Scheduling Tasks on Parallel Machines with Network-Based
Restrictions

Dmitriy Drusvyatskiy, Robert W.H. Fisher, and Joel Wein*

September 26, 2007

Abstract

We consider the (NP-Complete) problem of task
scheduling with restrictions, in which each job j
has processing time p; on a certain subset of a set
of parallel machines, and may not be processed
on the other machines; the subset of machines
may differ for each job. A 2-approximation algo-
rithm for this problem has been known for close
to twenty years; no algorithm can achieve better
than a %—approximation unless P = NP.

In the first part of this paper we consider two
special cases of this problem, in which the restric-
tions can be modeled as a permissibility graph.
When the permissibility graph is a leveled hier-
archy, modelling machines or workers with hier-
archical capabilities, we give a %—approximation
algorithm. When the permissibility graph is
a tree, we give a very simple and intuitive 2-
approximation algorithm.

The task scheduling with restrictions problem
has seen a variety of applications, notably as a
key subroutine in algorithms for task scheduling
in networks. In the second part of this paper
we consider a natural special case of that prob-
lem, in which the network is modeled by one la-
tency parameter, and give both centralized con-

*Department of Computer and Information Science,
Polytechnic University, 5 Metrotech Center, Brooklyn,
NY 11201. Contact author: wein@poly.edu. Partially
supported by NSF Grant 0430444 and Polytechnic Uni-
versity’s Othmer Institute for Interdisciplinary Studies.
This work is part of the undergraduate honors research
of Dmitriy Drusvyatskiy and Robert W.H. Fisher, as per-
formed as part of the Othmer Institute Undergraduate
Summer Research Program.

trol and distributed approximation algorithms
for task scheduling in that model.

1 Introduction

One of the more notorious open problems in the
theory of approximation algorithms for combi-
natorial scheduling is that of scheduling jobs on
parallel unrelated machines. In this NP-complete
problem we are given n jobs and m parallel ma-
chines, and job j’s processing time p;; may differ
depending on the machine on which it is run.
Close to twenty years ago Lenstra, Shmoys and
Tardos gave a polynomial-time 2-approximation
algorithm as well as a hardness result of 3 [8],
and these results have not been significantly im-
proved in the interim.

An interesting special case of this problem that
captures much of the difficulty is that of task
scheduling with restrictions, in which each job j
has processing time p; on a certain subset of the
parallel machines, and may not be processed on
the other machines; the set of machines may dif-
fer for each job. In other words, a job j’s process-
ing time on machine 4, p;;, is either p; or co. The
best known asymptotic upper and lower bounds
for this problem as well are 2 and %

In the first part of this paper we consider two
special cases of the problem of task scheduling
with restrictions, in which the restrictions can
be modeled as a permissibility graph. When the
permissibility graph is a leveled hierarchy, mod-
elling machines or workers with hierarchical ca-
pabilities, we give a %—approximation algorithm.

When the permissibility graph is a tree, we give a
very simple 2-approximation algorithm that does
not rely on linear programming.

The task scheduling with restrictions problem
has been applied to the problem of task schedul-
ing in networks. In this problem the parallel ma-
chines are at the nodes of a graph, and a job
originates on one node of this graph. In order
to be processed on a different machine, a job
must travel through the network to the other
node before being processed. Several groups of
authors have considered both centralized con-
trol and distributed-control algorithms for this
problem, e.g. [1, 5, 9, 10, 11]. In particular,
Philips, Stein and Wein gave a 2-approximation
algorithm for this problem that uses as a sub-
routine an instance of the task scheduling with
restrictions problem [9].

In the second part of this paper we consider a
naturally-motivated special case of task schedul-
ing in networks in which the communications
network that connects the parallel machines is
modeled by one latency parameter which repre-
sents the time it takes for a message to travel
between any pair of nodes in the system; this
model is sometimes referred to as the “postal
model” for modelling distributed memory sys-
tems, e.g. [2, 3, 4]. We give a centralized control
%—approximation algorithm for the problem and

a distributed control Z-approximation algorithm.

