OBDD-based Universal Planning in Multi-Agent,

Non-Deterministic Domains

Master’s Thesis
Rune Mgller Jensen
Technical University of Denmark
Department of Automation
Building 326/327
DK-2800 Lyngby

Denmark

June 7, 1999

Preface

With a few changes Manuela Veloso and I have published Section 1, 3, 4, 5,
6, 8.1.1, 8.1.2, 8.2, 9 and 10 to the Journal of Artificial Intelligence Research
in June 1999. For this reason the thesis uses an article-oriented language,
which I hope, the reader will enjoy.

Rune M. Jensen

Pittsburgh, PA, USA

Acknowledgements

The thesis work has been carried out in the Spring 1999, while 1 was vis-
iting Manuela Veloso at the School of Computer Science, Carnegie Mellon
University. I am very indebted to her for her hospitality and guidance on
the work.

[am also indebted to my supervisor Morten Lind. Without his help and
support, this work, or any of the work leading to it, would not have been
possible.

A special thanks to Marco Roveri for introducing me to MBP and for
many rewarding discussions on OBDD techniques and 0BDD-based planning.

Also a special thanks to Randal E. Bryant and Ed Clarke for showing in-
terest in the project and giving advice on suitable model checking techniques
for oBDD-based planning.

For additional advice on OBDD issues, formal representation and proof
reading | wish to thank Henrik R. Andersen, Jgrn Lind-Nielsen, Lars Birkedal
and Kelly Richmond.

Finally, I wish to thank the CORAL group and people associated to the
Robotics Soccer Lab.: Anna H. R. Costa, Sorin Achim, Laurie Hiyakumoto,
Peter Stone, Tucker Balch, Jan Koehler, Belinda Thom, William Uther,
Kwun Han, Michael Bowling, Bryan Singer, Scott Lenser and Elly Winner.

Abstract

Recently model checking representation and search techniques were shown
to be efliciently applicable to planning, in particular to non-deterministic
planning. Such planning approaches use Ordered Binary Decision Diagrams
(0BDDs) to encode a planning domain as a non-deterministic finite automa-
ton (NFA) and then apply fast algorithms from model checking to search
for a solution. 0BDDs can effectively scale and can provide universal plans
for complex planning domains. This thesis presents UMOP!, a new uni-
versal OBDD-based planning framework for non-deterministic, multi-agent
domains, which is also applicable to deterministic single-agent domains as
a special case. A new planning domain description language, NADL?, is
introduced to specify non-deterministic, multi-agent domains. The lan-
guage contributes the explicit definition of controllable agents and uncon-
trollable environment agents. The syntax and semantics of NADL is de-
scribed, and it is shown how to build an efficient oBDD-based representa-
tion of an NADL description. The umoP planning system uses NADL and
different OBDD-based universal planning algorithms. It includes the previ-
ously developed strong and strong cyclic planning algorithms (Cimatti et al.,
1998a, 1998b). In addition, a new optimistic planning algorithm is intro-
duced, which relaxes optimality guarantees and generates plausible universal
plans in some domains where no strong or strong cyclic solution exist. Em-
pirical results are presented from domains ranging from deterministic and
single-agent with no environment actions to non-deterministic and multi-
agent with complex environment actions. UMOP is shown to be a rich and
efficient planning system.

'umopP stands for Universal Multi-agent OBDD-based Planner.
2 NADL stands for Non-deterministic Agent Domain Language.

IT

Contents
1 Introduction

2 Introduction to Classical AT Planning
2.1 Basic Concepts o
2.2 State Space Planners o000
2.3 Plan Space Planners

3 Introduction to OBDDs

4 NADL
4.1 Syntaxo e
4.2 Semantics e e

5 OBDD Representation of NADI Descriptions

6 OBDD-based Universal Planning Algorithms
6.1 Strong Planning 0oL
6.2 Strong Cyclic Planning
6.3 Strengths and Limitations
6.4 Optimistic Planning

7 The UmoPr Planner
7.1 Planning oo
7.2 Analyzing o

8 Results
8.1 Deterministic Domains
8.1.1 AIPS’98 Competition Domains
8.1.2 The Obstacle Domain
8.1.3 Deterministic Power Plant Domain
8.2 Non-Deterministic Domains
8.2.1 Domains Tested by MBP
8.2.2 The Non-deterministic Power Plant Domain
8.2.3 The Soccer Domain

9 Previous Work

10 Conclusion and Future Work

III

12
14

16

19
20
20
20
23

25
25
28

29
29
29
33
35
39
39
42
44

47

49

References

v

51

Appendix 55

A BNF Definition of NADL 56
B NADL Includes the AR Family 57
C Uwmopr Planning Domains 58
C.l Gripper oo 58
C.1.1 Generator Script oo 58
C.1.2 Domain Example 00000 61
C.13 Result File 0 0 0 0. 64

C.2 Movie o e 66
C.2.1 Domain Example 00000 66
C2.2 ResultFile 68

C.3 Logistics o 69
C.3.1 Generator Script oL Lo 69
C.3.2 Domain Example 00000 72
C33 ResultFile 0 0. 75

