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1 Introduction

In a landmark paper Reynolds (1983) develops a mathematical account of Strachey’s informal concept
of parametricity of polymorphic functions. Parametricity characterizes the “uniform” behavior of poly-
morphic functions using Tait computability.1 Reynolds’s work, which was motivated by the study of
data abstraction in programming languages, was done around the same time as, and independently of,
Girard’s extension of Tait’s method to second-order quantification, whichwasmotivated by the analysis
of proofs in second-order logic.2 Whereas Girard made use of unary predicates, Reynolds used binary
relations, a technically small, yet practically large, difference that gave rise to newmethods for proving
properties of programs knowing only their types. Reynolds observed that the type discipline of a lan-
guage determines the abstraction properties enjoyed by its programs; in particular, clients of abstract
types are polymorphic, and hence enjoy stability properties across changes of representation determined
entirely by their types.

The formulation given heremakes use of the aforementioned ideas fromTait, Girard, and Reynolds,
but cast in an operational framework. In contrast to the presentation in PFPL the formulation given
here is independent of a prior notion of equality. In compensation candidates are required to enjoy a
property called zig-zag completeness (Krishnaswami and Dreyer, 2013), which suffices to ensure that
equality is symmetric and transitive by a simple and direct argument. And, in another departure from
PFPL, the development centers on the notion of a variable type, and only much later considers their in-
ternalization by type constructors, corresponding to universal and existential quantification over types.
Such quantifiers are said to be impredicatve because the range of quantification includes the quantified
types themselves, a kind of “quasi-circularity” that requires careful treatment to ensure consistency. In
particular, it is highly relevant that the existential type is formulated as a negative type, from which its
type component cannot be extracted.

2 Variable Types

Consider a simply typed 𝜆-calculus with a range of type constructors including, at least, function, unit,
and product types, but also void and sum types, inductive types, and coinductive types. For the present
purposes it is important that the language not include any form of effect, including partiality, which
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1See Harper (2025c) for an introduction to Tait’s method.
2See Harper (2025a) for an introduction to Girard’s method.
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would greatly complicate the development and obscure the main ideas. It is also important that the
language be equipped with a type ans of answerswhose values are yes and no, and with no elimination
forms. For the time being universal and existential types, as formulated inPFPL are not to be included,
but note that this choice will be reconsidered towards the end of this note.

The key concept considered here is the notion of a variable type, which is to say a variable that ranges
over types. A type variable context,∆, is a finite set of declarations𝑋1 type, …𝑋𝑛 type, and a term variable
context is a finite set of declarations 𝑥1 ∶𝐴1, … , 𝑥𝑛 ∶𝐴𝑛, with no variable declared more than once. The
typing judgment Γ ⊢∆ 𝑀 ∶ 𝐴 expresses that𝑀 is of type 𝐴 relative to assumptions Γ, all of which may
involve the types declared in ∆.

Exercise 1. Give a collection of rules defining ∆ ⊢ 𝐴 type for a selection of types 𝐴 suggested above.

The typing rules defining the various language constructs under consideration are to be reformu-
lated by attaching ∆ to the turnstile, and introducing premises of rules requiring that types arising in
the program are in fact well-formed relative to ∆.

Exercise 2. Reformulate the statics of the function type in the suggested style. State and prove that typing
is stable under substitution of types for type variables.

The dynamics is to be understood via an implicit erasure of type information from terms, including
omission of type labels on variable binders. The dynamics is given by a transition system with a by-
name interpretation of variables for the sake of simplicity, there being no possibility of divergence or
undefinedness of well-typed terms. With this understanding it is never necessary to substitute types for
type variables when considering the dynamics of closed terms.

Variable types are introduced by the binding construct Let(𝐴; 𝑋.𝑀), which binds the variable type
𝑋 to 𝐴 for use within𝑀:

Let
∆ ⊢ 𝐴 type Γ ⊢∆,𝑋 type 𝑀 ∶ 𝐵 ∆ ⊢ 𝐵 type

Γ ⊢∆ Let(𝐴; 𝑋.𝑀) ∶ 𝐵

Notice that, in contrast to Reynolds’s original formulation, the result type is not permitted to depend
on 𝑋, which by tacit binding convention is not in ∆. It has the evident dynamics on the erasure:

Let(_; _.𝑀) ↦,→ 𝑀

The corresponding term-level binding construct, let(𝑀; 𝑥.𝑁), is short-hand for the application𝜆(𝑥.𝑁)(𝑀),
with the derived typing rule

let
Γ, 𝑥 ∶ 𝐴 ⊢∆ 𝑁 ∶ 𝐵

Γ ⊢∆ let(𝑀; 𝑥.𝑁) ∶ 𝐵

and dynamics given by the transition

let(𝑀; 𝑥.𝑁) ↦,→ [𝑀∕𝑥]𝑁.

