The Relational Action of Type Constructors*

Robert Harper

Spring, 2025

1 Introduction

The termination proof given in Harper (2025b) and the normalization proof given in Harper (2025a)
are similar in that they make use of the action of type constructors on candidates (for computability).
By defining these actions appropriately, the proof of the fundamental theorem “writes itself” in that
the cases for the introduction and elimination rules for each type are automatic. This formulation and
consolidation is the foundation for the method of logical relations used widely in semantics.

2 Hereditary Termination, Reformulated

Definition 1 (Computability Candidate). A computability candidate C for a type A is a predicate on
closed terms of type A that is closed under head expansion in that, for closed M and M’ of type A, if
M € Cand M' — M, then M’ € C.

Each of the type constructors has an action on closed candidates that suffices for the proof of the
Fundamental Theorem.

Definition 2 (Action of Type Constructors on Computability Candidates).
020
12{M | M:1andM— ()}

CL+C2{M | M:A +A,andM —s 1-M,and M, € €}
U{M | M:A1+A2andM»——>*2‘M2andM2€€2}

CiXCr2{M | M:A XAy,andM-1€C andM -2 € G}
C,—=C2{M | M: A — A,andif M, € G, then ap(M ;M) € C,}
Exercise 1. Verify that each of the actions results in a computability candidate, given that its arguments

are computability candidates of appropriate type.

Exercise 2. Give the definitions of computability candidates N and VI for the types of natural and conat-
ural numbers, using Tarski’s Theorem.

*Copyright © Robert Harper. All Rights Reserved



Hereditary termination may be defined succinctly using the action of type constructors on com-
putability candidates:

Definition 3 (Hereditary Termination).

HT, £ 0

HT, £1
HTa 4, 2 HT4 + HT4,
HTpxa, = HT4, X HT 4,
HT A oa, & HT4, — HTy4,

The semantic membership judgment, I’ > M € A, is defined to mean HT(y) implies HT 4(7(M)),
and the fundamental theorem states thatif T M : A,thenT > M € A.

3 Hereditary Extensionality, Reformulated

The reformulation of hereditary termination extends to hereditary extensionality, or exact equality, for
closed terms.

Definition 4 (Extensionality Candidate). An extensionality candidate for a type, A, is a binary relation,
&, on closed terms of type A that is closed under head expansion.

Definition 5 (Action of Type Constructors on Extensionality Candidates).
0£
12{M,M") | MM’ : 1 and M —> ()}
CL+ Co 2 {(M,M") | M,M’ : A+ Ay, M+— 1-My, M’ — 1-M/, and (M;,M!) € C,}
U{(M,M") | M,M’ : Aj + Ay, M — 2-My, M — 2. M., and (M,, M) € C,}
CiXCE2{MM) | M,M : A, xAyand(M -1,M’ -1) € C;and (M -2,M’ - 2,) € C,}

€= CE{M | M,M : A — Ayandif (MM],) € C, then (ap(M ;M;),ap(M’ ;M})) € €5}

Definition 6 (Hereditary Extensionality).

HE, 2 0

HE, £ 1
HE4 14, & HE4 + HE,,
HE xa, & HE4, X HE,,
HEa 4, = HEs — HEy4,

2 September 3, 2025



4 Hereditary Normalization, Reformulated

In the case of the normalization proof candidates are re-defined as families of sets indexed by the pre-
order on contexts. Each context A determines a set (predicate) in such a way that if A’ < A, then the set
assigned to A must be contained in the set assigned to A’. This requirement is in line with weakening
for the typing judgment: if A - M : A, then A’ = M : A for any A’ < A. Put in other terms, the set
assignment cannot depend on what variables are not present in the context, only on those that are.

Definition 7 (Normalization Candidate). An normalization candidate, C, for type A over context A is a
set of terms A = M : A that is closed under head expansion: if M € G, and M’ = M, then M’ € C.

Definition 8 (Family of Normalization Candidates). A family of normalization candidates, F, for a
type A is an assignment of a normalization candidate F(A) for A over A to each context A such that if
A <A, then F(A) C F(A).