C4 Obstacle oo 76
C.4.1 Generator Script oo 76
C.4.2 Domain Example 00000 79
C4.3 Result File 00 0 0. 81

C.5 Power Plant (Deterministic) 83
C.5.1 Domain Example 00000 83
C5.2 Result File 92

C.6 Transport (Strong Planning) 95
C.6.1 Domain Example 0000 95
C.6.2 Result File 97

C.7 Transport (Strong Cyclic Planning) 98
C.7.1 Domain Example00 98
C7.2 Result File 0 .. 99

C8 Beam Walk oo 100
C.8.1 Generator Script oo 100
C.8.2 Domain Example 00000, 102
C83 Result File 103

C.9 Power Plant (Non-Deterministic) 105
C.9.1 Domain Example 00000 105
C9.2 Result File 111
Ca0Soccer . . . v v o e e 114

C.10.1 Generator Scripto 0oL 114

C.10.2 Domain Example 0. 118
C.103 Result File oo o oL 122

D Uwmor Program Files 125
D.1 Makefileo 125
D.2 Lex File (mnp) 127
D.3 Yacc File (mnp.y)o oo 129
D.4 Header Files o o 135
D.4.1 Analysehpp o oo oo oo 135
D.4.2 Bddprint.hpp oo oo 136
D.4.3 Common.hpp o 137
D.4.4 Dissets.hpp o oo oo 138
D.4.5 Domain.h o oo o 139
D.4.6 Domain.hpp oo oo 142
D47 Fsm.hpp. . o .o oo o 146
D.4.8 Main.hppo 150
D.4.9 Plan.hpp o o o 151
D.4.10 Reorder.hpp o oo 152
D.4.11 Time.hpp . . . o o o o 0 oo 153

D.5 Source Files o 154
D.5.1 Analysecc.o oo 154
D.5.2 Bddprint.ce oo 159
D.5.3 Dissets.cco Lo 171
D.54 Domain.cc.o oL 174
D55 Fsmuwce. . . oo oo 184
D.5.6 Main.cco Lo 211
D.5.7 Plan.ce ..o oo oo 218
D.5.8 Reorder.cc.o Lo 230
D.5.9 Timecc o o L 232

VI

1 Introduction

Classical planning is a broad area of research which involves the automatic
generation of the appropriate choices of actions to traverse a state space to
achieve specific goal states. A variety of different algorithms have been de-
veloped to address the state-action representation and the search for action
selection.

Traditionally these algorithms have been classified according to their
search space representation as either state-space planners (e.g., PRODIGY,
Veloso et al., 1995) or plan-space planners (e.g., ucPoP, Penberthy & Weld,
1992).

A new research trend has been to develop new encodings of planning
problems in order to adopt eflicient algorithms from other research ar-
eas, leading to significant developments in planning algorithms, as sur-
veyed by Weld (1999). This class of planning algorithms includes GRAPH-
PLAN (Blum & Furst, 1995), which uses a flow-graph encoding to constrain
the search and saTpLAN (Kautz & Selman, 1996), which encodes the plan-
ning problem as a satisfiability problem and uses fast model satisfaction
algorithms to find a solution.

Recently, another new planner MBP (Cimatti et al., 1997) was introduced
that encodes a planning domain as a non-deterministic finite automaton
(NFA) represented by an Ordered Binary Decision Diagram (0BDD) (Bryant,
1986). In contrast to the previous algorithms, MBP effectively extends to
non-deterministic domains producing universal plans as robust solutions.
Due to the scalability of the underlying model checking representation and
search techniques, it can be shown to be a very efficient universal plan-
ner (Cimatti et al., 1998a, 1998b).

A universal plan is a set of state-action rules that aim at covering the
possible multiple situations in the non-deterministic environment. A univer-
sal plan is executed by interleaving the selection of an action in the plan and
observing the resulting effects in the world. Universal planning resembles
the outcome of reinforcement learning (Sutton & G., 1998), in that the state-
action model captures the uncertainty of the world. Universal planning is a
precursor approach®, where all planning is done prior to execution, building
upon the assumption that a non-deterministic model can be acquired, and
leading therefore to a sound and complete planning approach.

*The term precursor originates from Dean et al. (1995) in contrast to recurrent ap-
proaches which replan to recover from execution failures.

However, universal planning has been criticized (e.g., Ginsberg, 1989),
due to a potential exponential growth of the universal plan size with the
number of propositions defining a domain state. An important contribution
of MBP is thus the use of OBDDs to represent universal plans. In the worst
case, this representation may also grow exponential with the number of
domain propositions, but because OBDDs are very compact representations
of boolean functions, this is often not the case for domains with a regular
structure (Cimatti et al., 1998a). Therefore, 0BDD-based planning seems to
be a promising approach to universal planning.

An interesting problem is to extend the oBDD-based planning approach
to multi-agent, non-deterministic domains, where the environment is explic-
itly modelleds. The goal of this thesis is to define a new domain description
language suitable for modelling such domains and implement an OBDD-based
universal planning system for solving planning problems defined in this lan-
guage.