The constructs are introduced by a linker that binds the type and code of a library construct for use
within a client program. Importantly, the client program is typed in ignorance of the implementation
details of the library, yet at run-time there is no overhead in imposing this restriction.
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Figure 1: Zig-Zag Completeness, Pictorially

3 Correspondence and Exact Equality

A binary relation 𝑅 over closed terms of types𝐴 and𝐴′, written 𝑅 ⊆ 𝐴×𝐴′, is a parametricity candidate
if it satisfies the following two closure conditions:

1. Head expansion: if𝑀 𝑅 𝑀′, then

(a) if 𝑁 ↦,→ 𝑀, then 𝑁 𝑅 𝑀′, and

(b) if 𝑁′ ↦,→ 𝑀′, then𝑀 𝑅 𝑁′.

2. Zig-Zag Completeness (ZZC): if𝑀 𝑅 𝑀′, 𝑁 𝑅 𝑁′, and 𝑁 𝑅 𝑀′, then𝑀 𝑅 𝑁′.

Head expansion is a natural requirement when thinking of types as specifications of program behavior.
Zig-zag completeness is depicted in Figure 1. It may be stated in terms of the converse and compo-
sition of relations as the containment 𝑅◦𝑅op◦𝑅 ⊆ 𝑅. The opposite containment is always valid, so
zig-zag completeness may be re-stated as the equation 𝑅◦𝑅op◦𝑅 = 𝑅. As mentioned in Harper (2025d),
the importance of zig-zag completeness lies in its compatibility with the type heterogeneity of the para-
metricity candidates, providing a sufficient condition for the symmetry and transitivity of exact equality.

A candidate assignment, 𝜂, for type substitutions 𝛿, 𝛿′ ∶ ∆ is a function such that 𝜂(𝑋) ⊆ 𝛿(𝑋)×𝛿′(𝑋)
is a type candidate for each type variable 𝑋 such that ∆ ⊢ 𝑋 type.

Definition 1 (Correspondence). The binary relation of correspondence of two closed terms relative to
an open type 𝐴 such that ∆ ⊢ 𝐴 type and a candidate assignment 𝜂 ⊆ 𝛿 × 𝛿′ for ∆, written𝑀 ∼ 𝑀′ ∈
𝐴 [𝜂 ⊆ 𝛿 × 𝛿′], is defined by induction on the structure of 𝐴 as follows:

𝑀 ∼ 𝑀′ ∈ ans [𝜂 ⊆ 𝛿 × 𝛿′] ⇔ either𝑀,𝑀′ ↦,→
∗
yes or𝑀,𝑀′ ↦,→

∗
no

𝑀 ∼ 𝑀′ ∈ 𝑋 [𝜂 ⊆ 𝛿 × 𝛿′] ⇔ 𝑀 𝜂(𝑋) 𝑀′

𝑀 ∼ 𝑀′ ∈ 𝐴1 → 𝐴2 [𝜂 ⊆ 𝛿 × 𝛿′] ⇔
⎧

⎨
⎩

𝑀 ↦,→
∗
𝜆(𝑥.𝑀2), 𝑀′ ↦,→

∗
𝜆(𝑥.𝑀′

2), and

[𝑀1∕𝑥]𝑀2 ∼ [𝑀′
1∕𝑥]𝑀

′
2 ∈ 𝐴2 [𝜂 ⊆ 𝛿 × 𝛿′] if𝑀1 ∼ 𝑀′

1 ∈ 𝐴1 [𝜂 ⊆ 𝛿 × 𝛿′]

It is immediate from the form of the definition that correspondence is closed under head expansion,
given that candidates are required to be.