3

1.1 Notation

We first introduce some notation. For all our
scheduling problems, we will let J denote the set
of jobs and M the the set of machines. The car-
dinality of these two sets is |J| = n and |M| =m
respectively. The makespan of a schedule is de-
fined as the latest completion time of any job in
the schedule, and we denote this by C},q.. For a
particular instance, C, .. represents the length of
the smallest makespan that could be constructed
for that instance. We will assume throughout
the paper that for every job j its total process-
ing time, p;, is an integral value. We will denote
the set of jobs assigned to be processed on some

machine ¢ as A;. For some machine i, we will de-
fine the set of jobs originating on that machine
as Jz

1.2 Discussion of Results

We will begin by considering two special cases
of task scheduling with restrictions. We intro-
duce the notion of a permissibility graph, which
gives a compact representation of the restric-
tions. The nodes in the graph will represent ma-
chines. Within the directed graph G = (V, E),
jobs from the set J originate on some machine in
the set M. A job, j, will have a processing time
of pj on any machine to which there is a directed
path in G from the job’s origin machine. A job
cannot be processed on the machines in the net-
work to which there exists no directed path from
its origin machine. For example, if the permis-
sibility graph is a directed tree, jobs originating
on the root machine of the graph can be pro-
cessed on any machine, while jobs originating on
leaf nodes can only be processed on their origin
machine.

1.2.1 Scheduling Jobs with a Hierarchical
Permissibility Graph

In our first result we consider scheduling jobs
with restrictions that are described by a leveled,
hierarchical permissibility graph. A hierarchical
permissibility graph is structurally similar to a
tree, in that it is broken into a series of levels.
However, unlike the tree, we assume that every
machine on some level [in the graph has a path
to every other machine on that same level [.
Additionally, every machine on some level, [, has
outgoing, one-directional edges to every machine
on level [+ 1. Every job in J originates on some
level in the graph. A job has a running time
of p; on the machines to which there is a path
following the directed edges. For example, if a
job originates on level [, it can be processed in
p; time on any machine on level [or any other
level k, such that k > [. However, if there is a
level k such that k£ < [, then the jobs originating

on level | have a processing time of co on any
machine on level k. An example of the network
in question is shown in Figure 1.

Level 3

Level 1

Figure 1: A Hierarchical Permissibility
Graph

The jobs that originate on the lowest level,

level 1, can be processed anywhere in the net-
work. However a job that originates on the high-
est level can only be processed on those machines
in its origin level. This model could be used to
accurately represent workers of different ability
levels, with the machines on the highest level be-
ing the most able, and the machines on the lowest
level being the least able.
Theorem 1.1: There exists a %—approximation
algorithm for scheduling jobs with restrictions
described by a leveled hierarchical permissibility
graph.

1.2.2 Scheduling Jobs with a Tree-
Structured Permissibility Graph

We next consider the special case in which the
task restrictions are captured by a directed
rooted tree. Again, a job j, will have a process-
ing time of p; on any machine to which there is
a path in the tree from the job’s origin machine.
An example of such a tree is shown in Figure 2.
We do not give an improved approximation ratio
in this case, but rather a much simpler algorithm
that does not rely on linear programming or
variants of network flow.

A
7N AN
O O OO0+

Figure 2: A Tree-Structured
Permissibility Graph

Level 1

Theorem 1.2: There exists a simple 2-
approrimation algorithm for scheduling jobs in
a tree network.

1.2.3 Scheduling Jobs in a Network with
Constant Latency

We then transition to the problem of scheduling
jobs in a network. We note that the network in
question here is not related directly to permis-
sibility graphs; rather, in this setting nodes in
the graph represent identical machines, each job
j originates at some node ¢, and needs to wait
time d(i, k) to be processed on another node k,
where d(i, k) is the distance induced by the in-
terconnection network. (The general problem of
task scheduling in networks is only related to task
scheduling with restrictions in that the latter has
been used to give algorithms for the former.)

We consider a special case where the underly-
ing network is completely connected, and there
is a constant job transit time of ¢ on any arc.
Some job, j, can be processed locally in p; time
on its origin machine. However, if the job is sent
to a remote machine, then processing of the job
cannot begin until ¢ time has passed since it was
scheduled. As noted earlier, several research pa-
pers have argued that this is a reasonable way to
model interconnection networks in modern dis-
tributed memory computer systems.

Constant Travel Time of ¢

Machines Completely Connected

1

Figure 3: Scheduling in a Constant
Latency Network

Theorem 1.3: There exists a %—appro:vimatz’on
algorithm for scheduling jobs in a network with
constant latency.

Finally, we consider a distributed version of the
previous model. In this case, individual machines
are aware of the other machines in the network
and the network latency required to communi-
cate with other machines. However, an individ-
ual machine does not initially know what jobs
are originating on other machines, and ¢ time is
required for any message to travel from one node
to another node of the network. In ¢ time the
machines can multicast the size and number of
jobs that they originate with to the other ma-
chines in the network, or transport any job to
another machine for remote processing. We as-
sume that the jobs must have a specific destina-
tion machine for transportation and cannot be
multicast. There is no centralized control for the
machines in the system, so if a machine makes
any decisions based on local information, it must
transmit its findings to the other machines.
Theorem 1.4: There exists a non-centralized al-
gorithm that will always produce a schedule with
a makespan of length at most %Cfnax +t for the
constant network latency model.

