
Semantic Equality for Typed 𝜆-Calculus*

Robert Harper

Spring, 2025

1 Introduction

The unary logical relations developed in Harper (2025b) may be extended from unary predicates to
binary relations. In binary form these relations define exact equality at each type. Unlike axiomatic ac-
counts (those given by rules) exact equality defines when two terms of a type are semantically equal. For
example, the “add-to-self” and “doubling” functions on the natural numbers are exactly equal, because
they have the same I/O behavior. This formulation—the standard one for equality of functions—is
called extensional equality.

This note defines exact equality for terms of each type, and establishes some basic properties of it,
in particular that it is an equivalence relation that is compatible with the term-forming operations, and
that it respects—and thus contains—evaluation.

2 Exact Equality

The definition of exact equality is very similar to the definition of hereditary termination given inHarper
(2025b), here written𝑀 .= 𝑀′ ∈ 𝐴:1

𝑀 .= 𝑀′ ∈ ans iff 𝑀,𝑀′ ↦,→
∗
yes or𝑀,𝑀′ ↦,→

∗
no

𝑀 .= 𝑀′ ∈ unit iff 𝑀,𝑀′ ↦,→
∗
⟨⟩

𝑀 .= 𝑀′ ∈ 𝐴1 × 𝐴2 iff 𝑀 ↦,→
∗
⟨𝑀1,𝑀2⟩,𝑀′ ↦,→

∗
⟨𝑀′

1,𝑀
′
2⟩, and

𝑀1
.= 𝑀′

1 ∈ 𝐴1 and𝑀2
.= 𝑀′

2 ∈ 𝐴2

𝑀 .= 𝑀′ ∈ 𝐴1 → 𝐴2 iff 𝑀 ↦,→
∗
𝜆(𝑥.𝑁),𝑀′ ↦,→

∗
𝜆(𝑥.𝑁′), and

if𝑀1
.= 𝑀′

1 ∈ 𝐴1 then [𝑀1∕𝑥]𝑁
.= [𝑀′

1∕𝑥]𝑁
′ ∈ 𝐴2

The judgment𝑀 ∈ 𝐴 is defined to mean𝑀 .= 𝑀 ∈ 𝐴.
If exact equality is to be so-called, it ought to be symmetric and transitive.

Lemma 1. 1. If𝑀 .= 𝑀′ ∈ 𝐴 then𝑀′ .= 𝑀 ∈ 𝐴.
*Copyright © Robert Harper. All Rights Reserved
1The closed binary relation is often written HE𝐴(𝑀,𝑀′, −𝑁𝑜𝑉𝑎𝑙𝑢𝑒−), for “hereditary extensionality.”

1



2. If𝑀 .= 𝑀′ ∈ 𝐴 and𝑀′ .= 𝑀′′ ∈ 𝐴, then𝑀 .= 𝑀′′ ∈ 𝐴.
Proof. Symmetry and transitivity must be proved simultaneously by structural induction on the type
𝐴. Consider the case 𝐴 = 𝐴1 → 𝐴2.

1. Suppose that 𝑀 .= 𝑀′ ∈ 𝐴 with the goal to show that 𝑀′ .= 𝑀 ∈ 𝐴. By assumption 𝑀 ↦,→
∗

𝜆(𝑥.𝑁) and 𝑀′ ↦,→
∗
𝜆(𝑥.𝑁′). Assume that 𝑀′

1
.= 𝑀1 ∈ 𝐴1, with the intent to show that

[𝑀′
1∕𝑥]𝑁

′ .= [𝑀1∕𝑥]𝑁 ∈ 𝐴2. A direct application of the outer assumption yields [𝑀1∕𝑥]𝑁′ .=
[𝑀′

1∕𝑥]𝑁 ∈ 𝐴2, which is not what is required. However, exact equality at both𝐴1 and𝐴2 is sym-
metric. First, appealing to symmetry at 𝐴1, from the assumption𝑀′

1
.= 𝑀1 ∈ 𝐴1 it follows that

𝑀1
.= 𝑀′

1 ∈ 𝐴1, and hence by the outer assumption [𝑀1∕𝑥]𝑁
.= [𝑀′

1∕𝑥]𝑁
′ ∈ 𝐴2. Then, applying

symmetry at 𝐴2, the desired result follows.

