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Abstract— We present a method to learn context-dependent
outcomes of behaviors in unstructured indoor environments.
The idea is that certain features in the environment may be
predictive of differences in outcomes, such as how long a mobile
robot takes to traverse a corridor. Doing so enables the robot to
plan more effectively, and also be able to interact with people
more effectively by more accurately predicting when its plans
may take longer to execute or may be likely to fail. We use
a node-and-edge based map of the environment and treat the
traversal time of the robot for each edge as a random variable
to be characterized. The first step is to determine whether the
distribution of the random variable is multimodal and, if so,
we learn to classify the modes using a hierarchy of plan-time
features (e.g., time of the day, day of the week) and run-time
features (observations of recent traversal times through other
corridors). We utilize a cascading regression system that first
estimates which mode of the traversal distribution we expect
the robot to observe, and then predict the actual traversal time
through a corridor. On average, our method produces a mean
residual error of less than 2.7 seconds.

I. INTRODUCTION

Technology has come to a point where cohabitation of
living space by humans and machines has become almost
commonplace. Examples include self-help kiosks in the su-
permarket, hospitals and airports, robot receptionists to help
people find directions, and robot vacuum cleaners. The next
step is when these machines take on a more mobile form for
cooperative tasks. Such intelligent mobile robots are being
increasingly employed in places such as offices, hospitals,
and other institutions. These machines are termed ’service
robots’, which help take burden off of human beings by
taking care of menial tasks involved with the daily workings
of a place. For example such robots can handle routine tasks
such as automating daily delivery of medicines, taking care
of immediate requests for articles, etc.

A major hurdle for such machines is that of path planning
or task scheduling in dynamic, unstructured environments.
These robots operate in places dominantly inhabited by
people, and the presence and activities of people can affect
the outcomes of robot actions, such as how long it takes
to traverse a corridor, or how the expected time needed to
wait for an elevator. It is important to model these outcomes
accurately for two main reasons: First, to help the robots
create more efficient plans and second to coordinate with
people in case the robot predicts it will be late in completing
its current task. For example, suppose the shortest path from
the office lobby to the HR department involves going through
the cafeteria. If a delivery is scheduled around lunch time,
it would be advisable for a robot to avoid this crowded
junction. Similarly, if a hospital delivery robot finds that

one corridor unexpectedly takes very long to traverse, and
it knows that means subsequent corridors are also likely to
take long, it might decide to notify the nurse that it will
likely be delayed.

It seldom happens, however, that these context-dependent
action outcomes are programmed, or even known, a priori.
Thus, we are investigating learning such models from ex-
perience, finding patterns that can be used at plan time to
minimize the expected task execution time and at run time to
detect potential anomalies – outcomes that differ significantly
from prior expectations.

The reasoning behind our intuition lies in the very working
order of these places. Human beings follow certain pat-
terns in their daily lives, be it social or workplace related.
Especially in organizations such as offices and educational
institutions there are certain guidelines to be followed. For
example, food courts are always crowded during lunch and
breakfast times, in educational establishments the corridors
near a lecture hall are always crowded when a lecture ends,
etc. These routines result in patterned movement across
spaces, which in turn may affect the robot’s performance.
Our work is to learn, and eventually use, these models to
improve the robot’s performance.

Our approach involves collecting a stream of data that
the robot records as it execute tasks throughout the day.
We aggregate data from similar actions (e.g., traversing a
particular segment of the corridor) and model the action
outcome (e.g., time to traverse) as a random variable. The
first step is to analyze the data to determine whether the
variable’s distribution is unimodal or multimodal and, if the
latter, how many modes it has and what are their distributions
(assuming a Gaussian mixture model). The data, and the
modes, are then fed into a classifier that both predicts the
mode and uses regression techniques to predict the actual
travel time. Based on just the timestamps (time of day, day
of week), we see mode prediction accuracy of around 97%
and mean time prediction residuals of 2.6 seconds.

Our model utilizes correlations between contiguous events
in a sequence of action (such as two nearby corridors whose
long and short traversal periods correlate) and use these as
additional ”medium-range” features. Note that while these
features cannot be used at plan time, if we find good
correlations between action outcomes then, at run time,
unexpected outcomes for one action can be used to improve
the predicted action outcomes of correlated actions. This can
improve the overall estimate of the execution time of the
remaining task, which can be used to trigger contingency
plans (such as taking alternate routes or notifying a person



that the robot will be delayed).