1.3 Related Work

Lenstra, Shmoys and Tardos’s work on unre-
lated machines scheduling directly gave a 2-
approximation algorithm for the special case of

task scheduling with restrictions, as well as a
proof that no polynomial-time algorithm can be
better than a %—approximation algorithm unless
P = NP [8]. The upper bound was improved
slightly by Gairing, Lcking, Mavronicolas, and
Monien, who gave a 2 — % approximation algo-
rithm, where w is the size of the largest job [6].
Their algorithm is also fairly simple and allows
the schedule to be converted into a Nash equilib-
rium without increasing the approximation fac-
tor.

Task Scheduling in Networks was first stud-
ied by Awerbuch, Kutten and Peleg who gave
distributed-control algorithms with polylogarith-
mic performance guarantees for general intercon-
nection networks [1]. Philips, Stein and Wein
gave a 2-approximation algorithm for the prob-
lem as well as a % hardness result. Other groups
have looked at special interconnection networks
such as the ring [5, 11] or different optimality
criteria [10].

The rest of this paper is organized as follows.
In Section 2 we give our results for the hierar-
chical permissibility graph, and in Section 3 we
give our results for the tree-structured permissi-
bility graph. Section 4 begins with our results
for scheduling jobs in a network with constant
latency. We then describe our non-distributed
algorithm, as well as a hardness bound for the
distributed case.

2 Scheduling Jobs With Lev-
eled Hierarchical Restrictions

We will consider job scheduling with restricted
assignments by modeling our permissability
graph as a leveled hierarchy. Each machine in the
system will be assigned to some level, and every
job will have an associated origin level. In this
model, jobs may only be assigned to machines
on their origin level or higher. For an instance of
the problem, we will use s to denote the number
of levels. We will say that J; and M; are the sets
of jobs and machines on level [, respectively. We
will define the set IV; as the set of machines that

jobs originating on machine i can be processed
on. In the leveled hierarchy permissability graph,
if a machine 7 is on level [, then N; consists of all
machines on level [or higher. We introduce two
sets of large jobs as follows: F! = {j : %f) <pj}
and F? = {j : %f) < pj < %f?}, where D is
the estimate for the optimal makespan. We will
say that the set of all large jobs, F', is defined as
F = F1 U F? We say that F} is the set of jobs
in F' that originate on level [.

This algorithm will use a p—relaxed decision
procedure [7] based on an estimate for the op-
timal makespan. We will use binary search in
the search phase to modify D. After every new
assignment to 15, we will run the p—relaxed de-
cision procedure, which will either return an as-
signment of jobs to machines or report failure.

The p—RDP of this algorithm will consist of
two main steps. In step 1, we will use bottom-up
iteration to assign all jobs from the set, F'. In
step 2, we will use top-down iteration to assign
the remaining small jobs. The leveled hierarchy
algorithm will consider all levels in the permiss-
ability graph during both of these steps. The fol-
lowing is a basic overview of the main routines
of the algorithm.

e Binary Search for D

op—Relaxed Decision Procedure:

1. Assign all jobs from the set F' to ma-
chines

2. Assign all jobs from the set J — F' to
machines

The steps of the p—RDP are outlined below:

1. We will begin on the bottom level, 1, and
repeat the following procedure for each of
the higher levels in the network. Assuming
that the algorithm is acting on some level
[, there will be |M;| machines on this level.
The algorithm will identify the elements of
Fl1 and FZQ. The algorithm will consider all
the machines in M, in any order, and assign
to each machine the following job or jobs:

max(max(pg), max(py) + max (p.)). This
acF} beF? ceF2—{b}

means that either the largest unassigned job
from Fl1 or the two largest unassigned jobs
from F12 are assigned — whichever assign-
ment requires more processing time will be
assigned. If only a single job in Fl2 remains,
and no jobs in Fl1 remain, then this job
from F12 is assigned. After this assignment
is made, the job or jobs that have been as-
signed are removed from the set F. The
algorithm repeats this step until every ma-
chine in M; has had some assignment made
to it, or until all jobs from F; have been as-
signed. If all machines receive some job(s)
and |Fj| > 0, then the remaining elements
of F; are added to the set Fj.q, and the al-
gorithm moves to the level [+ 1. If the al-
gorithm finishes this phase on level s, and
|Fs] > 0 after all assignments have been
made, then the p—RDP reports failure.