2. Suppose that 𝑀 .= 𝑀′ ∈ 𝐴 and 𝑀′ .= 𝑀′′ ∈ 𝐴 with the goal to show that 𝑀 .= 𝑀′′ ∈ 𝐴. By
the definition of exact equality at function type, the two assumptions imply that𝑀 ↦,→

∗
𝜆(𝑥.𝑁),

𝑀′ ↦,→
∗
𝜆(𝑥.𝑁′), and𝑀′′ ↦,→

∗
𝜆(𝑥.𝑁′′). Now suppose that𝑀1

.= 𝑀′′
1 ∈ 𝐴1 with the intent to

show that [𝑀1∕𝑥]𝑁
.= [𝑀′′

1 ∕𝑥]𝑁
′′ ∈ 𝐴2. Here again a direct application of the outer assumptions

does not seem to help, obtaining

(a) [𝑀1∕𝑥]𝑁
.= [𝑀′′

1 ∕𝑥]𝑁
′ ∈ 𝐴2, and

(b) [𝑀1∕𝑥]𝑁′ .= [𝑀′′
1 ∕𝑥]𝑁

′′ ∈ 𝐴2.

Note that a symmetric and transitive relation is reflexive on related elements: if 𝑅(𝑀,𝑀′) then
𝑅(𝑀′,𝑀) by symmetry, and so 𝑅(𝑀,𝑀) and 𝑅(𝑀′,𝑀′) by transitivity. By the inductive assump-
tions equality at type 𝐴1 is symmetric and transitive, and so 𝑀

.= 𝑀 ∈ 𝐴1 follows from the
inner assumption. Then, by the first outer assumption, [𝑀∕𝑥]𝑁 .= [𝑀∕𝑥]𝑁′ ∈ 𝐴2. Applying the
second displayed equation above, and the transitivity of equality at 𝐴2, the result follows.

Symmetric and transitive relations are called partial equivalence relations, or p.e.r.’s. The remark
in the proof about deriving reflexivity for related elements, called the p.e.r. trick, will be of further use
below.

Exercise 1. Check the remaining cases of symmetry and transitivity.

The analogue of the fundamental theorem in Harper (2025b) is the reflexivity of exact equality.
Define 𝛾 .= 𝛾′ ∈ Γ variable-by-variable and define Γ ≫ 𝑀 .= 𝑀′ ∈ 𝐴 to mean if 𝛾 .= 𝛾′ ∈ Γ, then
𝛾(𝑀) .= 𝛾′(𝑀′) ∈ 𝐴.

Exact equality is behavioral in that it expresses execution properties of programs. It is codified by
the notion of “head expansion,” a term that is widely used in the literature to express it.

Lemma 2 (Head Expansion). If𝑀 .= 𝑀′ ∈ 𝐴 and𝑁 ↦,→ 𝑀, then𝑁 .= 𝑀′ ∈ 𝐴.

The analogous propery for the right-hand side of the equation follows from symmetry, or may be
proved separately by an analogous argument. Thus, for example, a notion of “equality” of programs
that is sensitive to their form, rather than their behavior, would not be amenable to the type-directed
treatment considered here.

2 September 3, 2025



Theorem 3 (Reflexivity). If Γ ⊢ 𝑀 ∶ 𝐴, then Γ ≫ 𝑀 ∈ 𝐴.

Proof. By induction on typing derivations, proceeding analogously to the proof given inHarper (2025b).

Observe that the full meaning of reflexivity of open terms involves disparate substitution instances
of them. This is necessitated by the definition of computability at function types.

The fundamental theorem tells us that well-typed terms are exactly equal to themselves. At first this
may sound trivial, but because exact equality is a behavioral condition on evaluation, it requires proof,
and can even fail when a type system is not properly designed. By Lemma 1 exact equality for closed
terms is symmetric and transitive. However, this does not immediately imply that the same is true for
open terms!