II. RELATED WORK

Prediction and planning with contextual information is a
well-studied topic in the field of robotics. Since the mid
1990s, researchers have been working towards more reactive
and proactive models of machines [1]–[3]. In recent years,
increased instrumentation in consumer technology has driven
new research into contextual prediction across a variety of
domains, from mobile robots to consumer smartphones and
sensor equipped power wheelchairs. Some of this work has
leveraged decision-theoretic prediction algorithms [4], [5],
while other work has formulated these tasks as a sequential
decision making process, leveraging spectral latent variable
models [6].

In this paper, we model a qualitative indoor environment
in which we observe dynamic movements through the space.
Similar work has been done by Haigh et al [7], where they try
to leverage observed patterns to find context-dependent map
costs. Focusing specifically on the problem in open-ended
indoor environments the work done by Bennewitz et al [8]
and Kruse et al [9] is relevant as they try to model robot
behavior while keeping human dynamics in mind, which is
a key factor for success in cohabited environments. More
recently, Sehestedt et al [10] looks at the social context in
these environment apart from simple human trajectories and
tries to deploy a minimally invasive trajectory for service
robots.

We try to merge this philosophy with qualitative knowl-
edge about the environment so that the robotic agent is able
to reduce idle time by pre-planning for the tasks at hand,
much like the work done by Thangavelu [11].

III. APPROACH

In this work, our task is to use contextual information
to predict how long a robot will require to traverse a path
through the environment. We utilize real world data collected
over several years by the CoBot project [12], [13] to train
and test our methods.

The world map is represented in the form of nodes and
connecting edges. These nodes represent landmarks from
the real world, such as corridor junctions, the beginning
of stairways, etc. and the edges represent the paths con-
necting them. Our method first tries to isolate those edges
of the environment which show multimodal distributions in
traversal time (see Fig. 1), like the corridors leading up to
lecture halls which are most crowded when lectures end
but not otherwise. Some edges demonstrate simple unimodal
distributions of traversal time. Estimating travel time on these
edges is trivial, and thus we do not consider these edges
in our evaluation. We model the multimodal edges to learn
feature dependent dynamics of the subspace such as different
traversal times associated with different hours of the day.
Our feature space consists of the observable data available
to a robot during its daily activities including time stamps,
sensor data, immediate history, etc. Following a Markovian
assumption, we model these multimodal edges, assuming

Fig. 1. Graphical Contrast between Unimodal and Multimodal Edges

a mixed gaussian distribution, based on the information
sampled at the beginning of each edge traversal. We train a
classifier from these feature traces, which learns the context-
dependent patterns allowing us to make a priori predictions
for future edge traversals.

A. Identifying Multimodal Edges

With traversal time history for each edge as the variable
sample, we use a combination of Mean-shift and Expectation
Maximization algorithms to find the generative distribution
for it. In order to find multiple modes, we begin by running
Gaussian Mean-shift clustering on the data. If clustering re-
sults in more than one density center, we use the Expectation
Maximization algorithm to fit the traversal time distribution
to a gaussian mixture model with number of components
equal to the number of density centers identified. We assess
the mixture model to make sure that the components are
statistically significant contextual-modes by looking at the
component weights and distribution over sample points.

Mean-shift is a non-parametric mode-seeking algorithm.
It is an iterative algorithm which shifts towards the density
center using a kernelized window. In this case we have used
a gaussian kernel. The expectation-maximization (EM) algo-



rithm is an iterative method for finding maximum likelihood
or maximum a posteriori (MAP) estimates of parameters in
statistical models, where the model depends on unobserved
latent variables, i.e. gaussian component parameters in our
case. It involves two steps, in the E step a function for the
expectation of the log-likelihood for the model Z given X
using the current estimate for the parameters θ is created.

Q(θ|θt) = EZ|X,θt log[θ;X,Z]

In the M step, parameters for maximizing this log-likelihood
function are computed.

θt+1 = arg max
θ
Q(θ|θt)

B. Learning Contextual Patterns

We employ supervised learning using the mode of each
point as labels for feature vectors. We use decision trees to
learn the feature patterns corresponding to each mode. De-
cision trees follow a greedy mechanism, dividing the dataset
based on features which result in maximum information
gain to reduce the entropy. Information entropy of a random
variable X under probability mass function P (X) is defined
as,

H(X) = E[−ln(P (X))]

Information gain for a feature or attribute a, which splits
sample set X is given as,

IG(X, a) = H(X)−H(X|a)

In order to predict the exact traversal time we train regression
trees which use predicted modality of an edge as part
of its feature space. Regression trees are trained in the
same manner as decision trees, but the leaves correspond
to real values rather than discreet labels. Regression trees
are generally much larger than decision trees, and require
much more labeled data.

