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Abstract
We present CCAnalyzer, a novel classifier for deployed Internet

congestion control algorithms (CCAs) which is more accurate, more
generalizable, and more human-interpretable than prior classifiers.
CCAnalyzer requires no knowledge of the underlying CCA algo-
rithms, and it can identify when a CCA is novel – i.e. not in the
training set. Furthermore, CCAnalyzer can cluster together servers
it believes use the same novel/unknown algorithm. CCAnalyzer
correctly identifies all 15 of the default Internet CCAs deployed
with Linux, including BBRv1, which no existing classifier can do.
Finally, CCAnalyzer can classify server CCAs while being as effi-
cient or better than prior approaches in terms of bytes transferred
and runtime. We conduct a measurement study using CCAnalyzer
measuring the CCA for 5000+ websites. We find widespread deploy-
ment of BBRv1 at large CDNs, and demonstrate how our clustering
technique can detect deployments of new algorithms as it discovers
BBRv3 although BBRv3 is not in its training set.

CCS Concepts
• Networks → Transport protocols; Network measurement; •
Information systems→ Clustering and classification.
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1 Introduction
There has been a growing shift in the Internet’s transport layer

including an explosion of novel congestion control algorithm (CCA)
proposals [10, 18, 20, 21, 53–55], many of which are already de-
ployed or being considered and tested for deployment in the Inter-
net by content providers. Examples include novel versions of BBR
deployed by Google [17], Copa deployment by Facebook [26], and
FastTCP deployment by Akamai [9, 41].1

1Although our measurement study at the conclusion of this paper suggests that Akamai
has largely dropped FastTCP in favor of BBR and www.facebook.com uses Cubic.
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Figure 1: Time series of queue occupancy for four CCAs
(from top, left to right: New Reno, BBR, Cubic, and BIC).
Each CCA has a visually distinct queue occupancy behavior.

With the growing diversity in CCA proposals and potential
deployments, we have an ever-growing need to understand what
CCAs are currently deployed in the Internet today. Assumptions
about what CCAs are widely deployed underlie decisions about
how to size buffers in routers [27] (proportional to 1√

𝑛
, if everyone

is deploying NewReno [32]); whether or not routers need multiple
queues [15] (to protect low-latency traffic from buffer filling traffic,
if both classes of CCAs are deployed); and how to test new Internet
services to ensure that they do not starve legacy traffic [30, 51, 52]
(if Reno is no longer widely used, perhaps we do not need to test
new CCAs for Reno-friendliness).

The desire to understand CCA deployment motivated the devel-
opment of CCA classifiers starting with TBIT in 2001 [29, 41, 43, 47,
57]. Most of these tools focus on estimating the CCA’s congestion
window (CWND) by requesting a bulk data transfer from the server
and then observing the transfer’s reaction to dropping and delaying
packet acknowledgments or to modulating the available bandwidth.
Unfortunately, state-of-the-art CCA classifiers using these tech-
niques, e.g., Gordon [41] and Inspector Gadget [29], have several
limitations that prevent them from providing a truly comprehen-
sive picture of CCA deployments. We discuss prior approaches and
their limitations in detail in §2.

We seek to develop a CCA classifier with several desirable proper-
ties: Support for all well-known CCAs: A CCA classifier should
be able to identify known CCAs with minimal errors. Support-
ing identification of the 15 built-in wide area CCAs in Linux2 is
especially desirable.

Efficient and nearly-passive: Network measurements should
aim to be as lightweight and minimally burdensome as possible

2In fairness, we exclude the lp and dctcp algorithms because these algorithms require
in-network support which is not available in the wide area. All other prior work also
excludes these algorithms.
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on non-cooperating parties. Heavyweight techniques make it dif-
�cult to perform large-scale measurement studies and can lead to
measurement tools being `blocklisted' by services.

Discover new CCAs: Open-set classi�cation is the ability for
a classi�er to classify that a testing sample is not in the training
set [40]. In the current period of signi�cant experimentation in the
congestion control space, a CCA classi�er should be able to identify
if a website is using a known or unknown CCA. Furthermore, to
identify truly novel CCAs, the classi�er should be able to determine
which servers using unknown CCAs all appear to be using thesame
algorithm.