Lemma 4 (Symmetry and Transitivity). 1. If Γ ≫ 𝑀 .= 𝑀′ ∈ 𝐴, then Γ ≫ 𝑀′ .= 𝑀 ∈ 𝐴.

2. If Γ ≫ 𝑀 .= 𝑀′ ∈ 𝐴 and Γ ≫ 𝑀′ .= 𝑀′′ ∈ 𝐴, then Γ ≫ 𝑀 .= 𝑀′′ ∈ 𝐴.

Proof. Note, first of all, that these properties are not immediate consequences of exact equality being
symmetric and transitive—some argumentation is required because of the disparate instantiation of
the variables in Γ.

1. Assume that Γ ≫ 𝑀 .= 𝑀′ ∈ 𝐴, and suppose that 𝛾′ .= 𝛾 ∈ Γ, with the intent to show that
𝛾′(𝑀′) .= 𝛾(𝑀) ∈ 𝐴. Simply instantiating the assumption yields 𝛾′(𝑀) .= 𝛾(𝑀′) ∈ 𝐴, which is
neither the intended result, nor is it its symmetric form. Instead, by the symmetry of closed exact
equality, 𝛾 .= 𝛾′ ∈ Γ follows from 𝛾′ .= 𝛾 ∈ Γ, then instantiating the hypothesis accordingly yields
the desired result.

2. Assume the two premises, and suppose that 𝛾 .= 𝛾′′ ∈ Γ, with the intent to show 𝛾(𝑀) .=
𝛾′′(𝑀′′) ∈ 𝐴. Instantiating the two premises directly yields

(a) 𝛾(𝑀) .= 𝛾′′(𝑀′) ∈ 𝐴, and
(b) 𝛾(𝑀′) .= 𝛾′′(𝑀′′) ∈ 𝐴.

Here again these two facts do not yield the desired result—the disparate substitutions preclude
direction application of transitivity of exact equality at type𝐴. Instead, observe that by symmetry
and transitivity of exact equality of substitutions for Γ, it follows that 𝛾 .= 𝛾 ∈ Γ, which can be
applied to the first inductive hypothesis to obtain 𝛾(𝑀) .= 𝛾(𝑀′) ∈ 𝐴. This, together with the
second equation above implies, by transitivity, the desired result.

The disparity between the two sides of an equation induced by application of disparate substitutions
gives rise to the use of the “p.e.r. trick” to obtain a reflexive instance that mediates the proof. An alter-
native approach is developed below that embraces, rather than evades, the disparities, which proves to
be useful in the theory of parametricity.

The rules in Figure 1 may be validated as expressing true exact equations.

Theorem 5 (Equational Validity). If Γ ⊢ 𝑀 ≡ 𝑁 ∶ 𝐴, then 𝛾(𝑀) .= 𝛾′(𝑁) ∈ 𝐴 for all 𝛾 .= 𝛾′ ∈ Γ.