The developed planner is called umoP (UMOP stands for Universal Multi-
agent OBDD-based Planner.). The overall approach for designing uMOP is
similar to the approach introduced by Cimatti et al. (1998a, 1998b). The
main contribution is the domain description language, NADL (NADL stands
for Non-deterministic Agent Domain Language.). NADL has more resem-
blance with previous planning languages than the action description lan-
guage AR currently used by MBP. It has powerful action descriptions that
can perform arithmetic operations on numerical domain variables. Domains
comprised of synchronized agents can be modelled by introducing concurrent
actions based on a multi-agent decomposition of the domain.

In addition, NADL introduces a separate and explicit environment model
defined as a set of uncontrollable agents, i.e., agents whose actions cannot
be a part of the generated plan. NADL has been carefully designed to allow
for efficient oBDD-encoding. Thus, in contrast to MBP, UMOP can generate
a partitioned transition relation representation of the NFA, which is known
from model checking to scale up well (Burch et al., 1991; Ranjan et al.,
1995). Empirical experiments suggest that this is also the case for umop.

Uwmor includes the previously developed algorithms for 0BDD-based uni-
versal planning. In addition, a new “optimistic” planning algorithm is intro-
duced, which relaxes optimality guarantees and generates plausible universal
plans in some domains, where no solution can be found by the previous al-
gorithms.

The thesis is organized as follows. Section 2 gives an introduction to clas-
sical Artificial Intelligence planning (Al planning). It may be skipped by

readers already familiar with the subject. Section 3 gives a brief overview of
0BDDs. Section 4 introduces NADL, shows how to encode a planning prob-
lem, and formally describes the syntax and semantics of this description
language in terms of an NFA. The properties of the language are also dis-
cussed based on an example and arguments are given for the design choices.
Section 5 presents the 0BDD representation of NADL domain descriptions.
Section 6 describes the different algorithms that have been used for OBDD-
based planning and introduces the optimistic planning algorithm. Section 7
describes the implementation of UMOP and its facility for analyzing univer-
sal plans. Section 8 presents empirical results in several planning domains,
ranging from single-agent and deterministic ones to multi-agent and non-
deterministic ones. Section 9 discusses previous approaches to planning in
non-deterministic domains. Finally, Section 10 draws conclusions and dis-
cusses directions for future work.

2 Introduction to Classical AI Planning

This section gives a brief introduction to the basic concepts of Al planning
and presents two classical approaches. It may be skipped by readers already
familiar with the topic.

2.1 Basic Concepts

A planning problem consists of finding some ordering of actions that changes
the state of a domain from some initial state to some goal state. As an
example consider the problem of finding a plan to move a robot with actions
up, down, le ft and right from grid position (1,1) to (2,3). One solution is
the totally ordered plan (up, up, right), but any ordering of the three actions
is a solution.

The input to a planning system is a specification of the initial and goal
state and a domain theory. The domain theory defines the state space and
the actions of the domain and is a discrete representation of the target world,
where actions are modelled as transitions between states.

Classical planners use the sTRIPS language (Fikes & Nilsson, 1971), or
STRIPS inspired languages, to represent the domain theory. In the sTRIPS
language states are described in logic by conjunctions of function-free ground
literals. In the classical blocks world the initial state shown in Figure 1 could

be described by:
on(C, A) A on(B,Table) A on(A, Table)
A STRIPS action has three parts: A precondition that defines when the

Initial state Goal state

A
C B
B A C

Figure 1: A blocks world domain planning problem.

action is applicable, a set of atoms made true by the action (the add-list)
and a set of actions made false by the action (the delete list). Only atoms
mentioned in the add and delete list are assumed to change truth value. An
action in the blocks world for stacking block z onto block y is shown below:

ACTION:Stack(x,y),
PRECOND:holding(x) A clear(y),
ADD:{armempty,on(x,y),clear(x)}
DELETE:{holding(x),clear(y)}

For the early approaches to planning (e.g. planning as theorem proving in
situation calculus) a major problem, known as the frame problem, was how
to efficiently represent the unchanged knowledge by actions. It is STRIPS
implicit solution of the frame problem that is the main reason for its popu-
larity, as the amount of knowledge changed by an action normally is small
compared to the amount of unchanged knowledge.

2.2 State Space Planners

A state space planner searches in the state space of a domain. A planner
starting from an initial state and applying actions successively until a goal
state is reached is called a progression planner or a forward chaining plan-
ner. Often search trees with a lower branching factor can be obtained be
searching backward from the goal by applying actions that can achieve some
goal literal. Planners using this strategy are called regression planners or
backward chaining planners. Backward chaining planners only considering

orderings of subgoals are known as linear planners. Not all problems can
be solved using this strategy. Consider for example the planning problem
shown in Figure 1. Suppose a planner first achieves on(A, B) by taking C
off A and putting A on B, it then cannot achieve the subgoal on(B, C') with-
out undoing the action. A similar situation arises, if it starts with the goal
on(B,C). The problem is known as the Sussman anomaly.