As with closed candidates, each type constructor acts on candidate families in such a way as to
ensure that the FTLR holds.

Definition 9 (Action of Type Constructors on Normalization Candidates).

0(A) ={M | A+ M : 0 and normg(M)}
1A 2{M | A+M: 1 and normg(M)}
(F1+F)Q)2{M | A+-M: A + A, and
ifM —>E 1- M, then M, € F,(A) and
ifM —>/’_‘; 2 - M, then M, € F,(A)}
(FIXFN)A)2{M | AFM : Ay XA,and M -1 € F1(A) and M - 2 € F,(A)}
(F1=>F)A)E2E{M | A-M: A - Ayand
ifA' < Aand M, € F,(A') then ap(M ;M;) € F,(A")}
Hereditary normalization may be succinctly defined using these operations in formally the same
way as before, albeit with the right-hand now being a family of normalization candidates in each case.

Definition 10 (Hereditary Normalization).

£0

1

HN,, + HN,,
HN,, X HN,,
HN,, — HN,,

T I
S
> 1> 1> |

=
>
!
s
>

5 Inductive and Coinductive Types, In General

One use of computability candidates is in the semantics of general inductive and coinductive types,
which define the least and greatest solutions to a type equation given by a monotone type operator.

3 September 3, 2025



Another use is in the formulation of parametricity, as described in Harper (2025d). Here we consider
the definition of hereditary termination for general inductive and coinductive types.

First, a type abstractor t.A is an otherwise-closed type expression with a distinguished variable, ¢,
that may occur within it. As regards termination, we may define HT, 4 as a mapping sending a com-
putability predicate, C, over a type B to the computability predicate induced by [B/t]A, taking com-
putability at type t to be defined by C:

HT[.A P C > [G/t] HTA

The pseudo-substitution notation, [C/t] HT 4, means to regard HT, to be equal to C on the right-hand
side. When t.A is a positive type operator, then this assignment is monotone in that if ¢ C € are
computability candidates, then [C/t]HT, 4 C [€’/t]HT, 4 as computability candidates for [B/t]A.

Exercise 3. Prove that HT; 4 is monotone in the above sense when t.A is a polynomial type operator when
A is otherwise closed (contans no other free type variables than t.)

Second, given that positive type operators in syntax induce monotone operators on candidates,
hereditary termination for the inductive and coinductive may be defined by appeal to Tarski’s Theorem:

HT iy 2 [)[€/t1HT
¢

HT cosey 2 | JIC/E1HT 4
cC

where C ranges over computability predicates of type ind(¢t.A) and coi(t.A), respectively. The intersec-
tion and union are taken over all candidates for the inductive and coinductive types, respectively.

This definition provides what is necessary to prove the computability of the introductory and elim-
inatory forms for inductive and coinductive types.

Exercise 4. Prove the fundamental theorem for the case of inductive and coinductive types in the above
sense by appeal to Tarksi’s Theorem (Harper, 2025c). As a special case, re-derive computability for the types
nat and conat defined as the inductive- and coinductive types determined by the type operatort.1 +t.

References

Robert Harper. Kripke-style logical relations for normalization. Unpublished lecture note, January
2025a. URL https://www.cs.cmu.edu/ rwh/courses/atpl/pdfs/kripke.pdf.

Robert Harper. How to (re)invent Tait’s method. Unpublished lecture note, January 2025b. URL
https://www.cs.cmu.edu/ "rwh/courses/atpl/pdfs/tait.pdf.

Robert Harper. Tarski’s fixed point theorem. (Unpublished lecture note), January 2025c. URL https:
//www.cs.cmu.edu/ rwh/courses/atpl/notes/tarski.pdf.

Robert Harper. Variables types for genericity and abstraction. Unpublished lecture note, January 2025d.
URL https://www.cs.cmu.edu/ rwh/courses/atpl/pdfs/variabletypes.pdf.

4 September 3, 2025