3 September 3, 2025



refl
Γ ⊢ 𝑀 ∶ 𝐴

Γ ⊢ 𝑀 ≡ 𝑀 ∶ 𝐴

sym
Γ ⊢ 𝑀 ≡ 𝑁 ∶ 𝐴
Γ ⊢ 𝑁 ≡ 𝑀 ∶ 𝐴

trans
Γ ⊢ 𝑀 ≡ 𝑁 ∶ 𝐴 Γ ⊢ 𝑁 ≡ 𝑃 ∶ 𝐴

Γ ⊢ 𝑀 ≡ 𝑃 ∶ 𝐴

1-𝜂
Γ ⊢ 𝑀 ∶ 1

Γ ⊢ 𝑀 ≡ ⟨⟩ ∶ 1

×-I
Γ ⊢ 𝑀1 ≡ 𝑁1 ∶ 𝐴1 Γ ⊢ 𝑀2 ≡ 𝑁2 ∶ 𝐴2

Γ ⊢ ⟨𝑀1,𝑀2⟩ ≡ ⟨𝑁1, 𝑁2⟩ ∶ 𝐴1 × 𝐴2

×-E-L
Γ ⊢ 𝑀 ≡ 𝑁 ∶ 𝐴1 × 𝐴2

Γ ⊢ 𝑀 ⋅ 1 ≡ 𝑁 ⋅ 1 ∶ 𝐴1

×-E-R
Γ ⊢ 𝑀 ≡ 𝑁 ∶ 𝐴1 × 𝐴2

Γ ⊢ 𝑀 ⋅ 2 ≡ 𝑁 ⋅ 2 ∶ 𝐴1

×-𝛽-L
Γ ⊢ 𝑀1 ∶ 𝐴1 Γ ⊢ 𝑀2 ∶ 𝐴2

Γ ⊢ ⟨𝑀1,𝑀2⟩ ⋅ 1 ≡ 𝑀1 ∶ 𝐴1

×-𝛽-R
Γ ⊢ 𝑀1 ∶ 𝐴1 Γ ⊢ 𝑀2 ∶ 𝐴2

Γ ⊢ ⟨𝑀1,𝑀2⟩ ⋅ 2 ≡ 𝑀2 ∶ 𝐴2

×-𝜂
Γ ⊢ 𝑀 ∶ 𝐴1 × 𝐴2

Γ ⊢ 𝑀 ≡ ⟨𝑀 ⋅ 1,𝑀 ⋅ 2⟩ ∶ 𝐴1 × 𝐴2

→-I
Γ, 𝑥 ∶ 𝐴1 ⊢ 𝑀2 ≡ 𝑁2 ∶ 𝐴2

Γ ⊢ 𝜆(𝑥.𝑀2) ≡ 𝜆(𝑥.𝑁2) ∶ 𝐴1 → 𝐴2

→-E
Γ ⊢ 𝑀 ≡ 𝑁 ∶ 𝐴1 → 𝐴2 Γ ⊢ 𝑀1 ≡ 𝑁1 ∶ 𝐴1

Γ ⊢ ap(𝑀;𝑀1) ≡ ap(𝑁;𝑁1) ∶ 𝐴2

→-𝛽
Γ, 𝑥 ∶ 𝐴1 ⊢ 𝑀2 ∶ 𝐴2 Γ ⊢ 𝑀1 ∶ 𝐴1

Γ ⊢ ap(𝜆(𝑥.𝑀2);𝑀1) ≡ [𝑀1∕𝑥]𝑀2 ∶ 𝐴2

→-𝜂
Γ ⊢ 𝑀 ∶ 𝐴1 → 𝐴2

Γ ⊢ 𝑀 ≡ 𝜆(𝑥. ap(𝑀;𝑥)) ∶ 𝐴1 → 𝐴2

Figure 1: Definitional Equivalence for Products and Functions

Proof. The proof is by induction on the derivation of the equation, making use of the lemmas given
above, including head expansion and reflexivity lemmas. The rules are formulatedwith typing premises
that are essential to the argument. In particular the rule for 𝛽-equivalence for function types relies on
the combination of the two typing premises to obtain an equation between two instances of the right-
hand side of the equation, with the result then following by head expansion.

Exercise 2. Complete the proof of Theorem 5 in the indicated manner. Which typing premises, if any, are
needed to complete the proof?

Exercise 3. Give 𝛽- and 𝜂 equations for the type conat of co-natural numbers defined in Harper (2025a).

Exercise 4. Define exact equality for co-natural numbers, and prove that the 𝛽- and 𝜂 equations are valid
as principles of exact equality.

3 Sums and (Co-)Natural Numbers

Extending the equational theory to account for (empty andnon-empty) sums, and other inductive types,
raises some important questions. Although the 𝛽-like rules of equality are only to be expected, what

4 September 3, 2025



would be the analog of an 𝜂-like rule? These rules for products and function types are straightforward,
amounting to the assertion that every element of a product type is a pair, and every element of a function
type is a 𝜆-abstraction. Butwhatwould be an 𝜂-like rule for sums? In the binary case it is clear that there
must be a way to state that every element of a sum is either a first- or second-injection of an element of
the summand type, but how is one to state that? And in the nullary case? Or the infinitary case of an
inductive type such as the type nat of natural numbers? Or any other form of inductive type? There is
a further difficulty arising from the fact that the elimination forms for sums “reach in” to a third type,
and hence influence equality at all types.