Planners able to interleave the plan steps from each subgoal in a way
that satisfies all subgoals are called nonlinear planners. A subset of these
planners can avoid having to totally order all steps in a plan. These planners
are known as partial-order planners.

2.3 Plan Space Planners

A partial-order planner searches through the space of plans rather than the
space of states. The planner starts with a simple, incomplete plan, which
is modified until a complete plan is found that solves the problem. The
operators in this search are operators on plans: Adding an action, adding
an ordering constraint on actions, binding previously unbound variables etc..
The solution is a plan consisting of a partial-order of actions.

Partial-order planners are capable of solving the Sussman anomaly. A
solution showing causal and ordering links between actions is depicted in
Figure 2.

3 Introduction to OBDDs

An Ordered Binary Decision Diagram (Bryant, 1986) is a canonical represen-
tation of a boolean function with n linear ordered arguments z, o, ..., Z,.

An OBDD is a rooted, directed acyclic graph with one or two terminal
nodes of out-degree zero labeled 1 or 0, and a set of variable nodes u of out-
degree two. The two outgoing edges are given by the functions high(u) and
low(u) (drawn as solid and dotted arrows). Each variable node is associated
with a propositional variable in the boolean function the OBDD represents.
The graph is ordered in the sense that all paths in the graph respect the
ordering of the variables.

An oBDD representing the function f(z1,z2) = x1 A 23 is shown in
Figure 3. Given an assignment of the arguments z; and z, the value of f
is determined by a path starting at the root node and iteratively following
the high edge, if the associated variable is true, and the low edge, if the

I I C-IS-ON-A

I I

| | ASONTABLE AISONS | |
B-IS-ON-TABLE BISONG A
| ol BiscLEAR - — > | el
| | CISCLEAR | |
creator of initial state goal
AISON-TABLE Y
AISON-TABLE I I
>
B> AdsCLEAR AISON-B
BISCLEAR | A |
SC B-IS-CLEAR 1
. .
put-a-on-b
C-IS-ON-A i A ASONB
. AIS-CLEAR |
C-IS-CLEAR \/ |
> T I I
C-IS-ON-A | | C-IS-ON-TABLE |
CIS-CLEAR A 5 AISCLEAR |
| | |
take-c-off-a I
T |
| |
|
y 1
B-IS-ON-TABLE B-IS-ON-TABLE I I
»
BIS.CLEAR | BiScLear | A | BisONC BISON-C
| C-IS-CLEAR 3
- 1 1
C-IS-CLEAR
> put-b-on-¢

Figure 2: The final plan generated by a partial-order planner for solving the
Sussman anomaly. Solid arrows denote causal links between actions (and
thus also ordering links) while dashed arrows denote ordering links.

associated variable is false. The value of f is True if the label of the reached
terminal node is 1; otherwise it is Fualse.

7

\“

0

Figure 3: An oBDD representing the function f(zq,z2) = z1 A z3. High
(true) and low (false) edges are drawn solid and dotted, respectively.

An oBBD graph is reduced so that no two distinct nodes w and v have
the same variable name and low and high successors (Figure 4(a)), and no
variable node u has identical low and high successors (Figure 4(b)).

u Vv u

(@ (b)

Figure 4: Reductions of 0BDDs. (a): nodes associated to the same variable
with equal low and high successors will be converted to a single node. (b):
nodes causing redundant tests on a variable, are eliminated.

The 0oBDD representation has two major advantages: First, it is an effi-
cient representation of boolean functions because the number of nodes often
is much smaller than the number of truth assignments of the variables.
The number of nodes can grow exponential with the number of variables,
but most commonly encountered functions have a reasonable representation
(Bryant, 1986). Second, any operation on two OBDDs, corresponding to a
boolean operation on the functions they represent, has a low complexity
bounded by the product of their node counts.

A disadvantage of 0BDDs is that the size of an OBDD representing some
function is very dependent on the ordering of the variables. To find an
optimal variable ordering is a co-NP-complete problem in itself, but fortu-
nately a good heuristic is to locate dependent variables near each other in

the ordering.

0BDDs have been successfully applied to model checking. In model check-
ing the behavior of a system is modelled by a finite state automaton with
a transition relation represented as an OBDD. Desirable properties of the
system is checked by analyzing the state space of the system by means of
OBDD manipulations.

As introduced by Cimatti et al. (1998a, 1998b), a similar approach can
be used for a non-deterministic planning problem. Given an NFA represen-
tation of the planning domain with the transition relation represented as
an OBDD, the algorithms used to verify CTL properties in model checking
(Clarke et al., 1986; McMillan, 1993) can be used to find a universal plan
solving the planning problem.

4 NADL

In this section, the properties of NADL are discussed based on an informal
definition of the language and a domain encoding example. The formal
syntax and semantics of NADL is then described.

An NADL domain description consists of: a definition of state variables,
a description of system and environment agents, and a specification of an
tnitial and goal conditions.