Interpretable results : A CCA classi�er should be `interpretable' [37].
That is, as human experts, we should be able to understand why
our algorithm classi�es two web servers as using the same CCA.
This allows for evaluation and validation of results as well as aiding
in the discovery of new CCAs.

In this paper, we present CCAnalyzer, a new CCA classi�er. CC-
Analyzer can correctly classifyall built-in Linux CCAs. It is 40x
faster than Gordon, and unlike Inspector Gadget, CCAnalyzer can
e�ciently identify if a group of servers are all using the same un-
known algorithm. CCAnalyzer achieves this by taking a radically
di�erent approach to classi�cation than prior work. Both Gordon
and Inspector Gadget use decision trees hand-crafted or trained on
observedCWNDvalues or gradients; they in�ate round-trip-times
(RTTs) and/or introduce timeouts to precisely measure theCWNDat
each point in time. In contrast, CCAnalyzer starts from a simple
observation: if we visually observe the occupancy of packets in a
bottleneck queue over time, even a human expert can identify the
connection's CCA. In Figure 1, we present the queue occupancy of
the bottleneck link from real TCP connections; the familiar Reno
`sawtooth' is visible for Reno while other CCAs have their own
patterns of rising and falling queue size. Because CCAnalyzer does
not interfere with a connection's normal behavior (beyond intro-
ducing a low-capacity link to force a bottleneck) we describe the
approach asnearly-passiveand argue that it is minimally intrusive
for operators.

Rather than trying to collectCWNDtraces, CCAnalyzer works by
measuring a connection's queue occupancy over time and uses this
time series data as input to a classic algorithm for measuring the
distance between two time series called Dynamic Time Warping
(DTW) [13]. DTW is used in a variety of applications requiring
signal comparison, such as voice recognition and shape detection.
DTW compares two signals for similarities in shape and magnitude
while accounting for distortions such as stretching or noise � this
latter accounting is especially valuable since we expect to see such
distortions in network traces due to variances in RTT, jitter, ran-
dom packet loss,etc.CCAnalyzer uses a 1-Nearest Neighbor(1NN)
classi�er with DTW as the distance measure and labeled time-series
as the training set. A testing trace is given the label as the closest
training sample. CCAnalyzer collects 4 queue occupancy traces for
each website, and votes across the labels of those traces to give
a website a �nal label. We describe the our methodology in more
detail in Ÿ3.

We �nd that, in addition to being moree�cient and broadly
applicablethan prior approaches, CCAnalyzer o�ers additional

advantages. Collecting queue occupancy traces as well as the ability
to compare these traces to one another using the `distance' measure
provided by DTW allows us to visualize and validate results. By
looking at the website traces and their closest training sample we
can see when and why the classi�cation may have been incorrect
for identifying possible errors. In addition, using a matrix of all the
pairwise distances between a set of traces, we can cluster traces
and identify the deployment of new CCAs outside of our training
set. We demonstrate these additional advantages in Ÿ4 and Ÿ5.

We use CCAnalyzer to conduct a measurement study of Top 10K
websites ranked by Google Chrome's UX Report (CrUX) [58] and
�nd the following:
1. Inspector Gadget can only classify 1% of these 10K websites.

2. We �nd several major CDNs have deployed BBRv1 (Cloud�are,
Akamai), while others still use Cubic (Fastly).

3. Clustering queue occupancy traces makes our results inter-
pretable and straightforward to validate. It allows us to �x when
a website's traces are marked as unknown when they are actu-
ally known and using a CCA in the training set.

4. CCAnalyzer was able to discover Google's deployment of BBRv3,
even though we do not have a BBRv3 implementation in our
testbed and did not train CCAnalyzer on BBRv3 tra�c.

5. We see some deployment of other unknowns CCAs.
The rest of this paper is organized as follows. In Ÿ2 we discuss

prior work in classifying CCAs. In Ÿ3, we present the CCAnalyzer
methodology. In Ÿ4 we evaluate CCAnalyzer's accuracy, speed, and
resource utilization. In Ÿ5 we provide a brief measurement study
focusing on (a) a 2023 update on CCAs used by web servers and
(b) the results of clustering unknown CCAs. In Ÿ6 we conclude and
highlight future work.

