
Strong Normalization as Transfinite Induction on Reduction*

Robert Harper

September 3, 2025

1 Introduction

A formal type system is inductively defined by a collection of rules for deriving judgments of the form
Γ ⊢ 𝑀 ∶ 𝐴 and Γ ⊢ 𝑀 ≡ 𝑀′ ∶ 𝐴 expressing, respectively, that a term𝑀 is structurally well-typed at
type𝐴, relative to typing assumptions for variables given by the context Γ, and that well-typed terms𝑀
and𝑀′ of type 𝐴 are convertible, or definitionally equivalent, at type 𝐴, relative to context Γ.

The question arises, is conversion decidable for well-typed terms? By Scott’s Theorem conversion
between untyped terms is undecidable, so the only hope for proving decidability is to take advantage of
typing. Many suchmethods have been developed. Reductionmethodswork by checking whether or not
two terms of the same type can be reduced to a common term by applying simplifications. Normaliza-
tion methods are reduction methods that demand that the common term be itself irreducible, a normal
form.

The use of reduction and normalization-based methods for deciding conversion may be justified by
the principle of transfinite induction on reduction (TIR). Writing𝑀 → 𝑁 for reduction, a property 𝒫 of
terms is said to be→-inductive iff

∀𝑀.(∀𝑁.𝑀 → 𝑁 ⊃ 𝒫(𝑁)) ⊃ 𝒫(𝑀).

The principle of transfinite→-induction states that any→-inductive property holds of every term:

if 𝒫 is→-inductive, then ∀𝑀.𝒫(𝑀).

The validity of transfinite →-induction may be taken as the definition of the well-foundedness of the
reduction relation. One use of this principal is to show that local confluence of a reduction relation
suffices for its confluence, which leads to a decision procedure for definitional equivalence that reduces
both sides to normal form.

In the literature it is common to take a more classical (as distinct from constructive) viewpoint.
Strong normalization (SN) states that there are no infinite reduction sequences from a well-typed term.
As the terminology suggests, this property is stronger than mere normalization, for which a particular
strategy is either specified explicitly or is implicit in the constructive content of the proof that every term
reduces to a normal form. Strongnormalizationmay be derived from transfinite induction on reduction,
for if all 𝛽-reducts of a term are SN, then so is that term. However, it is more usual to prove strong
normalization directly—as Tait did—and to derive TIR from it by a “least counterexample” argument.
The proof is thus indirect, and lacking in computational content.

*Copyright © Robert Harper. All Rights Reserved

1



This note develops a set of conditions on an otherwise abstract property 𝒫 such that every well-
typed term has that property using a Kripke-style formulation of Tait’s method. The property of being
strongly normalizing satisfies these conditions, providing a direct proof of SN for well-typed terms.
The SN property suffices to validate transfinite induction on reduction, which is used in the proof of
correctness of an algorithm for checking equivalence of typed terms.

2 Validity of Transfinite 𝛽-Reduction for Well-Typed Terms

The simply typed 𝜆-calculus is as defined in Harper (2025b). The 𝛽-reduction relation, →𝛽, for it is
defined in Harper (2025a). Fix a family of properties 𝒫𝐴

Γ(𝑀) governing well-typed terms Γ ⊢ 𝑀 ∶ 𝐴.1
Under what conditions does every well-typed term have property 𝒫?

Conjecture 1. If Γ ⊢ 𝑀 ∶ 𝐴, then 𝒫𝐴
Γ(𝑀).

The proof makes use of Tait computability, as would be expected, yielding a set of conditions on 𝒫
that suffice for the proof.

Define the family of predicates 𝗁𝒫𝐴
∆(𝑀), called hereditarily 𝒫, by induction on 𝐴 as follows:

𝗁𝒫1
∆(𝑀) iff 𝑀 ↦,→∗

𝛽 ⟨⟩ or𝑀 ↦,→∗
𝛽 𝑈 and 𝗇𝒫1

∆(𝑈)

𝗁𝒫𝐴1×𝐴2
∆(𝑀) iff 𝗁𝒫𝐴1

∆(𝑀 ⋅ 1) and 𝗁𝒫𝐴2
∆(𝑀 ⋅ 2)

𝗁𝒫𝐴1→𝐴2
∆(𝑀) iff ∀∆′ ≤ ∆ if 𝗁𝒫𝐴1

∆′(𝑀1) then 𝗁𝒫𝐴2
∆′(ap(𝑀;𝑀2))

𝗇𝒫𝐴
∆,𝑥∶𝐴(𝑥) iff (always)

𝗇𝒫𝐴1
∆(𝑈 ⋅ 1) iff 𝗇𝒫𝐴1×𝐴2

∆(𝑈)
𝗇𝒫𝐴2

∆(𝑈 ⋅ 2) iff 𝗇𝒫𝐴1×𝐴2
∆(𝑈)

𝗇𝒫𝐴2
∆(ap(𝑈;𝑀1)) iff 𝗇𝒫𝐴1→𝐴2

∆(𝑈) and 𝗁𝒫𝐴1
∆(𝑀1)

The definition of 𝗁𝒫𝐴
∆(𝑀)makes use of the auxiliary property, 𝗇𝒫𝐴

∆(𝑈), meaning that 𝑈 is neutrally
𝒫, which is defined by induction on the structure of 𝑈 to require that the argument terms within 𝑈
have property 𝗁𝒫.

