
Data Structures and Algorithms

Solving Recurrence Relations
Chris Brooks

Department of Computer Science

University of San Francisco

Department of Computer Science — University of San Francisco – p.1/30

http://www.cs.usfca.edu/brooks


4-0: Algorithm Analysis

for (i=1; i<=n*n; i++)

for (j=0; j<i; j++)

sum++;

Department of Computer Science — University of San Francisco – p.2/30



4-1: Algorithm Analysis

for (i=1; i<=n*n; i++) Executed n*n times

for (j=0; j<i; j++) Executed <= n*n times

sum++; O(1)

Running Time: O(n4)

But can we get a tighter bound?

Department of Computer Science — University of San Francisco – p.3/30



4-2: Algorithm Analysis

for (i=1; i<=n*n; i++)

for (j=0; j<i; j++)

sum++;

Exact # of times sum++ is executed:

n
2∑

i=1

i =
n2(n2 + 1)

2

=
n4 + n2

2

∈ Θ(n4)

Department of Computer Science — University of San Francisco – p.4/30



4-3: Recursive Functions

long power(long x, long n)

if (n == 0)

return 1;

else

return x * power(x, n-1);

How many times is this executed?

Department of Computer Science — University of San Francisco – p.5/30



4-4: Recurrence Relations

T (n) = Time required to solve a problem of size n

Recurrence relations are used to determine the running time
of recursive programs – recurrence relations themselves are
recursive

T (0) = time to solve problem of size 0
– Base Case

T (n) = time to solve problem of size n

– Recursive Case

Department of Computer Science — University of San Francisco – p.6/30



4-5: Recurrence Relations

long power(long x, long n)

if (n == 0)

return 1;

else

return x * power(x, n-1);

T (0) = c1 for some constant c1

T (n) = c2 + T (n − 1) for some constant c2

Department of Computer Science — University of San Francisco – p.7/30



4-6: Solving Recurrence Relations

T (0) = c1

T (n) = T (n − 1) + c2

If we knew T (n − 1), we could solve T (n).

T (n) = T (n − 1) + c2

Department of Computer Science — University of San Francisco – p.8/30



4-7: Solving Recurrence Relations

T (0) = c1

T (n) = T (n − 1) + c2

If we knew T (n − 1), we could solve T (n).

T (n) = T (n − 1) + c2 T (n − 1) = T (n − 2) + c2

= T (n − 2) + c2 + c2

= T (n − 2) + 2c2

Department of Computer Science — University of San Francisco – p.9/30



4-8: Solving Recurrence Relations

T (0) = c1

T (n) = T (n − 1) + c2

If we knew T (n − 1), we could solve T (n).

T (n) = T (n − 1) + c2 T (n − 1) = T (n − 2) + c2

= T (n − 2) + c2 + c2

= T (n − 2) + 2c2 T (n − 2) = T (n − 3) + c2

= T (n − 3) + c2 + 2c2

= T (n − 3) + 3c2

Department of Computer Science — University of San Francisco – p.10/30



4-9: Solving Recurrence Relations

T (0) = c1

T (n) = T (n − 1) + c2

If we knew T (n − 1), we could solve T (n).

T (n) = T (n − 1) + c2 T (n − 1) = T (n − 2) + c2

= T (n − 2) + c2 + c2

= T (n − 2) + 2c2 T (n − 2) = T (n − 3) + c2

= T (n − 3) + c2 + 2c2

= T (n − 3) + 3c2 T (n − 3) = T (n − 4) + c2

= T (n − 4) + 4c2

Department of Computer Science — University of San Francisco – p.11/30



4-10: Solving Recurrence Relations

T (0) = c1

T (n) = T (n − 1) + c2

If we knew T (n − 1), we could solve T (n).

T (n) = T (n − 1) + c2 T (n − 1) = T (n − 2) + c2

= T (n − 2) + c2 + c2

= T (n − 2) + 2c2 T (n − 2) = T (n − 3) + c2

= T (n − 3) + c2 + 2c2

= T (n − 3) + 3c2 T (n − 3) = T (n − 4) + c2

= T (n − 4) + 4c2

= . . .