A formulation of equality for sums is given in Figure 2. The 𝛽 rules are as would be expected, captur-
ing the computational behavior of case analysis on injections. The 𝜂 rules amount to “reconstructing”
a term of sum type by case analysis and injection, there being two cases for sums and no cases for the
empty type. Finally, the commutation equations state that (nullary and binary) case analyses may be
“lifted” from inside a term, and correspondingly substituting the correct summand data in each case.

Exact equality is extended to sums relative to the dynamics given in Harper (2025b) as follows:

𝑀 .= 𝑀′ ∈ void iff (never)

𝑀 .= 𝑀′ ∈ 𝐴1 + 𝐴2 iff 𝑀 ↦,→
∗
1 ⋅ 𝑀1, 𝑀′ ↦,→

∗
1 ⋅ 𝑀′

1 and𝑀1
.= 𝑀′

1 ∈ 𝐴1 or

𝑀 ↦,→
∗
2 ⋅ 𝑀2, 𝑀′ ↦,→

∗
2 ⋅ 𝑀′

2 and𝑀2
.= 𝑀′

2 ∈ 𝐴1

Exercise 5. Prove the soundness of the equations given in Figure 2 relative to these equations.

The analogous equations for the type of natural numbers are given in Figure 3. Whereas the 𝛽 rules
are as would be expected, the analogue of the 𝜂 and commutation rules are codified as a principle of
induction. Specifically, the term 𝑃 computes a result of type 𝐶 from an input 𝑥 of type nat. The given
recursor defines another such computation that is equivalent to 𝑃 iff (a) it behaves the same as 𝑃 on
zero, and, assuming that it behaves the same as 𝑃 on 𝑥, show that it behaves the same as 𝑃 on succ(𝑥)
(implicitly making use of the 𝛽 rule for the recursor on a successor).

Exercise 6. Show that 𝑥 ∶ nat ⊢ rec(𝑥; zero; 𝑦. succ(𝑦)) ≡ 𝑥 ∶ nat using the rules in Figure 3.

Exact equality of natural numbers relative to the dynamics given in Harper (2025a) is defined as
follows:

𝑀 .= 𝑀′ ∈ nat iff𝒩(𝑀,𝑀′), where𝒩 is the strongest relation such that𝒩(𝑀,𝑀′) if

𝑀,𝑀′ ↦,→
∗
zero, or𝑀 ↦,→

∗
succ(𝑁), 𝑀′ ↦,→

∗
succ(𝑁′) and𝒩(𝑁,𝑁′).

NB: The induction principle induced by this definition (Harper, 2025c) is not the familiar principle
ofmathematical induction, though it is obviously closely related to it. It pertains to closed values of type
nat, which are constructed from zero and succ(−), interposing evaluation to evaluate intermediate
computations.

Exercise 7. Prove the soundness of the equations given inFigure 3 relative to the definition of exact equality
for the type of natural numbers.

Exercise 8. Prove that nat→ nat ≡ 𝜆(𝑥.𝑥 +𝑥) ∶ 𝜆(𝑥.2 × 𝑥), for suitable definitions of the two functions
in terms of iteration on the argument 𝑥.