The set of state variable assignments defines the state space of the do-
main. An agent’s description is a set of actions. The agents change the state
of the world by performing actions, which are assumed to be executed syn-
chronously and to have a fixed and equal duration. At each step, all of the
agents perform exactly one action, and the resulting action tuple is a joint
action. The system agents model the behavior of the agents controllable by
the planner, while the environment agents model the uncontrollable world.
A valid domain description requires that the system and environment agents
constrain a disjoint set of variables.

An action has three parts: a set of state variables, a precondition for-
mula, and an effect formula. Intuitively the action takes responsibility of
constraining the values of the set of state variables in the next state. It
further has exclusive access to these variables during execution. In order for
the action to be applicable, the precondition formula must be satisfied in the
current state. The effect of the action is defined by the effect formula which
must be satisfied in the next state. To allow conditional effects, the effect
expression can refer to both current and next state variables, which need

to be a part of the set of variables of the action. All next state variables
not constrained by any action in a joint action maintain their value. Fur-
thermore only joint actions containing a set of actions with consistent effects
and a disjoint set of state variable sets are allowed. System and environment
agents must be independent in the sense that the two sets of variables, their
actions constrain, are disjoint.

The initial and goal conditions are formulas that must be satisfied in the
initial state and the final state, respectively.

There are two sources of non-determinism in NADL domains: non-deter-
minism caused by actions not restricting all their constrained variables to
a specific value in the next state, and non-determinism caused by a non-
deterministic selection of environment actions.

A simple example of an NADL domain description is shown in Figure 5%.
The domain describes a planning problem for Schoppers’ (1987) robot-baby
domain. The domain has two state variables: a numerical one, pos, with
range {0, 1,2, 3} and a propositional one, robot_works. The robot is the only
system agent and it has two actions Lift-Block and Lower-Block. The baby
is the only environment agent and it has one action Hit-Robol. Because
each agent must perform exactly one action at each step, there are two joint
actions (Lift-Block, Hit-Robot) and (Lower-Block,Hil- Robot).

Initially the robot is assumed to hold a block at position 0, and its task
is to lift it up to position 3. The Lift-Block (and Lower-Block) action has
a conditional effect described by an if-then-else operator: if robot_works is
true, Lift-Block increases the block position with one, otherwise the block
position is unchanged. Initially robol_works is assumed to be true, but it can
be made false by the baby. The baby’s action Hit-Robot is non-deterministic,
as it only constrains robot_works by the effect expression —robot_works =
—robot _works’. Thus, when robot_works is true in the current state, the
effect expression of Hit-Robot does not apply, and robot_works can either be
true or false in the next state. On the other hand, if robot_works is false in
the current state, Hit-Robol keeps it false in the next state. The Hit-Robol
models an uncontrollable environment, in this case a baby, by its effects on
robot_works. In the example above, robot _works stays false when it, at some
point, has become false, reflecting that the robot cannot spontaneously be

fixed by a hit of the baby.

*Unquoted and quoted variables refer to the current and next state, respectively. An-
other notation like v; and v¢41 could have been used. We have chosen the quote notation
because it is the common notation in model checking.

variables
nat(4) pos
bool robot_works
system
agt: Robot
Lift-Block
con: pos
pre:pos < 3
eff: robot_works — pos’ = pos + 1, pos’ = pos
Lower-Block
con: pos
pre: pos > 0
eff: robot_works — pos’ = pos — 1, pos’ = pos
environment
agt: Baby
Hit-Robot
con: robot _works
pre: true
eff: —robot_works = —robot_works'
initially
pos = 0 A robot_works
goal
pos =3

Figure 5: An NADL domain description.

An NFA representing the domain is shown in Figure 6. The calculation
of the next state value of pos in the Lift-Block action shows that numerical
variables can be updated by an arithmetic expression on the current state
variables. The update expression of pos and the use of the if-then-else
operator further demonstrate the advantage of using explicit references to
current state and next state variables in effect expressions. NADL does not
restrict the representation by enforcing a structure separating current state
and next state expressions. The if-then-else operator has been added to
support complex, conditional effects that often are efficiently and naturally
represented as a set of nested if-then-else operators.

The explicit representation of constrained state variables enables any
non-deterministic or deterministic effect of an action to be represented, as
the constrained variables can be assigned to any value in the next state that

10

robot_works

(3

i@ @ @ O

AA

e @@~ @0

0 1 2 3 pos

Figure 6: The NFA of the robot-baby domain (see Figure 5). There are
two state variables: a propositional state variable robot_works and a nu-
merical state variable pos with range {0, 1,2,3}. The (Lift-Block, Hit- Robot)
and (Lower-Block,Hil-Robot) joint actions are drawn with solid and dashed
arrows respectively. States marked with “I” and “G” are initial and goal
states.

satisfies the effect formula. It further turns out to have a clear intuitive
meaning as the action takes the “responsibility” of specifying the values of
the constrained variables in the next state.

Compared to the action description language A (Gelfond & Liftschitz,
1993) and AR (Giunchiglia et al., 1997) that are the only prior languages
used for 0BDD-based planning (Di Manzo et al., 1998; Cimatti et al., 1998a,
1998b, 1997), NADL introduces an explicit environment model, a multi-agent
decomposition and numerical state variables. It can further be shown that
NADL can be used to model any domain that can be modelled with AR (see
Appendix B).