= T (n − k) + kc2

Department of Computer Science — University of San Francisco – p.12/30



4-11: Solving Recurrence Relations

T (0) = c1

T (n) = T (n − k) + k ∗ c2 for all k

If we set k = n, we have:

T (n) = T (n − n) + nc2

= T (0) + nc2

= c1 + nc2

∈ Θ(n)

Department of Computer Science — University of San Francisco – p.13/30



4-12: Building a Better Power

Can we avoid making a linear number of function calls?

long power(long x, long n)

if (n==0) return 1;

if (n==1) return x;

if ((n % 2) == 0)

return power(x*x, n/2);

else

return power(x*x, n/2) * x;

Department of Computer Science — University of San Francisco – p.14/30



4-13: Building a Better Power

long power(long x, long n)

if (n==0) return 1;

if (n==1) return x;

if ((n % 2) == 0)

return power(x*x, n/2);

else

return power(x*x, n/2) * x;

T (0) = c1

T (1) = c2

T (n) = T (n/2) + c3

(Assume n is a power of 2)

Department of Computer Science — University of San Francisco – p.15/30



4-14: Solving Recurrence Relations

T (n) = T (n/2) + c3

Department of Computer Science — University of San Francisco – p.16/30



4-15: Solving Recurrence Relations

T (n) = T (n/2) + c3 T (n/2) = T (n/4) + c3

= T (n/4) + c3 + c3

= T (n/4) + 2c3

Department of Computer Science — University of San Francisco – p.17/30



4-16: Solving Recurrence Relations

T (n) = T (n/2) + c3 T (n/2) = T (n/4) + c3

= T (n/4) + c3 + c3

= T (n/4) + 2c3 T (n/4) = T (n/8) + c3

= T (n/8) + c3 + 2c3

= T (n/8) + 3c3

Department of Computer Science — University of San Francisco – p.18/30



4-17: Solving Recurrence Relations

T (n) = T (n/2) + c3 T (n/2) = T (n/4) + c3

= T (n/4) + c3 + c3

= T (n/4) + 2c3 T (n/4) = T (n/8) + c3

= T (n/8) + c3 + 2c3

= T (n/8) + 3c3 T (n/8) = T (n/16) + c3

= T (n/16) + c3 + 3c3

= T (n/16) + 4c3

Department of Computer Science — University of San Francisco – p.19/30



4-18: Solving Recurrence Relations

T (n) = T (n/2) + c3 T (n/2) = T (n/4) + c3

= T (n/4) + c3 + c3

= T (n/4)2c3 T (n/4) = T (n/8) + c3

= T (n/8) + c3 + 2c3

= T (n/8)3c3 T (n/8) = T (n/16) + c3

= T (n/16) + c3 + 3c3

= T (n/16) + 4c3 T (n/16) = T (n/32) + c3

= T (n/32) + c3 + 4c3

= T (n/32) + 5c3

Department of Computer Science — University of San Francisco – p.20/30



4-19: Solving Recurrence Relations

T (n) = T (n/2) + c3 T (n/2) = T (n/4) + c3

= T (n/4) + c3 + c3

= T (n/4)2c3 T (n/4) = T (n/8) + c3

= T (n/8) + c3 + 2c3

= T (n/8)3c3 T (n/8) = T (n/16) + c3

= T (n/16) + c3 + 3c3

= T (n/16) + 4c3 T (n/16) = T (n/32) + c3

= T (n/32) + c3 + 4c3

= T (n/32) + 5c3

= . . .