. If the leveled hierarchy algorithm did not fail

during step 1, then all jobs from F' have been
assigned to machines. In this second step,
we will move through the network level by
level, beginning at the highest level, s. If the
algorithm is on some arbitrary level, [, then
it proceeds by looking at the set of jobs, Ji,
that originate at this level in the graph. The
jobs in Fj are not considered, because they
have already been assigned. We will perform
standard list scheduling for these jobs to the
machines in N;. While there is some unas-
signed job in J;, we take that job, and assign
it to machine ¢ such that ¢ = min Z Dj-

keN;
ey

This means that some unassigned job from
J; will be assigned to the machine in level [
or higher that has the least amount of work
currently assigned to it. We repeat until all
jobs in J; have been assigned. We then pro-
ceed to assign the jobs originating on level
[— 1, but before moving to the next step,
we look at the last job to be assigned here.
If the starting time of this job is after time
D, then the Leveled Hierarchy algorithm re-

turns failure.

We define W as W = ij. The binary search
jeJ
for D will be on the {nterval [p"**, W], where
py*** is the largest running time of any job. We
find the D such that the assignment phase on D—
1 fails, but D returns a valid assignment. When
the algorithm completes, we will have found some
assignment of the jobs in the network, such that
the makespan of this assignment, C),q,, satisfies
the following statement: Cier < %C* where

max?
C} oz 1s the optimal makespan.

2.1 Analysis of Leveled Hierarchy Al-
gorithm

We will now show that the schedule produced
by the Leveled Hierarchy algorithm will be a
%—approximation for the leveled hierarchy struc-
ture.

Lemma 2.1 If the assignment phase of the al-
gorithm succeeds for some 15, then the returned
schedule will have a makespan such that Cpg, <
ip,

Proof: If an assignment is returned, then
both the first and the second phase of assign-
ment succeed. If the first step succeeded, then
we know that all jobs in F' are assigned to some
machine. Furthermore, we know that every ma-
chine received jobs in one of the four following
ways: a single job from F', two jobs from F?, a
single job from F2, or no jobs from F. Machines
with a single job from F' will have a workload
that is less than D. Machines with two F?2 jobs
will have a workload that is less than %b, be-
cause the most work it could receive is two jobs
of size %f) The machines with only one job from
F? will not have more than %15 work. Clearly
the machines that receive no jobs will have no
work. Therefore, the makespan of the whole sys-
tem must be Craz < %f) after this first phase.

If the second step of the assignment succeeds,
then we know that no job in the set J — F' began
after time D. The largest processing time of any
jobin J — F'is %ﬁ, and one of these jobs could

start at time D. Therefore, if the second step
succeeds, then all jobs are assigned, and Chqp <
iD. O

Lemma 2.2 If some level | receives w work
from level | — 1 in the first step of assignment
and D represents a feasible makespan, then level [
must receive at least w work in the optimal sched-
ule.

Proof: First we should note that if D is the
optimal makespan, then no job from F' would
ever be placed on a machine with any other job
from F', because this would leave the machine
with more than D work. Also, no machine will
ever have more than two jobs from F? because
this would also result in a machine with more
than D work.

If we complete the first step of assignment for
some level [and there are some jobs from F; be-
ing passed to level [+ 1, this means that every
machine in M, has either one job from Fll or two
jobs from Flz. Therefore, if D is feasible, then no
schedule optimal could add any single job that
is being passed on to level [4+ 1 to a machine on
level [and still keep the makespan less than D.
We also cannot exchange some job that is being
passed to level [+1 for a job running on a M; ma-
chine to decrease the work being passed and still
keep every machine with less than D work. If we
could make such an exchange for some machine,
m, then this means that machine m could have
taken a larger job during its assignment—which
contradicts the definition of the algorithm. This
means that we could not decrease w, the sum of
work being passed from some level, and still have
a makespan less than or equal to D. Therefore,
the work we pass at every step is not more than
the work passed in the optimal. O
Lemma 2.3: If the assignment phase fails to
return an assignment for some value of 15, then
there is mo assignment of jobs to machines that
will create a makespan of that length.

Proof: The assignment phase might fail dur-
ing the first or second step of the assignment.
First we will consider the first step, the assign-
ment of the large jobs from the set F'. If the first
step of the assignment phase fails, then we know

that |Fg5| > 0 after all assignments have been
made. We know that if D is a feasible makespan,
then we must be able to assign the elements of
F' to a machine without any other element of
F', and that we will never have three or more el-
ements of F? on one machine. In either of these
cases, the work on one machine would surpass
D. If |Fy| > 0 after all assignments have been
made, this means that every machine in M has
either one F'! job on it or two F? jobs. If there
are still jobs remaining, then this means that
|FY + [%W > |Mg|. In this case, there is no
way to assign the jobs from Fs to the machines
in My such that Cigr < D. However, level s
might have received some jobs from the level be-
low. If so, then every machine on level s —1 must
have either one F'! or two F? jobs Therefore on

level s — 1 we know that |F} 1|—i— = |Ms_1].
If this layer received jobs from 5 — 2 then s — 2
must also be full, and so on. We continue un-
til we find the highest layer that did not receive
jobs from the level below it, call this level . We
know that on all levels, from [to s, every ma-
chine has either one F' job or two F? jobs, and
there are jobs from F' left-over that originated on
level [or above. We can conclude, therefore that

S
F?