5 September 3, 2025



void-𝜂
Γ ⊢ 𝑀 ∶ void

Γ ⊢ 𝑀 ≡ absurd(𝑀) ∶ void

void-com
Γ, 𝑥 ∶ void ⊢ 𝑁 ∶ 𝐶 Γ ⊢ 𝑀 ∶ void

Γ ⊢ [absurd(𝑀)∕𝑥]𝑁 ≡ absurd(𝑀) ∶ 𝐶

+-𝛽-𝑖
Γ ⊢ 𝑀𝑖 ∶ 𝐴𝑖 Γ, 𝑥1 ∶ 𝐴1 ⊢ 𝑁1 ∶ 𝐶 Γ, 𝑥2 ∶ 𝐴2 ⊢ 𝑁2 ∶ 𝐶

Γ ⊢ case 𝑖 ⋅ 𝑀𝑖 { 𝑥1.𝑁1 ∣ 𝑥2.𝑁2 } ≡ [𝑀𝑖∕𝑥𝑖]𝑁𝑖 ∶ 𝐶

+-𝜂
Γ ⊢ 𝑀 ∶ 𝐴1 + 𝐴2

Γ ⊢ 𝑀 ≡ case 𝑀 {𝑥1.1 ⋅ 𝑥1 ∣ 𝑥2.2 ⋅ 𝑥2 } ∶ 𝐴1 + 𝐴2

+-com
Γ, 𝑥 ∶ 𝐴1 + 𝐴2 ⊢ 𝑁 ∶ 𝐶 Γ ⊢ 𝑀 ∶ 𝐴1 + 𝐴2

Γ ⊢ [case 𝑀 {𝑥1.𝑀1 ∣ 𝑥2.𝑀2 }∕𝑥]𝑁 ≡ case 𝑀 {𝑥1.[𝑀1∕𝑥]𝑁 ∣ 𝑥2.[𝑀2∕𝑥]𝑁 } ∶ 𝐶

Figure 2: Definitional Equivalence for Sums

nat-𝛽-zero
Γ ⊢ 𝑁0 ∶ 𝐶 Γ, 𝑦 ∶ 𝐶 ⊢ 𝑁1 ∶ 𝐶
Γ ⊢ rec(zero; 𝑁0; 𝑦.𝑁1) ≡ 𝑁0 ∶ 𝐶

nat-𝛽-succ
Γ ⊢ 𝑀 ∶ nat Γ ⊢ 𝑁0 ∶ 𝐶 Γ, 𝑦 ∶ 𝐶 ⊢ 𝑁1 ∶ 𝐶

Γ ⊢ rec(succ(𝑀);𝑁0; 𝑦.𝑁1) ≡ [rec(𝑀;𝑁0; 𝑦.𝑁1)∕𝑦]𝑁 ∶ 𝐶

nat-ind
Γ ⊢ 𝑀 ∶ nat Γ, 𝑥 ∶ nat ⊢ 𝑃 ∶ 𝐶 Γ ⊢ 𝑁0 ∶ 𝐶 Γ, 𝑦 ∶ 𝐶 ⊢ 𝑁1 ∶ 𝐶
Γ ⊢ 𝑁0 ≡ [zero ∕𝑥]𝑃 ∶ 𝐶 Γ, 𝑥 ∶ nat ⊢ [𝑃∕𝑦]𝑁 ≡ [succ(𝑥)∕𝑥]𝑃 ∶ 𝐶

Γ ⊢ rec(𝑀;𝑁0; 𝑦.𝑁1) ≡ [𝑀∕𝑥]𝑃 ∶ 𝐶

Figure 3: Definitional Equivalence for Natural Numbers

Exercise 9. Formulate definitional equality for the coinductive type conat considered in Harper (2025a).
Extend exact equality to this case, and prove that the equational theory is sound with respect to that inter-
pretation.

References

Robert Harper. Termination for natural and unnatural numbers. (Unpublished lecture note), January
2025a. URL https://www.cs.cmu.edu/~rwh/courses/atpl/notes/natco.pdf.

Robert Harper. How to (re)invent Tait’s method. Unpublished lecture note, January 2025b. URL
https://www.cs.cmu.edu/~rwh/courses/atpl/pdfs/tait.pdf.

6 September 3, 2025



Robert Harper. Tarski’s fixed point theorem. (Unpublished lecture note), January 2025c. URL https:
//www.cs.cmu.edu/~rwh/courses/atpl/notes/tarski.pdf.

7 September 3, 2025