= T (n/2k) + kc3

Department of Computer Science — University of San Francisco – p.21/30



4-20: Solving Recurrence Relations

T (0) = c1

T (1) = c2

T (n) = T (n/2) + c3

T (n) = T (n/2k) + kc3

We want to get rid of T (n/2k). We get to a relation we can

solve directly when we reach T (1)

n/2k = 1

n = 2k

lg n = k

Department of Computer Science — University of San Francisco – p.22/30



4-21: Solving Recurrence Relations

T (0) = c1

T (1) = c2

T (n) = T (n/2) + c3

T (n) = T (n/2k) + kc3

We want to get rid of T (n/2k). We get to a relation we can

solve directly when we reach T (1)
lg n = k

T (n) = T (n/2lg n) + lg nc3

= T (1) + c3 lg n

= c2 + c3 lg n

∈ Θ(lg n)
Department of Computer Science — University of San Francisco – p.23/30



4-22: Power Modifications

long power(long x, long n)

if (n==0) return 1;

if (n==1) return x;

if ((n % 2) == 0)

return power(x*x, n/2);

else

return power(x*x, n/2) * x;

Department of Computer Science — University of San Francisco – p.24/30



4-23: Power Modifications

long power(long x, long n)

if (n==0) return 1;

if (n==1) return x;

if ((n % 2) == 0)

return power(power(x,2), n/2);

else

return power(power(x,2), n/2) * x;

This version of power will not work. Why?

Department of Computer Science — University of San Francisco – p.25/30



4-24: Power Modifications

long power(long x, long n)

if (n==0) return 1;

if (n==1) return x;

if ((n % 2) == 0)

return power(power(x,n/2), 2);

else

return power(power(x,n/2), 2) * x;

This version of power also will not work. Why?

Department of Computer Science — University of San Francisco – p.26/30



4-25: Power Modifications

long power(long x, long n)

if (n==0) return 1;

if (n==1) return x;

if ((n % 2) == 0)

return power(x,n/2) * power(x,n/2);

else

return power(x,n/2) * power(x,n/2) * x;

This version of power does work.

What is the recurrence relation that describes its running
time?

Department of Computer Science — University of San Francisco – p.27/30



4-26: Power Modifications

long power(long x, long n)

if (n==0) return 1;

if (n==1) return x;

if ((n % 2) == 0)

return power(x,n/2) * power(x,n/2);

else

return power(x,n.2) * power(x,n/2) * x;

T (0) = c1

T (1) = c2

T (n) = T (n/2) + T (n/2) + c3

= 2T (n/2) + c3

(Again, assume n is a power of 2)

Department of Computer Science — University of San Francisco – p.28/30



4-27: Solving Recurrence Relations

T (n) = 2T (n/2) + c3 T (n/2) = 2T (n/4) + c3

= 2[2T (n/4) + c3]c3

= 4T (n/4) + 3c3 T (n/4) = 2T (n/8) + c3

= 4[2T (n/8) + c3] + 3c3

= 8T (n/8) + 7c3

= 8[2T (n/16) + c3] + 7c3

= 16T (n/16) + 15c3

= 32T (n/32) + 31c3

. . .

= 2kT (n/2k) + (2k
− 1)c3

Department of Computer Science — University of San Francisco – p.29/30



4-28: Solving Recurrence Relations

T (0) = c1

T (1) = c2

T (n) = 2kT (n/2k) + (2k
− 1)c3

Pick a value for k such that n/2k = 1:
n/2k = 1

n = 2k

lg n = k

T (n) = 2lg nT (n/2lg n) + (2lg n
− 1)c3

= nT (n/n) + (n − 1)c3

= nT (1) + (n − 1)c3

= nc2 + (n − 1)c3

∈ Θ(n)

Department of Computer Science — University of San Francisco – p.30/30


	{small lecturenumber -	heblocknumber :} Algorithm Analysisaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Algorithm Analysisaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Algorithm Analysisaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Recursive Functionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Recurrence Relationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Recurrence Relationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Solving Recurrence Relationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Solving Recurrence Relationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Solving Recurrence Relationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Solving Recurrence Relationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Solving Recurrence Relationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Solving Recurrence Relationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Building a Better {	t Power}addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Building a Better {	t Power}addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Solving Recurrence Relationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Solving Recurrence Relationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Solving Recurrence Relationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Solving Recurrence Relationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Solving Recurrence Relationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Solving Recurrence Relationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Solving Recurrence Relationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Solving Recurrence Relationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} {	t Power} Modificationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} {	t Power} Modificationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} {	t Power} Modificationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} {	t Power} Modificationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} {	t Power} Modificationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Solving Recurrence Relationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Solving Recurrence Relationsaddtocounter {blocknumber}{1}