Z |F| + (|21|1 > |N;|. This means that there
i=l
is no way to construct a schedule on the substruc-
ture defined by the nodes in N; such that only one
F! or at most two F? jobs are on one machine.
This means that D is an infeasible makespan.

Next we consider the instance in which the as-
signment phase fails during the second step. This
step is the top-down iterative assignment of the
jobs in the set J — F. We know that this step
has failed, if some job on some level, [, has begun
its execution period after time D. We begin all
jobs on the machine with the least load currently
on it, so if some job starts after time D, then all
machines in N, have at least D work currently
on them. We also know from Lemma 2.2 that if
we received some work from level [— 1, then we
must have received at least this much work, even
in the optimal schedule. Therefore, if we call W

the total work in the machines of N, then we
know that W > |N;|D. Because these machines
must run at least W work, some machine in NN;
must run for more than D time and D is infea-
sible. O
Lemma 2.4: If the assignment phase fails for
some value of D, then no feasible schedule is of
makespan less than D.

Proof: If the assignment phase failed during
the first step, then some subgraph of machines,
Nj, had too many jobs from F' to process. Mak-
ing D smaller will never decrease the cardinality
of F', and all previous jobs in the set will still be
there. Therefore, if the first step of assignment
fails for D, then the first step will still fail for
D — ¢ for any constant c.

If the second step of assignment fails, this es-
sentially means that some job from the set J — F
was forced to start after time D. Substituting
D — ¢ for D, will result in failure for the same
reason. Therefore, when the search phase com-
pletes with some estimate 15, we know that the
true optimal makespan is not less than this esti-
mate. O
Theorem 2.5: The algorithm described here will
produce a schedule with a makespan such that
Cmax — 40:1(13:

Proof: We know that the algorithm will re-
turn some schedule with a chosen estimate, D.
From Lemma 2.1, we know that the returned
makespan will be less than or equal to %f) We
also know that the assignment phase on D-1
failed, therefore from Lemma 2.4 we know that

D < C%,,.- These two facts together tell us that
Cmaﬂﬁ — 40%&1‘ [

3 An Algorithm for Assigning
Jobs in a Network Modeled
as a Tree

We will now introduce the Tree-Scheduling algo-
rithm for scheduling jobs with restricted assign-
ments. The permissability graph in this problem
will be a tree. Once again, we will say that the
set NN; is the set of machines that the jobs origi-

nating on machine ¢ can be run on. In this case,
N; is the set of machines in the subtree rooted
on machine ¢ in the permissibility graph.

Now we will describe the algorithm. We begin
at the lowest level of the tree, call this level [. For
each machine ¢ in [, we will list schedule the jobs
in J; to the machines in N;. This means that we
select any job that originated on ¢ and assign it to
the machine in IV; that is scheduled to process the
smallest sum of work at the time of assignment.
After all jobs on all machines on level [have been
assigned, we repeat this procedure iteratively up
the tree from level [— 1 to level 0. After all jobs
on the root node, level 0, have been assigned, the
algorithm is complete.

It should be noted that if the algorithm is as-
signing jobs from a machine, i, which happens to
be a leaf node in the permissability graph, then
N; = {i}. This means that any job that origi-
nated on ¢ must be run on this machine, and the
algorithm will behave correctly.

3.1 Analysis of the Tree-Scheduling
Algorithm

Observation 3.1: If D is the length of a fea-
sible schedule, then it must be true that Vi €
MY N pi <|INID

keN; jeJy

Any job j originating on a machine k € N;
must be scheduled on a machine in V; because
there is no path from a machine in N; to a
machine in V — N;. And if D is a feasible
schedule length, then there must be a way to
schedule all these jobs on the machines in N; so
that each one completes by time D. This implies

that » > p; < |Ni|D.

keEN; jeJy,

Observation 3.2: The algorithm will not assign
any jobs that originated outside of N; to a ma-
chine in N; until all jobs in the set J; have been
assigned.

If we consider some machine 4, the only jobs
that may be run on a machine in N; that did not
originate on a machine in N; are the jobs that
originated above the level that machine i resides

on. However, because of the bottom up nature
of this algorithm, these jobs have not yet been
assigned when ¢ is being processed. Therefore,
at this point in the algorithm, all jobs being
processed on the machines in NV; also originated
on a machine in IV;.