Lemma 2 (Head Expansion). If𝑀 ∼ 𝑀′ ∈ 𝐴 [𝜂 ⊆ 𝛿 × 𝛿′], then if 𝑁 ↦,→ 𝑀, then 𝑁 ∼ 𝑀′ ∈ 𝐴 [𝜂 ⊆

𝛿 × 𝛿′], and if𝑁′ ↦,→ 𝑀′, then𝑀 ∼ 𝑁′ ∈ 𝐴 [𝜂 ⊆ 𝛿 × 𝛿′].
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Proof. All conditions are defined in terms of evaluation to a value, and candidates are assumed to be
closed under head expansion.

Lemma 3 (Zig-Zag Completeness). For each ∆ ⊢ 𝐴 type, and each candidate assignment 𝜂 for ∆, the
correspondence relation _ ∼ _ ∈ 𝐴 [𝜂 ⊆ 𝛿 × 𝛿′] is zig-zag complete.
Exercise 3. Prove Lemma 3.

Exact equality of two terms in a type, written Γ ≫∆ 𝑀
.
= 𝑀′ ∈ 𝐴, is defined to mean

For all candidate assignments 𝜂 for 𝛿, 𝛿′ ∶ ∆, and for all substitutions 𝛾 ∼ 𝛾′ ∈ Γ [𝜂 ⊆ 𝛿×𝛿′],

𝛾(𝑀) ∼ 𝛾′(𝑀) ∈ 𝐴 [𝜂 ⊆ 𝛿 × 𝛿′].

The notation Γ ≫∆ 𝑀 ∈ 𝐴 is defined to mean Γ ≫∆ 𝑀
.
= 𝑀 ∈ 𝐴. It expresses that𝑀 conforms to the

behavior specified by exact equality by being related to itself—a non-trivial property of the type system
essential to the development.

Notice that the outer quantification is over substitutions 𝛿, 𝛿′ ∶ ∆ and candidate assignments for
them. Although it is true that every such substitution induces, via the definition of correspondence,
a parametricity candidate, there are far more parametricity candidates than may be denoted by a type
expression. This is the essential ingredient in the Girard/Reynolds account of variable types.

Lemma 4 (Compositionality). Suppose that ∆ ⊢ 𝐵 type and ∆,𝑋 type ⊢ 𝐴 type. Let 𝜂 be a relation
assignment for 𝛿, 𝛿′ ∶ ∆, and let 𝑅 be the binary relation _ ∼ _ ∈ 𝐵 [𝜂 ⊆ 𝛿 × 𝛿′]. Then 𝑀 ∼ 𝑀′ ∈
[𝐵∕𝑋]𝐴 [𝜂 ⊆ 𝛿 × 𝛿′] iff𝑀 ∼ 𝑀′ ∈ 𝐴 [𝜂[𝑋 ↦,→ 𝑅] ⊆ 𝛿[𝑋 ↦,→ 𝛿(𝐵)] × 𝛿′[𝑋 ↦,→ 𝛿′𝐵]].
Exercise 4. Prove Lemma 4.

The parametricity theorem states that well-typed open terms are exactly equal to themselves, which
is to say that exact equality is reflexive.

Theorem 5 (Parametricity). If Γ ⊢∆ 𝑀 ∶ 𝐴, then Γ ≫∆ 𝑀 ∈ 𝐴.
Proof. By induction on typing derivations, using Lemma 2 and 4. The interesting case is that for
Let(𝐴; 𝑋.𝑀). Suppose that 𝛿, 𝛿′ ∶ ∆ are substitutions of closed types for the type variables in ∆, that
𝜂(𝑋) ⊆ 𝛿(𝑋) × 𝛿′(𝑋) is a parametricity candidate for each ∆ ⊢ 𝑋 type, and that 𝛾 ∼ 𝛾′ ∈ Γ [𝜂 ⊆ 𝛿 × 𝛿′],
with the intent to show that

Let(𝛿(𝐴); 𝑋.𝛾(𝑀)) ∼ Let(𝛿′(𝐴); 𝑋.𝛾′(𝑀)) ∈ 𝐵 [𝜂 ⊆ 𝛿 × 𝛿′].

By head expansion it suffices to show

𝛾(𝑀) ∼ 𝛾′(𝑀) ∈ 𝐵 [𝜂 ⊆ 𝛿 × 𝛿′].

