Data Structures and Algorithms
Solving Recurrence Relations

Chris Brooks

Department of Computer Science

University of San Francisco

Department of Computer Science — University of San Francisco — p.1/3

http://www.cs.usfca.edu/brooks

4-0: Algorithm Analysis

for (I=1; i<=n*n; i++)
for (j=0; j<i; j++)
sumt+;

Department of Computer Science — University of San Francisco — p.2/3|

4-1: Algorithm Analysis

for (I=1; i<=n*n; i++) Executed n*n tines
for (j=0; j<i; |++) Executed <= n*n tines
Ssumt+; A1)

Running Time: O(n?)

But can we get a tighter bound?

Department of Computer Science — University of San Francisco — p.3/3(

4-2: Algorithm Analysis

for (I=1; i<=n*n; i++)
for (j=0; j<i; j++)
sumt+;

Exact # of times sun#+ IS executed:

2

— . n*(n*+1)
2T
 opin?
2
c O(n'

Department of Computer Science — University of San Francisco — p.4/3

4-3: Recursive Functions

| ong power (I ong x, long n)

if (n == 0)
return 1;
el se

return x * power(x, n-1);

How many times Iis this executed?

Department of Computer Science — University of San Francisco — p.5/3(

4-4: Recurrence Relations

T(n) = Time required to solve a problem of size n

Recurrence relations are used to determine the running time

of recursive programs — recurrence relations themselves are
recursive

T(0) = time to solve problem of size O
— Base Case

T(n) = time to solve problem of size n
— Recursive Case

Department of Computer Science — University of San Francisco — p.6/3(

4-5: Recurrence Relations

| ong power (I ong x, long n)

if (n == 0)
return 1;
el se

return x * power(x, n-1);

T(0) =c; for some constant ¢,
T(n) =cy+T(n—1) for some constant c,

Department of Computer Science — University of San Francisco — p.7/3

4-6: Solving Recurrence Relations

T0)=c
Tn)=Tmn—1)4 co

If we knew T'(n — 1), we could solve T'(n).

Tn) =T(n—1)4c

Department of Computer Science — University of San Francisco — p.8/3(

4-7: Solving Recurrence Relations
T(O) —
Tn)=Tmn—1)4 co
If we knew T'(n — 1), we could solve T'(n).

T(n) =T(n—1)+co Tn—1)=T(n—2)+co
=T(n—2)4 c + ¢
=T(n—2) 4+ 2c¢,

Department of Computer Science — University of San Francisco — p.9/3(

4-8: Solving Recurrence Relations

T0)=c
Tn)=Tmn—1)4 co

If we knew T'(n — 1), we could solve T'(n).

T(n) =T(n—1)+co Tn—1)=T(n—2)+co
=T(n—2)+cy+ o
=T(n—2)+ 2c Tn—2)=T(n—3)4+ ¢
=T(n—3)+ ca+ 2¢
=T(n—3)+ 3¢y

Department of Computer Science — University of San Francisco — p.10/3(

4-9: Solving Recurrence Relations

T0) =c;
Tn)=Tmn—1)4 co

If we knew T'(n — 1), we could solve T'(n).

T(n) =T(n—1)+co Tn—1)=T(n—2)+co
=T(n—2)+cy+ o
=T(n—2)+ 2c Tn—2)=T(n—3)4+ ¢
=T(n—3)+ ca+ 2¢
=T(n—3)+ 3cy Tn—3)=T(n—4)4+ co
=T(n—4)+ 4cs

Department of Computer Science — University of San Francisco — p.11/3(

4-10: Solving Recurrence Relations

T0)=c
Tn)=Tmn—1)4 co

If we knew T'(n — 1), we could solve T'(n).