Theorem 3.3: The schedule created by the Tree-
Scheduling algorithm will satisfy the following
property: Cpar < 2(C

mam)

Proof: If the optimal makespan of the system

is Cy, 42> then it trivially follows that Vj € J p; <
Ch e and ij < m(C},..)- In order to show

j€J
that the algj;orithm is a 2-approximation, we need
only to prove that no job will ever start after time
Caz- We will show this with a proof by contra-
diction. Call the bottom layer of the tree [. All
the machines on this level are leaves. After our
algorithm finishes processing level [, the length
of the partial schedule created must be less then
Cr oz By Observation 3.2, we know that as the
algorithm progresses, and we are assigning jobs
from machine ¢ to machines in V;, any job that
has already been scheduled to run on a machine
in N; must have originated on some machine in
N;. If throughout the algorithm, a job j origi-
nating on machine ¢ was assigned to run on some
machine after time C7, ., then that means that
all the machines in NV; must have been busy at
least until time C};,,... Otherwise this job would
have been assigned to the machine in N; that had
less then C7, .. work. Therefore Z Z pj >
kEN; jEJy,
|N;|D. However, this contradicts Observation
3.1. Therefore we may conclude that no job will
begin after time C7, .. in the schedule produced
by this algorithm. It follows that the sched-
ule produced will have the following property:
Craz < Chge + glea}(pj < 2C:ywx-]

max

4 An Algorithm for Job
Scheduling in a Network
with Constant Latencies

Now we will procede to consider the constant
network latency problem with a centralized algo-
rithm. It should first be noted that this problem
starts to resemble traditional parallel identical
machine scheduling (P||Ci.ez) as ¢ approaches
zero, and there exists a polynomial-time ap-
proximation scheme for the P||Cy,qz problem|[7].
Therefore, we will assume that if ¢ < %D, we can
simply wait for ¢ time and then run the polyno-
mial approximation scheme with some € to easily
achieve a % approximation. The Single Latency
algorithm will be designed for the cases in which
t>3D.

We will consider two different sets of machines
in this section. Theset X = {i € M : ij <t}

i€J;
is the set of machines originating ¢ 01f less work,
and the set Y = {i € M : ij > t} is the set
i€ J;

of machines originating mére than t work. We
will also say that for all machines, i € M, O; is
the set of jobs from J; that have not yet been
assigned to any machine. The Single Latency al-
gorithm will begin with some value for D which
will be the hypothesis for the optimal makespan
of the system. The algorithm will then attempt
to use a p—relaxed decision procedure based on
this hypothesis. The p-relaxed decision proce-
dure will either return an assignment of jobs to
machines, or it will report failure. We will use
binary search to find the value of D such that
running the p-relaxed decision procedure on D
returns an assignment, but running it on D—-1
returns failure.

Now we will describe the p—relaxed decision
procedure based on some hypothesis for D.

1. We know that jobs that have a processing
time greater than D — ¢ must be run on
their origin machines in the optimal sched-
ule in order for D to be feasible. Therefore,
all such jobs will be immediately assigned

in any order to their origin machines. Jobs
will be scheduled to run at the earliest pos-
sible time. If any machine has a schedule
of length greater than D at this point, the
assignment phase reports that it has failed
to create an assignment.

. We consider all jobs originating on a ma-

chine in the set X. For all such jobs, we as-
sign the jobs in any order to their respective
origin machines. These jobs are scheduled
to be run as soon as their machine becomes
available.

. We now consider all machines on which no

jobs were scheduled in steps 1 or 2. We can
call one such machine i. If |FFNO;| > 2,
then we assign the two largest jobs from F
originating on % to be run contiguously on ¢
starting at time zero. If there is only a single
job from F' originating on ¢, then this job is
scheduled to be run starting at time zero. If
there are no jobs from F’ originating on 4, no
action is taken. This process is done for all
machines that received no jobs in steps 1 or
2.

. We now consider some machine, ¢, such that

> pj<tand (0;N(J—F)) #0. As long
JEA;

as there is any such machine, i, we will as-
sign a job from the set (O; N (J — F)) to be
processed on i at the earliest time possible.

. We will now consider all the machines that

received no jobs in step 1, and 0 or 1 jobs
from the set F in steps 2 through 4. We find
a mapping of the unassigned jobs in F' to
these machines, such that only one job from
F is processed on any one of these machines.
If no such one-to-one mapping exists, the
algorithm reports that the assignment phase
has failed.

. The algorithm will now list schedule all

unassigned jobs from J — F' to any machine
in the system, such that every job is assigned

to the machine on which it will begin pro-
cessing the soonest. If it is discovered that
some job from J — F was assigned to begin
processing after time 15, the the assignment
phase reports failure.