The concurrent actions in NADL are assumed to be synchronously exe-
cuted and to have fixed and equal duration. A general representation al-
lowing partially overlapping actions and actions with different durations has
been avoided, as it requires more complex temporal planning (see e.g., O-
PLAN or PARCPLAN Currie & Tate, 1991; Lever & Richards, 1994). Our
joint action representation has more resemblance with A¢ (Baral & Gel-
fond, 1997) and C (Giunchiglia & Lifschitz, 1998), where sets of actions are
performed at each time step. In contrast to these approaches, though, we
model multi-agent domains.

An important issue to address when introducing concurrent actions is
synergetic effects between simultaneously executing actions (Lingard & Richards,
1998). A common example of destructive synergetic effects is when two or

11

more actions require exclusive use of a single resource or when two actions
have inconsistent effects like pos’ = 3 and pos’ = 2. In NADL actions cannot
be performed concurrently if: 1) they have inconsistent effects, or 2) they
constrain an overlapping set of state variables. The first condition is due to
the fact that state knowledge is expressed in a monotonic logic which cannot
represent inconsistent knowledge. The second rule addresses the problem of
sharing resources. Consider for example two agents trying to drink the same
glass of water. If only the first rule defined interfering actions both agents,
could simultaneously empty the glass, as the effect glass_empty of the two
actions would be consistent. With the second rule added, these actions are
interfering and cannot be performed concurrently.

The current version of NADL only avoids destructive synergetic effects. It
does not include ways of representing constructive synergetic effects between
simultaneous acting agents (Lingard & Richards, 1998). A constructive
synergetic effect is illustrated in Baral and Gelfond (1997), where an agent
spills soup from a bowl when trying to lift it up with one hand, but not when
lifting it up with both hands. In C and A¢ this kind of synergetic effects
can be represented by explicitly stating the effect of a compound action. A
similar approach could be used in NADL, but is currently not supported.

4.1 Syntax

A BNF definition of the concrete syntax of NADL is shown in Appendix A.
Identifiers are alphanumeric sequences starting with a letter. Numbers are
natural numbers. The syntax of formulas is defined in the following formal
definition of an NADL description.

An NADL description is a 7-tuple D = (SV, S, E, Act,d, I,), where:

e SV = PVar U NVar is a finite set of state variables comprised of a
finite set of propositional variables, PVar, and a finite set of numerical
variables, NVar.

e S is a finite, nonempty set of system agents.
e F is a finite set of environment agents.

e Act is a set of action descriptions (¢, p, €) where ¢ is the state variables
constrained by the action, p is a precondition state formula in the set
SForm and e is an effect formula in the set Form. Thus (c¢,p,e€) €
Act C 25V x SForm x Form. The sets SForm and Form are defined
below.

12

o d: Agl — 24° is a function mapping agents (Agt = S U E) to their
actions. Because an action is associated to one agent, d must satisfy
the following conditions:

U d(a) = Act

o€ Agt
Vay,as € Agt . d(oq) Nd(az) =0

e [€ SForm is the initial condition.

e (G € SForm is the goal condition.

For a valid domain description, we require that actions of system agents are
independent of actions of environment agents:

ec k sesS
a€dle) a€ed(s)

where ¢(a) is the set of constrained variables of action a. The set of formulas
Form are constructed from the following alphabet of symbols:

e A finite set of current state v and next state v’ variables, wherev € SV.

e The natural numbers N.

The arithmetic operators 4+, —, /, * and mod.

e The relation operators >, <, <, >, = and #.

The boolean operators —,V,A,=,< and —.

The special symbols true, false, parenthesis and comma.

The set of arithmetic expressions is constructed from the following rules:
1. Every numerical state variable v € NVar is an arithmetic expression.
2. A natural number is an arithmetic expression.

3. If €1 and ey are arithmetic expressions and ¢ is an arithmetic operator,
then e; @ ey is an arithmetic expression.

13

Finally, the set of formulas Form is generated by the rules:
1. true and false are formulas.
2. Propositional state variables v € PVar are formulas.

3. If e; and ey are arithmetic expressions and R is a relation operator
then e; R e; is a formula.

4. 1f f1, f2 and f3 are formulas, so are (= f1), (f1V f2), (irf2), (f1 = f2),
(fie fo) and (fi = fo, f3).

Parenthesis have their usual meaning and operators have their usual priority
and associativity with the if-then-else operator “—” given lowest priority.
SForm C Form is a subset of the formulas only referring to current state
variables. These formulas are called state formulas.

4.2 Semantics

All of the symbols in the alphabet of formulas have their usual meaning
with the if-then-else operator f; — f3, f3 being an abbreviation for (fi A
f2) V (=fi A f3). Each numerical state variable v € NVar has a finite range
rng(v) ={0,1,---,t,}, where ¢, > 0.