2 Prior Work and Limitations
There have been several attempts at CCA classi�cation over the

past two decades beginning with TBIT [29, 41, 43, 47, 57]. Of recent
classi�ers, we focus on the two state-of-the-art algorithms: Gor-
don [41] (2019) and Inspector Gadget[29] (2020). Table 1 highlights
the limitations of these classi�ers.

Gordon: Gordon inspired a renaissance in CCA classi�cation
algorithms after two decades of relative dormancy. The authors
insightfully noted the deployment of numerous novel algorithms
(at the time, BBRv1 was beginning to `take o�' [41]) and the need
to measure the changing CCA landscape due to the impact of CCAs
on a wide range of Internet issues from infrastructure design to
network fairness. In addition to developing the Gordon classi�ca-
tion tool, the paper also provides the widest measurement study
of CCA deployment in the post-BBR era; signi�cantly, the authors
noted the surprisingly rapid growth in the deployment of BBRv1,
which 17.75% of servers they measured used at the time.

The Gordon classi�er works by creating a bottleneck between
the web server and the client, introducing various network events
including packet losses and changes in bandwidth and delay in
the hopes of exactly measuring theCWND. Generating theseCWND
traces comes at a high cost: Gordon requires incremental probing,
RTT-by-RTT, starting and restarting connections with a web server
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many times�requiring up to 800MB of data transferred to success-
fully perform a classi�cation. In addition, we observe in our own
evaluation that more servers reject connections from the Gordon
tool [8] than reported in 2019; conversations with one of the Gor-
don authors lead to the hypothesis that Gordon is being blocked
or rate-limited due to these overheads. In 2023, Gordon authors
were only able to classify 4% of Alexa Top 10K. As we will show in
Ÿ4.3, CCAnalyzer trace collection transfers 85% fewer bytes, and is
40x faster than Gordon. CCAnalyzer's passivity avoids the pitfalls
Gordon has with onerous activeCWNDestimation.

After collectingCWNDtraces, Gordon, uses a hard-coded decision
tree to classify these traces. Because some algorithms are not dis-
tinguishable based on the parameters in this decision tree, Gordon
cannot tell the di�erence between Compound TCP/Illinois, Veg-
as/Veno, and New Reno/Highspeed (HSTCP) and instead groups
these into the same category although all of these algorithms are
distinct.

Consequently, Gordon requires detailed knowledge about how
each CCA works to support a new CCA. For example, it needed a
special-cased test to support BBR. While Gordon can mark aCWND
trace as `unknown', Gordon cannot group web servers as using
the same unknown CCA without running several additional hand-
crafted tests putting even more additional load on web servers. In
addition, we will show in Ÿ4.2, although Gordon has good accuracy
for supported CCAs, its lack of support for many CCAs, require-
ments for special tests for new CCAs, ine�ciency and inability to
natively discover new novel CCAs makes it challenging to use with
a constantly evolving transport layer.

Inspector Gadget (IG): Published in 2020, IG's authors developed
the tool to �ngerprint a web server's networking stacks, including
its CCA. In their results, they notably found that Cubic was the
dominant CCA followed by BBR in North America, but also saw
most servers from other regions were still using Reno. Similarly to
Gordon, IG also tries to carefully inject network events including
timeouts and changes in delay to generateCWNDtraces. To generate
these traces, IG addresses issues with prior work'sCWNDestimations
with some optimizations. Rather than classifying rawCWNDtraces,
IG extracts a vector capturing theCWNDas a series of o�sets, using
a decision tree classi�er on these vectors.

IG's published code [5] includes a user-level TCP stack and modi-
�cations to a TLS library to manipulate packets in a HTTPS connec-
tion, which we �nd does not work in practice. We ultimately had to
re-implement IG to the best of our ability. As we will show in Ÿ4.2
we obtain reasonably good accuracy with our re-implementation.
We �nd this technique is more e�cient than Gordon. However, we
highlight three limitations of IG.