The algorithm will begin with D = i +

23‘@#7 where p" is the largest job

We will use binary search over the range

ax

size.
[p}”ax,zje J pj]. If the assignment phase fails
in any of the possible failure points, then the
algorithm notes that the true value of D must
be larger than the current value of D and mod-
ifies the estimate. If the assignment phase suc-
ceeds, then the true value for D is not greater
than the value of ﬁ, so the estimate is de-
creased. Algorithm Single Latency returns the
assignment created by the estimate D such that
trying to run the p—relaxed decision procedure
on D — 1 returns failure. We will now show that
the makespan of this schedule is no greater than
4
4.1 Analysis of the Single Latency Al-
gorithm

Lemma 4.1: If the p-relaxed decision procedure
of the Single Latency algorithm returns a sched-
ule for some value of 15, then the schedule created
has the property: Cpae < %f)

Proof: We will analyze the 6 steps of
the assignment phase separately to identify the
makespan of the schedule created. Steps 1 and 2
will clearly not exceed a schedule length of size
D. Step 3 may create a schedule of length 3 4D in
the worst case when ¢t = gD. Step 4 could create
a schedule of length ¢ + %f? < %f)

Now we consider step 5. The jobs from F
awaiting assignment must, by the definition of F',
have a processing time less than D —t. We will
consider a job j that has been assigned in this
step. There are two cases to consider. In case 1,
the machine that j is assigned to had no other
jobs from F' assigned to it in steps 1 through
4. In this case, the total processing time of that
machine will include p; which is not more than

(ﬁ —t), and the work assigned in step 4, which
is not more than ¢ 4 1D Therefore, we can con-
clude that in this case, the total procebsmg time
of j's machine is at most: (D —t)+t+ 3D < 4D
Now we consider the next case, in which j’s ma-
chine already has a job from F' on it. If the ma-
chine in question received no more jobs in step
four, then the schedule length is clearly no more
than (D —t) + (D —t) < 2D+ 2D = 4D. If the
machine received more work in step four, then
the job from F' had a processing time less than t,
and we are essentially back to the first case where
the schedule is not greater than (ﬁ—t)—i—t—i—%f) <
aD.

Finally the sixth step is designed to fail if some
job from J —F starts after time D. Therefore, the
makespan will be no greater than D+ %D = %f)
The p—relaxed DP is complete after this step, so
we can conclude that if it succeeds then it returns
a schedule such that Chq, < %f) O

Lemma 4.2: If the assignment phase fails,
then the true optimal makespan C3, . s not less
than the estimate that returned failure, D.

Proof: The assignment phase might fail in
one of three places. The first point of failure in
step one is trivial. Any job of size greater than
D — t must be run on its origin machine in order
to produce a schedule of length D, soif assigning
these jobs makes D infeasible, then there can be
no assignment to satisfy this schedule length. If
there is no schedule of length D, then there is
also clearly no schedule of a shorter length.

The second failure point is in step five of the as-
signment. It should be noted that if D is feasible,
then there must be some assignment such that
every machine is running at most 2 jobs from F’,
and no machine is running two remote jobs from
F. If either of these criteria is violated, then the
schedule produced will be of length greater than
D. In step three of the algorithm, we assigned
two jobs from F' to the origin machine of those
jobs wherever possible. These are the jobs from
F that will be processed locally, and it would not
be possible to construct a schedule of D or less
where more jobs are processed locally. There-

10

fore, the number of jobs being run remotely in
our schedule is less than or equal to the number
of jobs being run remotely in an optimal sched-
ule. We must be able to schedule these jobs such
that no two of them run together on one machine,
and they only run with at most one other large
job. If such an assignment is not possible, then
D could not be constructed to begin with.

Finally the assignment might fail in the sixth
step. If D is feasible, then the following fact must
hold: [X[(D =)+ [Y[D <> > p;. All the

€Y jEA;
jobs being assigned in step six originated in Y. If
some job from J — F is forced to start after time
15, then we know that all machines in the system
were busy up until time D. Tf this is the case,
then the previously stated inequality is reversed,
and D is infeasible.]

Theorem 4.3: The makespan of the schedule
produced by this algorithm will never be larger
than 3(C;,

max)

Proof: When the algorithm returns a sched-
ule with estimate ﬁ, we know that D — 1 fails
to produce a schedule. Therefore, we know by
Lemma 4.2 that D < C%,.. We also know that

Craz < %]j by Lemma 4.1. Therefore, we con-
clude that Cyee < %C’*]

max*

4.2 Distributed Version of Single La-
tency Algorithm

Now we will consider the distributed-control set-
ting. We will remove all centralized control
from the Single Latency algorithm and leave only
local-control. First, we will demonstrate that
no algorithm can provide a better approximation
factor than % for this problem. Figure 4 shows 3
machines in a network, with corresponding origin
jobs.