The formal semantics of a domain description D = (SV, S, E, Act,d, I,G)
is given in terms of an NFA M:

Definition 1 (NFA) A Non-deterministic Finite Automaton is a 3-tuple,
M = (Q,%,90), where Q) is the sel of stales, ¥ is a set of input values and
§:Q x X — 2% is a next stale function.

In the following construction of M we express the next state function as a
transition relation. Let B denote the set of boolean values {7rue, False}.
Further, let the characteristic function A: B — B associated to aset A C B
be defined by: A(z) = (z € A)®. Given an NFA M we define its transition
relation T C) X X X) as a set of triples with characteristic function
T(s,i,s") = (s € 6(s,1)).

The states @ of M equals the set of all possible variable assignments
Q = (PVar — B) x (Nvar — N). X of M is the set of joint actions of
system agents represented as sets. That is, {a1, a3, -+, a5} € ¥ if and only

SNote: the characteristic function has the same name as the set.

14

if (a1,az,-+,a5) € [I,esd(a), where |S| denotes the number of elements
in 5.

To define the transition relation T : @ x ¥ x () — B of M we constrain
a transition relation ¢ : Q) X J X) — B with the joint actions J of all agents
as input by existential quantification to the input X.

T(s,i,s) =35 €J.i CjAL(s,j &)

The transition relation ¢ is a conjunction of three relations A, F and I. Given
an action a = (¢, p,e) and a current state s, let FP,(s) denote the value of
the precondition formula p of . Similarly, given an action ¢ = (¢, p, €) and
a current and next state s and §', let £, (s, s’) denote the value of the effect

formula e of a. A:Q X J X — B is then defined by:

A(s,5,8) = N\ (Pa(s) A Ea(s,)

a€j

A defines the constraints on the current state and next state of joint actions.
A further ensures that actions with inconsistent effects cannot be performed
concurrently as A reduces to false if any pair of actions in a joint action
have inconsistent effects. Thus, A also states the first rule for avoiding
interference between concurrent actions.

F:QxJ x@Q — Bis aframe relation ensuring that unconstrained vari-
ables maintain their value. Let c¢(a) denote the set of constrained variables
of action a. We then have:

F(Svjv S/) = /\ (‘U = ‘U/)v
vgC

where C' = (J,¢; c(a).

I :J — B ensures that concurrent actions constrain a non overlapping
set of variables and thus states the second rule for avoiding interference
between concurrent actions:

1G)= N (elar)ne(az) =0),

(a1,a2)€42

where 52 denotes the set {(ay,a3) | (a1, a2) € j X jAa; # az}. The transition
relation ¢ is thus given by:

t(s,4,8) = A(s,7,8') N F(s,7,8) N(3)

15

5 OBDD Representation of NADL Descriptions

To build an oBDD T representing the transition relation T'(s,i,s’) of the
NFA of a domain description D = (SV, S, F, Act,d, I,G), we must define
a set of boolean variables to represent the current state s, the joint action
input ¢ and the next state s’. As in Section 4.2 we first build a transition
relation with the joint actions of both system and environment agents as
input and then reduces this to a transition relation with only joint actions
of system agents as input.

Joint action inputs are represented in the following way: assume action
@ is identified by a number p and can be performed by agent «. @ is then
defined to be the action of agent «, if the number expressed binary by a set
of boolean variables A,, used to represent the actions of «, is equal to p.
Propositional state variables are represented by a single boolean variable,
while numerical state variables are represented binary by a set of boolean
variables.

Let A, to AelEl and A;, to ASISI denote sets of boolean variables used
to represent the joint action of system and environment agents. Further,
let z* and :L"fj denote the k’th boolean variable used to represent state
variable v; € SV in the current and next state. An ordering of the boolean
variables, known to be efficient from model checking, puts the input variables
first followed by an interleaving of the boolean variables of current state and
next stat variables:

Ay <o = Ay = Agy <o < Ay
1

<z <aly <ooe<alt <2

1 n

<z, <a, <---<alr <2

where m; is the number of boolean variables used to represent state variable
v; and n is equal to |SV|.

The construction of an OBDD representation T is quite similar to the
construction of 7" in Section 4.2. An OBDD representing a logical expression
is built in the standard way. Arithmetic expressions are represented as lists
of 0BDDs defining the corresponding binary number. They collapse to single
0BDDs when related by arithmetic relations.

To build an 0BDD A defining the constraints of the joint actions we need
to refer to the values of the boolean variables representing the actions. Let

16

i(a) be the function that maps an agent « to the value of the boolean vari-
ables representing its action and let b(a) be the identifier value of action a.
Further let P(a) and E(a) denote 0BDD representations of the precondition
and effect formula of an action a. A is then given by:

Note that logical operators now denote the corresponding OBDD operators.
An 0oBDD representing the frame relation F’ changes in a similar way:

F= A ((N\ ((@=ba)=véc@)=s=s),
vesV o ¢ Agl
a € d(a)

where ¢(a) is the set of constrained variables of action ¢ and s, = s, ex-
presses that all current and next state boolean variables representing v are
pairwise equal. The expression v ¢ c(a) evaluates to True or False and is
represented by the oBDD for True or Fulse.