Lemma 1 (Pas-de-deux). 1. If 𝗇𝒫𝐴
∆(𝑈), then 𝗁𝒫𝐴

∆(𝑈).

2. If 𝗁𝒫𝐴
∆(𝑀), then 𝒫𝐴

∆(𝑀).

Proof. Simultaneously, by induction on 𝐴.

(𝐴 = 1) Consider each case in turn:

1. By definition.
2. Suppose that 𝗁𝒫1

∆(𝑀). Then 𝒫1
∆(𝑀) by conditions (1) and (2) on 𝒫.

(𝐴 = 𝐴1 × 𝐴2) Consider each case:
1The “staggered” sub- and super-scripts indicate the order of quantification.

2 September 3, 2025



1. Suppose that 𝗇𝒫𝐴
∆(𝑈), with the intent to show 𝗁𝒫𝐴

∆(𝑈). It suffices to show 𝗁𝒫𝐴1
∆(𝑈 ⋅ 1)

and 𝗁𝒫𝐴2
∆(𝑈 ⋅ 2). The definition of 𝗇𝒫 ensures that 𝗇𝒫𝐴1

∆(𝑈 ⋅ 1) and 𝗇𝒫𝐴2
∆(𝑈 ⋅ 1). But then

the required follow by two applications of part (1) of the inductive hypthesis.
2. Suppose that 𝗁𝒫𝐴

∆(𝑀), with the intent to show 𝒫𝐴
∆(𝑀). The definition of 𝗁𝒫 implies that

𝗁𝒫𝐴1
∆(𝑀 ⋅ 1) and 𝗁𝒫𝐴2

∆(𝑀 ⋅ 2), so by part (2) of the inductive hypothesis 𝒫𝐴1
∆(𝑀 ⋅ 1) and

𝒫𝐴2
∆(𝑀 ⋅ 2). But then the result follows by condition (3) on 𝒫.

(𝐴 = 𝐴1 → 𝐴2) Consider each case:

1. Suppose that 𝗇𝒫𝐴
∆(𝑈), with the intent to show 𝗁𝒫𝐴

∆(𝑈). To this end suppose that ∆′ ≤
∆ and 𝗁𝒫𝐴1

∆′(𝑀1). But then 𝗇𝒫𝐴2
∆′(ap(𝑈;𝑀1)) by definition of 𝗇𝒫, so by part (1) of the

inductive hypothesis 𝗁𝒫𝐴2
∆′(ap(𝑈;𝑀1)), as required.

2. Suppose that 𝗁𝒫𝐴
∆(𝑀), so as to show𝒫𝐴

∆(𝑀). Let∆′ = ∆, 𝑥∶𝐴1, and note that by definition
𝗇𝒫𝐴1

∆′(𝑥). But then by inductive hypothesis part (1) it follows that 𝗁𝒫𝐴1
∆′(𝑥), and so by

definition of 𝗁𝒫 at function type, 𝗁𝒫𝐴2
∆′(ap(𝑀;𝑥)). But then inductive hypothesis part (2)

gives 𝒫𝐴2
∆′(ap(𝑀;𝑥)), so that by condition (4) on 𝒫, 𝒫𝐴

∆(𝑀), as required.

The lemma is so-named because of the argument at function type, which swaps back and forth
between the two parts of the inductive hypothesis.

Corollary 2. Variables are computable: 𝗁𝒫Γ
Γ(idΓ).

The proof of Lemma 1 relies on these conditions on the property 𝒫:

1. 𝒫1
∆(⟨⟩).

2. If 𝗇𝒫1
∆(𝑈), then 𝒫1

∆(𝑈).

3. If 𝒫𝐴1
∆(𝑀 ⋅ 1) and 𝒫𝐴2

∆(𝑀 ⋅ 2), then 𝒫𝐴1×𝐴2
∆(𝑀).

4. If 𝒫𝐴2
∆,𝑥∶𝐴1(ap(𝑀;𝑥)), then 𝒫𝐴1→𝐴2

∆(𝑀).

Any property of typed terms satisfying these conditions is called a reduction property.

Theorem 3. Assuming that 𝒫 is a reduction property, if Γ ⊢ 𝑀 ∶ 𝐴, then 𝗁𝒫Γ
∆(𝛾) implies 𝗁𝒫𝐴

∆(𝑀).

Proof. By induction on typing derivations.

Exercise 1. Prove theorem 3. Your proof will require two additional conditions on the property 𝒫.

Corollary 4. If Γ ⊢ 𝑀 ∶ 𝐴, then 𝒫𝐴
Γ(𝑀).

Proof. Choose 𝛾 to be the identity substitution on Γ.

Exercise 2. Prove that strong normalization is a reduction property. Conclude that no well-typed term
has an infinite reduction sequence starting from it.