First, we �nd that IG does not make it straightforward to classify
a CCA as unknown or discover new CCAs. Given the decision tree
classi�er, we can only mark a trace as a known label. Second, it
takes considerable e�ort to re-implement; we �nd that we need to
carefully account for TCP stack optimizations at the sender like
F-RTO [48] that impact how a TCP �ow will respond to losses
that are independent of CCA behavior. These special cases are also
challenges in prior work that try to collectCWNDtraces [57].

Lastly, when we try to use our re-implementation of IG to classify
the 10K websites in our measurement study, we �nd that we can

Table 1: CCA classi�er desirable properties
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Gordon [41] 7 7 3 7
IG [29] 7 7 7 7

CCAnalyzer 3 3 3 3

only successfully classify 1% of these websites because IG requires
at least a 1.5MB �le to classify a website, we could not �nd web
pages large enough, and for most of the remaining that do have
large enough �les, we fail to generate aCWNDtrace. Appendix ŸC
details these results. IGCWNDestimation technique generally fails
in practice when attempting to classify real websites.

Furthermore, because of IG and Gordon's signi�cant active ma-
nipulation of ACK timings and packet drops, their extensibility to
other protocols with encryption (e.g. QUIC) or applications (e.g.
video) is severely limited relative to a more passive measurement
approach.

Other classi�ers : The literature prior to Gordon and IG includes
other in�uential classi�ers such as TBIT [43] and CAAI [57], how-
ever, all of these approaches are superseded in both accuracy and
coverage by Gordon and IG, therefore we focus our comparisons
on these to prior approaches only. Other techniques that attempt
to classify the CCA of a �ow as it crosses a router (rather than
classifying a server) such as DeePCCI [47] and DragonFly [19], are
solving an orthogonal problem that is out of scope for this work.

Given the limitations of prior work our goal is the following:We
want to design a new CCA classi�er with higher coverage of
known CCAs, better e�ciency, better passivity, and open set:
able to discover new CCAs without considerable e�ort. In
the following sections we discuss how CCAnalyzer achieves these
goals.

3 Methodology
We propose a new algorithm, CCAnalyzer, for identifying CCAs

in an e�cient and nearly-passive way. CCAnalyzer takes a radically
di�erent approach to priorCWNDestimation techniques by relying
on bottleneck queue occupancy traces. In this section, we describe
how we can frame the CCA classi�cation problem as a time series
classi�cation problem and how this enables CCAnalyzer to achieve
the goals outlined in previous sections.

3.1 Observing Queue Occupancy
A key issue with prior techniques is that they require brittle and

resource-intensive �ow manipulation toestimatethe CWND, which
is not directly observable, and then perform classi�cation. Our key
insight is that we need not try to force network eventse.g.timeouts
to force a CCA to behave in some expected way, but rather we can
observe CCAs in their natural habitat: at the bottleneck queue.

In order to observe the bottleneck queue occupancy when down-
loading data from a server, we insert our own switch with a deliber-
ately slowed egress link between the server and the client using a
testbed as shown in Fig. 2. Because the switch processes incoming
packets at a speed much slower than upstream links, it becomes the
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Figure 2: Testbed to issue requests to third-party servers and
identify their CCAs.

connection bottleneck. The switch uses a queue of a chosen size and
we con�gure it to record when packets are enqueued, dequeued,
or dropped. We implement this switch using the BESS software
switch [1], and the client issues pipelined HTTP requests to third
party servers using h2load [4] to utilize the available bandwidth.

On page 1, Fig. 1 showsrealexample bottleneck queue occupancy
traces collected from our testbed. A human observer can clearly see
the classic `TCP sawtooth' of Reno,G3 curves of Cubic and even
periodic bandwidth probes of BBR in these traces. CCAs will cycle
through their behavior: increasing their sending rates to use the
available bandwidth and react to losses (depending on their design)
that occur naturally if they �ll the bottleneck queue. We posit that
if the patterns observed by two di�erent �ows in the bottleneck
queue are equivalent, then the CCAs are equivalent.