Job 2 L
P = 3Ca = 5Cmag
Job 1 Job 3
p; = C;m.z p; = C;m.z
Job 4
P = 30
Machine 1 Machine 2 Machine 3
Figure 4: Demonstration of Hardness
Bound

oz We will focus on

machine 1. In the optimal schedule, job 2 would
be sent to machine 3 at time 0. Doing this would
produce an optimal makespan of length C7,...
We will consider some algorithm, A. If A selects
all of the jobs on machine 1 to be processed lo-
cally, then the schedule length clearly cannot be
less than %C’;f,wz. If A chooses to remotely pro-
cess a job from machine 1, then there are two
options. Either A sends jobs from machine 1 for
remote processing before time ¢, or it sends them
for processing at time ¢ or later. In the former
case, A will try to send jobs without knowledge
of the amount of work originating on the desti-
nation machine. Therefore, it is clear that even
if A chooses only to send job 2, and no other,
there will always be a chance that A chooses to
send job 2 to a machine with Cj, . work origi-
nating on it. In the latter case, Ciaz > %Cﬁmx
regardless of the action taken by A. In addition
to this % hardness bound, we also observe that
any algorithm that waits ¢ time before sending
jobs out for remote processing cannot guarantee
an approximation factor less than 2. This is ap-
parent when ¢ approaches C7,, ...
We will now describe how to adapt the Sin-
gle Latency algorithm for use in this distributed
model, at an additive cost of ¢ to the approxima-
tion factor. At time ¢, every machine becomes
aware of the rest of the system, so the conditions

are identical to the centralized model. We can

In this instance, t = %C’*

11

hold the machines in an idle state until time ¢,
and then execute the standard Single Latency al-
gorithm. Doing this will result in schedule with

a makespan that is at most %Cfnam +t. How-
ever, in the case in which C}, ,. < t, no job

would travel for remote processing in the optimal
schedule. Therefore, for any machine ¢, such that
Z pj < t, we will have ¢ schedule all of its jobs
JeJi

to be processed locally and contiguously starting
at time 0. Doing this will produce a schedule
with an optimal makespan when C}, . < t. It
also means that for all instances of the problem,
this algorithm will produce a schedule length of

at most 2%0*

max-*

Acknowledgements

We thank Cliff Stein for helpful discussions.

References

[1] B. Awerbuch, S. Kutten, and D. Peleg.
Competitive distributed job scheduling. In
Proceedings of the 24th Annual ACM Sym-

posium on Theory of Computing, pages 571—
581, 1992.

A. Bar-Noy, J. Bruck, CT. Ho, S. Kip-
nis, and B. Schieber. Computing global
combine operations in the multiport postal
model. IEEFE Transactions on Parallel and
Distributed Systems, 6:896-900, 1995.

A. Bar-Noy and S. Kipnis. Designing broad-
casting algorithms in the postal model for
message-passing systems. Springer New
York, 27:431-452, 1994.

A. Bar-Noy and S. Kipnis. Multiple message
broadcasting in the postal model. Networks,
29:1-10, 1997.

P. Fizzano, D. Karger, C. Stein, and
J. Wein. Job scheduling in rings. In Proceed-
ings of the 6th ACM Symposium on Paral-

12

lel Algorithms and Architectures, pages 210
219, 1994.

M. Gairing, T. Lcking, M. Mavronicolas,
and B. Monien. Computing nash equilib-
ria for scheduling on restricted parallel links.
36th ACM Symposium on Theory of Com-
puting, pages 613-622, 2004.

D.S. Hochbaum and D.B. Shmoys. Using
dual approximation algorithms for schedul-
ing problems: theoretical and practical re-
sults. Journal of the ACM, 34:144-162,
1987.

J.K. Lenstra, D.B. Shmoys, and E. Tar-
dos. Approximation algorithms for schedul-
ing unrelated parallel machines. Mathemat-
ical Programming, 46:259-271, 1990.

C. Phillips, C. Stein, and J. Wein. Task
scheduling in networks. SIAM Journal on
Discrete Mathematics, 10(4):573-598, 1997.

M. Skutella. Semidefinite relaxations for
parallel machine scheduling. In Proceedings
of the 39th Annual Symposium on Founda-
tions of Computer Science, page 472, 1998.

D. Tsur. Improved scheduling in rings. Jour-
nal of Parallel and Distributed Computing,
67(5):531-535, 2007.

