::�:j�2j)� t0i

The code types are translated to the corresponding types
described in the previous section. The translation of a func-
tion type abstracts the kind of the type environment, k, and
the type of the value environment, t0. The type environment
t is paired with the code by using an existential type. Since
the type of a code is instantiated by t, only the type envi-
ronment of the closure can be given to the code. The code
and the value environment are paired as in the simply-typed
case. The translation of 8 has the same structure as that of
an arrow type.

The translation of expressions is summarized in Figure 8.
The kind of the type environment, the type environment,
and the type of the value environment are packed with the
pair of the code and the value environment. In the transla-
tion of applications, the type environment is obtained from
a closure by an open expression and the code and the value
environment are obtained by projections. Then the type
environment, the value environment, and the argument of
application are passed to the code.

The type correctness of the translation is proven by in-
duction on the derivation of the translation. The typing
rules for � ) �0 are essential to prove the cases for the
translations of closures.

Theorem 5 (Type Correctness) If �;� . e : � ; e0,
then ;; �; j�j ` e0 : j�j.

The operational correctness of the translation can be
proven using logical relations as in the simply typed case.
However, the de�nition of the relations is more complicated
because of the presence of polymorphic types and types of
the form �i(�) in the language �8;cl . The relations and the
proof appear in the technical report [22].

6 Summary and Conclusions

We have presented a type-theoretic account of closure con-
version for the simply-typed and polymorphic �-calculi. Our
translations are unique in that they map well-typed source
terms to well-typed target terms. This facilitates correctness
proofs, allows other type-directed transforms such as CPS
conversion or unboxing to be applied after closure conver-
sion, and supports run-time examination of types for tag-free
garbage collection.

We have put the ideas in this paper to practical use in
two separate compilers for ML: one compiler is being used

to study novel approaches to tag-free garbage collection and
the other compiler provides a general framework for analyz-
ing types at run time to determine the shapes of objects.
Propagating types through closure conversion is necessary
for both compilers so that types can be examined at run
time. For simplicity, the current implementations of our
compilers use abstract closure conversion. As many com-
pilers, our compilers avoid creation of closures for known-
functions. Such optimization does not introduce any prob-
lem.

Lightweight closure conversion proposed by Wand and
Steckler [38] may also be formulated as type-preserving trans-
lation as our closure conversions. However, the de�nition of
translation may become complicated because the type of the
closure as well as the translation of abstraction depends on
which free variables passed directly.

In some implementation, a closure is represented by fold-
ing code pointer into the environment record [2]. Such repre-
sentation may be formulated as abstract closure conversion
with some modi�cations. However, closure representation
for such closures seems to need more powerful type system.
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