T(n) =T(n—1)+co Tn—1)=T(n—2)+co
=T(n—2)+cy+ o
=T(n—2)+ 2c Tn—2)=T(n—3)4+ ¢
=T(n—3)+ ca+ 2¢
=T(n—3)+ 3cy Tn—3)=T(n—4)4+ co
=T(n—4)+ 4cs

Department of Computer Science — University of San Francisco — p.12/3(

4-11: Solving Recurrence Relations

T(O) —
T(n)=Tn—k)+kxcy forallk

If we set k = n, we have:

T(n) =T(n—n)+nc
=T(0) + nco
= C1 + NcCo

€ O(n)

Department of Computer Science — University of San Francisco — p.13/3(

4-12: Building a Better Power

Can we avoid making a linear number of function calls?

| ong power (I ong x, long n)
I f (n==0) return 1;
i f (n==1) return Xx;
I f ((n %2) == 0)
return power (x*x, n/2);
el se
return power (x*x, n/2) * x;

Department of Computer Science — University of San Francisco — p.14/3(

4-13

| ong power (long x, long n)
I f (n==0) return 1;
i f (n==1) return Xx;

i1 f ((n %2) == 0)
return power (x*x, n/2);
el se
return power (x*x, n/2) * x;

T(n)=T(n/2)+ cs
(Assume n is a power of 2)

. Building a Better Power

Department of Computer Science — University of San Francisco — p.15/3(

4-14: Solving Recurrence Relations

T(n) =TMmn/2)+c3

Department of Computer Science — University of San Francisco — p.16/3(

4-15: Solving Recurrence Relations

T(n) =TMmn/2)+c3 T(n/2) =T(n/4) + c3
T'(n/4) 4 c3 + c3
T

(n/4) + 2¢5

Department of Computer Science — University of San Francisco — p.17/3(

4-16: Solving Recurrence Relations
n/2) + cs T(n/2)=T(n/4) + c3

)
)
n/4) + 2cs T(n/4) =T(n/8) + c3
)
)

Department of Computer Science — University of San Francisco — p.18/3(

4-17: Solving Recurrence Relations
n/2) + cs T(n/2)=T(n/4) + c3
)
n/4) + 2cs T(n/4) =T(n/8) + c3
)

n/8) + 3cs T(n/8) =T(n/16) + c3

Department of Computer Science — University of San Francisco — p.19/3(

=
=

I O O { R VR VI [
e B B B M B B e M

4-18: Solving Recurrence Relations
n/2§+03 T(n/2)=T(n/4) + c3
n/4§2(:3 T(n/4)=T(n/8) + c3
n/8)3cs T(n/8) =T(n/16) + c3

+ 4c3 T(n/16) = T(n/32) + c3

Department of Computer Science — University of San Francisco — p.20/3(

I O | R | R TR
e B B B M B B e M

4-19: Solving Recurrence Relations
n/2) + cs T(n/2)=T(n/4) + c3

)
)
n/4§2(:3 T(n/4)=T(n/8) + c3

(

(

E

En/S)ch T(n/8) =T(n/16) + c3
(+ 4cs T(n/16) =T (n/32) + c3
(

(

Department of Computer Science — University of San Francisco — p.21/3(

4-20: Solving Recurrence Relations

T(O) —

T(l) — C9
T(n)=T(n/2)+ c3
T(n)=T(n/2%) + kcy

We want to get rid of T'(n/2*). We get to a relation we can

solve directly when we reach T'(1)

n/2F = 1
n = 2F

lgen = k

Department of Computer Science — University of San Francisco — p.22/3(

4-21: Solving Recurrence Relations

T(O) —

T(l) — C9
T(n)=T(n/2)+ c3
T(n)=T(n/2%) + kcy

We want to get rid of T'(n/2*). We get to a relation we can

solve directly when we reach T'(1)
lgn =~k

T(n) = T(n/2"%") +lgncs
= T(1)+c3lgn
= cy+c3lgn
c O(lgn)

Department of Computer Science — University of San Francisco — p.23/3(

4-22: Power Modifications

| ong power (I ong x, long n)
I f (n==0) return 1;
i f (n==1) return Xx;
i1 f ((n %2) == 0)
return power (x*x, n/2);
el se
return power (x*x, n/2) * x;

Department of Computer Science — University of San Francisco — p.24/3(

4-23: Power Modifications

| ong power (I ong x, long n)
I f (n==0) return 1;
i f (n==1) return Xx;
i1 f ((n %2) == 0)
return power (power(x,2), n/2);
el se
return power(power(x,2), n/2) * x;

This version of power will not work. Why?