CCAnalyzer's simple inference from queue occupancy traces
achieves the goals outlined in the previous section. CCAnalyzer
has higher coverage of known CCAs and is more general than prior
work. We can support classifying a CCA, if we can collect queue
occupancy traces for that CCA. CCAs may be loss-based, may be
latency sensitive, or have other characteristics and CCAnalyzer can
still classify them without needing any special tests.

CCAnalyzer is nearly-passive: it does not need to force timeouts,
radically modulate bandwidth, implement numerous serial connec-
tions,etc.. Although CCAnalyzer does normalize round-trip times
and bottleneck bandwidth, to the server under test it appears as a
normal TCP connection with no anomalous behaviors.

Lastly, CCAnalyzer is also open-set. Because we can compare
queue occupancy traces, we can determine if a trace does not match
anything in the training set. Further, we can cluster like traces and
detect if multiple servers are deploying the same CCA that is not
in the training set. No prior tool canautomaticallycluster servers
using like, novel CCAs and we believe that this trait of CCAna-
lyzer is crucial to measuring and modeling a continuously-evolving
Internet. While some prior work also creates a local bottleneck
(e.g.Gordon [41]), or may try to estimatequeue occupancy for a
particular �ow crossing a router (e.g.DragonFly [19]), our work is
the �rst to directly measurebottleneck queue occupancy by creating
a local bottleneck and recording every time a packet is enqueued,
dequeued, and dropped from that bottleneck queue to use this trace
to classify CCAs.

3.2 A Time Series Classi�cation Approach
CCAnalyzer compares two queue occupancy traces to each

other using a well-known algorithm called Dynamic Time Warping
(DTW)[13], which takes in two time series traces and returns a
`distance' measurement quantifying how similar the two traces are.
DTW is traditionally used in pattern matching tasks like automatic

(a) Euclidean distance = 2.47 (b) DTW distance = 0.76

Figure 3: Queue occupancy distance calculation for a sample
from usps.com to a Cubic training sample. DTW allows a
�exible one-to-many mapping between similar points, while
euclidean is a one-to-one mapping to points at the exact same
time.

speech recognition and speaker identi�cation; just as a speaker will
have a signature pitch and cadence, congestion control algorithms
each have a unique typical queue occupancy and rate of change.
These types of problems are known as `time series classi�cation'
problems, and despite 40 years of research since the invention of
DTW, it remains a widely used general-purpose algorithm for this
class of challenges [11].

To understand DTW, we �rst consider a naïve approach to com-
pare two traces using Euclidean distance (ED). Consider two queue
occupancy traces,- = ¹G1”””G=º and. = ¹~1”””~=º, whereG8 is the
queue occupancy at time8in trace- and where X and Y are=
time steps long. We can compute ED between these two traces by
computing the sum of the squared di�erence between each element
G8 and~8.

Fig. 3 shows why this one-to-one mapping approach fails for
most network traces. In Fig. 3a, we compute the ED between a
trace collected fromusps.comto a Cubic training sample, while
in Fig. 3b we take the same traces and compute the DTW distance.
Traces can dilate and contract relative to time on the real Internet.
For example: a host may stall during the trace, sending a packet a
few ms later than expected; an in-network queue may �ll up with
background tra�c, temporarily increasing the RTT; a long-running
�ow in the background may end, suddenly reducing the RTT. These
e�ects can cause two traces from the same CCA to appear stretched
and squeezed relative to one another.

DTW accounts for this stretching and squeezing by allowing a
one-to-many mapping: a given index from each trace can map to
one or more indices in the other trace. DTW �nds the optimal point-
to-point mapping between the two traces to minimize the sum of
the distances between all their points with some constraints. Fig. 3b
shows how this results in DTW measuring a smaller distance than
ED for same-CCA traces. We describe the formal de�nition of DTW
in Appendix ŸB. There are many more well-studied aspects and
applications of DTW [11, 13, 33, 35, 44, 46] but we do not require
their discussion here to understand CCAnalyzer.

CCAnalyzer uses a one-nearest-neighbor classi�er with DTW
as the distance measure (1NN-DTW), a commonly used time series
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