C. Data

• Cobot
• QCBot

D. Features

• Cobot
• QCBot

IV. RESULTS

For all experiments presented in this section, we sample
from the full dataset to generate training sets of various sizes.
We begin with training sets of size 100, and increase this
size by increments of 100 until a training set of size 3,400
is created. A disjoint testing set consisting of 457 points is
also selected to accompany each training set. This process
is repeated with different random for 1,000 iterations, giving
us a total of 34,000 evaluations for each of our models.
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Fig. 2. Empirical results for traversal mode prediction regression.

A. Predicting Traversal Modality

Figure 2 shows the learning curve for predicting traver-
sal time modalities using a decision tree. For reference, a
naive classifier that always selected the larger mode in the
travel distributions would achieve an accuracy of 63.3%. An
empirical 90% confidence interval for the classifier accuracy
is also shown. This classifier was trained using timestamp
features, hallway ID, and recently observed traversal times in
other hallways. The maximum mean classification accuracy
achieved is 97.21%.

B. Regression for Traversal Time

Fig. 3 shows the learning curve for two regression models,
compared to a baseline model. The baseline model simply
computes the mean traversal time for each hallway in the
training set, and uses these value to make predictions in the
testing set.

The uncorrelated regression tree model shown in Figure 3
was trained using only time stamp information and corridor
IDs. The second regression tree was trained with these
features, as well the predicted modality produced by the
decision tree classifier, and the traversal time of the most
recent trip, if the last traversal observation occurred less than
30 minutes prior—this model is detonated as the correlated
regression tree. Figure 3 also shows the 90% empirical
confidence interval for the correlation regression tree, which
indicates the centered 90% quantile of the residual means
computed over the 1000 training iterations. With 3400 train-
ing points the correlated regression tree achieves an mean
residual value of 2.66 seconds. Table I also shows the
predicted and actual traversal times for a small sample of
the dataset produced using the correlated regression tree.

V. DISCUSSION

We see in figure 3 that both regression models significantly
outperform the naive baseline, and the correlated regression
tree performs particularly well with very little data. Given
enough data (2000 or more points) the uncorrelated regres-
sion tree nears the upper 95% percentile of the correlated
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Fig. 3. Empirical results for traversal time regression.

Corridor Predicted Traversal Time Actual Traversal Time
Corridor 5 16.65 17.601

Corridor 10 16.642 46.451
Corridor 4 4.4139 4.6639
Corridor 5 2.269 2.4125

Corridor 10 12.731 12.521
Corridor 7 4.4888 6.4325

Corridor 10 16.782 17.681
Corridor 5 16.241 16.161

Corridor 11 13.511 14.712
Corridor 1 9.8414 10.385

Corridor 10 17.309 18.6

TABLE I
PREDICTED VERSUS ACTUAL TRAVERSAL TIMES

regression tree. This indicates that with enough data we can
accurately predict traversal times fairly well using only plan
time features. These estimates can then be refined at travel
time using observed traversal times to reduce the average
prediction residual by roughly 0.5 seconds.

It is worth noting that the majority of the regression
error is caused by a small number of unusual outliers, in
which the robot experienced significant unexpected delays
during transit, as seen in row 2 of Table I. We have
correctly identified some of these outliers using information
from recent observations with the correlated regressor. For
instance if there is unexpected traffic due to seminar or
special event, we will discover this once we see delays in
adjacent corridors. However, other unexpected delays—such
as mechanical failure or disruptive individuals interfering
with the robot’s operation—cannot be predicted using the
factors we have described in this work. To discover this
sort of unexpected delay, a model would need to incorporate
information from onboard sensors or feedback from human
observers.

VI. CONCLUSIONS

In this work, we have presented methods for improving
plan time and execution time behavior of a mobile robotic
system. In particular, we are able to account for contextual
and temporal factors that can affect the normal performance

of the robot. In future work, we hope to incorporate these
methods into the planning system of a mobile robot to im-
prove the reliability of it’s performance in difficult operating
environments.
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