Department of Computer Science — University of San Francisco — p.25/3(

4-24: Power Modifications

| ong power (I ong x, long n)
I f (n==0) return 1;
i f (n==1) return Xx;
i1 f ((n %2) == 0)
return power (power(x,n/2), 2);
el se
return power(power(x,n/2), 2) * Xx;

This version of power also will not work. Why?

Department of Computer Science — University of San Francisco — p.26/3(

4-25: Power Modifications

| ong power (I ong x, long n)
I f (n==0) return 1;
i f (n==1) return Xx;
i1 f ((n %2) == 0)
return power(x,n/2) * power(x,n/2);
el se
return power(x,n/2) * power(x,n/2) * x;

This version of power does work.

What is the recurrence relation that describes its running

time?

Department of Computer Science — University of San Francisco — p.27/3(

4-26: Power Modifications

| ong power (long x, long n)
I f (n==0) return 1;
i f (n==1) return Xx;
if ((n %2) == 0)
return power(x,n/2) * power(x,n/2);
el se

return power(x,n.2) * power(x,n/2) * Xx;

T(O) - Cq
T(l) — C9
T(n) =Tn/2)+T(n/2)+ c3
— QT(’IZ/Q) + C3
(Again, assume n is a power of 2)

Department of Computer Science — University of San Francisco — p.28/3(

4-27: Solving Recurrence Relations

T(n) =2T(n/2)+ c3 T(n/2) =2T(n/4) + c3
= 22T (n/4) + c3lcs
= 4T (n/4) 4 3c3 T(n/4) =2T(n/8) + c3

= 4[2T(n/8) + c3] + 3c3
= 8T (n/8) + Tcs

= 8[2T(n/16) + c3] + Tc3
= 167 (n/16) + 15¢5

= 32T (n/32) + 3lc3

= 2FT(n/29) + (28 — 1)es

Department of Computer Science — University of San Francisco — p.29/3(

4-28: Solving Recurrence Relations

T(n) =2"T(n/2F) + (2% — 1)cs
Pick a value for k£ such that n/2* = 1

n/2F = 1

n = 2F

len = k

T(n) = 2B"T(n/2'8") + (28" — 1)c3

= nT(n/n)+ (n—1)c3
= nT(1)4+ (n — 1)c3
neg + (n— 1)es

€ 0O(n)

Department of Computer Science — University of San Francisco — p.30/3(

	{small lecturenumber -	heblocknumber :} Algorithm Analysisaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Algorithm Analysisaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Algorithm Analysisaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Recursive Functionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Recurrence Relationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Recurrence Relationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Solving Recurrence Relationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Solving Recurrence Relationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Solving Recurrence Relationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Solving Recurrence Relationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Solving Recurrence Relationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Solving Recurrence Relationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Building a Better {	t Power}addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Building a Better {	t Power}addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Solving Recurrence Relationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Solving Recurrence Relationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Solving Recurrence Relationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Solving Recurrence Relationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Solving Recurrence Relationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Solving Recurrence Relationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Solving Recurrence Relationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Solving Recurrence Relationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} {	t Power} Modificationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} {	t Power} Modificationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} {	t Power} Modificationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} {	t Power} Modificationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} {	t Power} Modificationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Solving Recurrence Relationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Solving Recurrence Relationsaddtocounter {blocknumber}{1}