Exercise 3. Show that strong normalization implies transfinite induction on reduction for any property
𝒫 of well-typed terms. Hint: Use a “least counterexample” argument with respect to reduction.

3 September 3, 2025



3 Decidability of 𝛽-Equivalence
The best-known application of transfinite induction on reduction is to the proof of correctness of a
reduction-based decisionmethod for 𝛽-equivalence of terms.2 Define the relation𝑀 ↓𝛽 𝑁 to mean that
𝑀 and 𝑁 have a common reduct, a term 𝑃 such that𝑀 →∗

𝛽 𝑃 and 𝑁 →∗
𝛽 𝑃. Clearly, if Γ ⊢ 𝑀,𝑁 ∶ 𝐴

and𝑀 ↓𝛽 𝑁, then Γ ⊢ 𝑀 ≡ 𝑁 ∶ 𝐴 via a chain of equivalences from𝑀 to 𝑁 via their common reduct.
Conversely, does Γ ⊢ 𝑀 ≡ 𝑁 ∶ 𝐴 imply that𝑀 ↓𝛽 𝑁? The evident strategy is to proceed by induction
on the derivation of the equivalence. All cases go swimmingly, but for transitivity. For suppose that
Γ ⊢ 𝑀 ≡ 𝑁 ≡ 𝑃 ∶ 𝐴 with the intent to show that𝑀 ↓𝛽 𝑁. By induction𝑀 ↓𝛽 𝑁 and 𝑁 ↓𝛽 𝑃, but can
we conclude that𝑀 ↓𝛽 𝑃? Let 𝑄 be the common reduct of𝑀 and 𝑁 and let 𝑄′ be the common reduct
of 𝑁 and 𝑃. To complete the proof it suffices to show that 𝑄 ↓𝛽 𝑄′ (draw the picture!).

This suggests the following conjecture:

Lemma 5 (Confluence). If𝑁 →∗
𝛽 𝑄 and𝑁 →∗

𝛽 𝑄
′, then 𝑄 ↓𝛽 𝑄′.

In words any two multi-step paths from 𝑁 “flow together” to a common reduct.
How might this be proved? A direct combinatorial proof seems difficult because of the multi-step

split from 𝑁—there’s no telling what 𝑄 and 𝑄′ might look like, much less how they may be recon-
ciled. However, a multi-step reduction has a finite length, so it makes sense to consider 𝑀 →𝛽

𝑚 𝑄
and𝑀 →𝛽

𝑚′ 𝑄′, and then proceed by induction on𝑚 and 𝑚′. If either or both are zero, the answer is
immediate, otherwise𝑚 = 𝑛+1 and𝑚′ = 𝑛′+1, and each path from𝑁 starts with a single 𝛽-reduction
step. Aha! This seems more tractible, because it is not out of the question that all one-step splits are
reconcilable; this property is called local confluence.

Lemma 6 (Local Confluence). If𝑁 →𝛽 𝑄 and𝑁 →𝛽 𝑄
′, then 𝑄 ↓𝛽 𝑄′.

It is not difficult to prove local confluence directly by considering, for each term 𝑁, all possible
one-way splits, and showing them to be reconcilable.

It is tempting to conclude, by the heuristic argument just given, that→𝛽 is confluent, and therefore
equivalence for well-typed terms is equivalent to their having a common reduct. To complete the proof
it suffices to prove (weak) normalization, so that the common reduct can be taken to be a normal form.

Exercise 4. Try to prove that local confluence implies confluence by a simultaneous induction on the
lengths of the paths in the multi-way split, as suggested above. Watch yourself fail. Explain, informally,
why the proof does not go through.

The difficulty, as you will have noticed, is that the proof attempt quickly breaks down with no ap-
plicable inductive hypothesis, and there is no way to bound the length of the offending multi-step re-
ductions.3

Exercise 5. Prove by transfinite induction on reduction that local confluence implies confluence. The
heuristic argument survives to some extent, using themuch stronger inductive hypothesis afforded by trans-
finite induction on reduction.

Thus, in the presence of transfinite induction on reduction, local confluence suffices to justify the
suggested decision method for equivalence by reduction to a common, irreducible, reduct.

Exercise 6 (Extra Credit). Prove local confluence of 𝛽-reduction for the typed 𝜆-calculus.
2See Huet (1980) for an abstract account in any rewriting system.
3The cryptic nature of this comment is necessary to avoid giving away the solution to the exercise!

4 September 3, 2025



References

Robert Harper. Kripke-style logical relations for normalization. Unpublished lecture note, January
2025a. URL https://www.cs.cmu.edu/~rwh/courses/atpl/pdfs/kripke.pdf.

Robert Harper. How to (re)invent Tait’s method. Unpublished lecture note, January 2025b. URL
https://www.cs.cmu.edu/~rwh/courses/atpl/pdfs/tait.pdf.

Gérard Huet. Confluent reductions: Abstract properties and applications to term rewriting systems:
Abstract properties and applications to term rewriting systems. Journal of the ACM (JACM), 27(4):
797–821, 1980.

5 September 3, 2025