By the inductive hypothesis, choosing 𝛿(𝐴), 𝛿′(𝐴), and _ ∼ _ ∈ [𝜂 ⊆ 𝛿 × 𝛿′] as the interpretation of 𝑋,
we obtain

𝛾(𝑀) ∼ 𝛾′(𝑀) ∈ 𝐵 [𝜂[𝑋 ↦,→ _ ∼ _ ∈ [𝜂 ⊆ 𝛿 × 𝛿′]] ⊆ 𝛿[𝑋 ↦,→ 𝛿(𝐴)] × 𝛿′[𝑋 ↦,→ 𝛿′(𝐴)]].

The result follows immediately by compositionality.

Judgmental, or definitional, equality of expressions of a type is defined as in Harper (2025d), albeit
for equations parameterized by type variables, written Γ ⊢∆ 𝑀 ≡ 𝑀′ ∶ 𝐴.
Exercise 5. Prove that the extension of definitional equivalence to variable types is sound with respect to
the generalized definition of exact equality given above. Hint: you will need to verify that exact equality is
symmetric and transitive, making essential use of zig-zag closure; reflexivity is afforded by Theorem 5.
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4 Internalizing Variable Types

Variable types are the essence of data abstraction. Aswith any concept of variable, they are placeholders
for “types unknown” that, in the formulation considered above, are provided by a linker that connects
the library implementation to the client code. Parametricity guarantees that the client behavior is sta-
ble under replacement of one implementation by another, provided that they correspond under the
“fiction” that the two implementation types are regarded as “equal.”

The linking-based formulation of abstraction goes a long way towards explaining, and supporting,
a practical data abstraction mechanism. However, it would be also be useful to internalize these mech-
anisms as type constructs so that client code can be broken up into reusable parts using type-level 𝜆-
abstraction and instantiation, and so that implementor code can be packaged as a unit consisting of a
representation type and its associated implementation. These concepts are supported by universal and
existential type quantification, as formulated in PFPL. Thus, the type ∀(𝑋.𝐴) classifies programs that
abstract over an unspecified type, 𝑋, within a body of code classifed by the type 𝐴, and the type ∃(𝑋.𝐴)
classifies packages consisting of a type, 𝑋, and an implementation of the type𝐴 for the specified choice
of 𝑋.

The quantifiers are said to be impredicative (that is, non-predicative) in the sense that the universal
and existential types are types, and are thereby lie within the range of the quantifiers. In particular, a
universally quantified type may be instantiated by itself, disrupting attempts to define their meaning
in a non-circular manner. The definability of the existential type in terms of the universal type relies
on impredicativity, as does the definability of other typing constructs in terms of the universal. Al-
though impredicativity seems natural, it is sensible only for types-as-arguments, and does not provide
for computing types-as-results of computations. (The definition of the existential is chosen to rely only
on types-as-inputs by requiring the usage of an abstract type to be confined to the elimination form.)

The alternative, called predicative3 quantification, restricts the range of significance of the type vari-
ables to non-quantified types, which are sometimes said to “small” in contrast to the “large” quantified
types.4 Thus variable types range only over small types, and thus do not include quantified types. Pred-
icativity thereby avoids the circularity inherent in the impredicative formulation, but in so doing it also
reduces the expressive power of the quantified types. In particular the existential is no longer definable
in terms of the universal, nor are the other encodings discussed in PFPL available in the predicative
setting.

It might seem, then, that the impredicative formulation is to be preferred. However, as is explained
in Harper (2025b), it also has a very significant drawback, namely that it is not possible to support
modular programming using the impredicative formulation. In particular there is no way to compute
a structure containing both type and value components in such a way that both the type and the value
can be recovered from the structure without loss. That is, it should be possible to compute a structure
containing a type in such a way that the computed type can be recovered from the computation. This
can be achieved in a specialized form of dependent type theory that makes explicit the phase distinc-
tion between the static and dynamic components of a program module so that type checking need not
involve comparison of code, only of types.

Exercise 6. Extend the definition of correspondence, and hence exact equality, to account for universal
and existential types under the impredicative formulation. Hint: Variable types, whether quantified or not,
range over arbitrary parametricity candidates. Extend the proof of the parametricity theorem to account

3That is, non-non-predicative!
4The “small” vs. “large” distinction may be generalized to a hierarchy of universes, which arise in dependent type theory.
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for these constructs, following along the lines of Harper (2016), albeit in the present setting of zig-zag closure
and closure under head expansion.

Exercise 7. Extend the formulation of definitional equality and exact equality explored in Exercise 5 to
account for quantification, and verify the validity of the 𝛽𝜂 laws for type quantification are valid under
this interpretation.
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