The action interference constraint I is given by:

i = A (iar) = b(ar) = i(a) # baa)) A
(a1, a2) € S?
(a1, az) € c(ay, az)

A (ier) = blar) = ilaz) # b(az)),
(041, 042) € E?
(a1, az) € c(ay, az)

where c(a, ag) = {(a1, az) | (a1, az) € d(ay) x d(az) A c(ar) Ne(ag) # 0}.

Finally the oBDD representing the transition relation 7" is the conjunction
of A, I and I with action variables of the environment agents existentially
quantified:

T=3A,, - Acp - ANF AT

9 elEl
Partitioning the transition relation

The algorithms we use for generating universal plans all consist of some
sort of backward search from the states satisfying the goal condition to the

17

states satisfying the initial condition (see Section 6). Empirical studies in
model checking have shown that the most complex operation for this kind
of algorithms normally is to find the preimage of a set of visited states V.

Definition 2 (Preimage) Given an NFA M = (Q, 3, 0) and a set of states
V C Q, the preimage of V is the sel of stales {s|s € Q@ ANJi € ¥,¢' €
8(s,i).s' e V}.

Note that states already belonging to V' can also be a part of the preimage
of V. Assume that the set of visited states are represented by an OBDD
expression V on next state variables and that we for iteration purposes,
want to generate the preimage P also expressed in next state variables. For
a monolithic transition relation 7" we then calculate:

= 3F.TAV)[Z/Z]
3 .U

e S

where Z, 7 and 7’ denote input, current state and next state variables, and
[Z'/Z] denotes the substitution of current state variables with next state
variables. The set expressed by U consists of state input pairs (s,7), for
which the state s belongs to the preimage of V and the input ¢ may cause a
transition from s to a state in V. In the universal planning algorithms pre-
sented in the next section, the universal plans are constructed from elements
in U.

The 0BDD representing the transition relation T and the set of visited
states V tend to be large, and a more efficient computation can be obtained
by performing the existential quantification of next state variables early in
the calculation (Burch et al., 1991; Ranjan et al., 1995). To do this the tran-
sition relation has to be split into a conjunction of partitions 17,75, ..., T},
allowing the modified calculation:

U = (35 TN 3 Ton (3 Ty AV)) -) [E/ 7

P = 3.0

That is, T} can refer to all variables, T can refer to all variables except z7i’,
Tg can refer to all variables except #;’ and 23" and so on.

As shown by Ranjan et al. (1995) the computation time used to calculate
the preimage is a convex function of the number of partitions. The reason
for this is that, for some number of partitions, a further subdivision of
the partitions will not reduce the total complexity, because the complexity

18

introduced by the larger number of OBDD operations is higher than the
reduction of the complexity of each OBDD operation.

NADL has been carefully designed to allow a partitioned transition rela-
tion representation. The relations A, F and I all consist of a conjunction of
subexpressions that normally only refer to a subset of next state variables.
A partitioned transition relation that enables early variable quantification
can be constructed by sorting the subexpressions according to which next
state variables they refer to and combining them in partitions with near
optimal sizes that satisfy the above requirements.

6 OBbDD-based Universal Planning Algorithms

In this section two prior algorithms for 0BDD-based universal planning are
described. Furthermore it is discussed which kind of domains they are suit-
able for. Based on this discussion a new algorithm called optimistic planning
is presented that seems to be suitable for some domains not covered by the
prior algorithms.

The three universal planning algorithms discussed are all based on an
iteration of preimage calculations. The iteration corresponds to a parallel
backward breadth first search starting at the goal states and ending when
all initial states are included in the set of visited states (see Figure 7). The
main difference between the algorithms is the way the preimage is defined.

Figure 7: The parallel backward breadth first search used by universal plan-
ning algorithms studied in this article.

19

6.1 Strong Planning

Strong Planning (Cimatti et al., 1998b) uses a different preimage definition
called strong preimage. For a state s belonging to the strong preimage of
a set of states V, there exists at least one input ¢ where all the transitions
from s associated to ¢ leads into V. When calculating the strong preimage of
a set of visited states V', the set of state input pairs U represents the set of
actions for each state in the preimage that, for any non-deterministic effect
of the action, causes a transition into V. The universal plan returned by
strong planning is the union of all these state-action rules. Strong planning
is complete. If a strong plan exists for some planning problem the strong
planning algorithm will return it, otherwise, it returns that no solution ex-
ists. Strong planning is also optimal due to the breadth first search. Thus,
a strong plan with the fewest number of steps in the worst case is returned.

6.2 Strong Cyclic Planning

Strong cyclic planning (Cimatti et al., 1998a) is a relaxed version of strong
planning, as it also considers plans with infinite length. Strong cyclic plan-
ning finds a strong plan if it exists. Otherwise, if the algorithm at some
point in the iteration is unable to find a strong preimage it adds an or-
dinary preimage (referred to as a weak preimage). It then tries to prune
this preimage by removing all states that have transitions leading out of the
preimage and the set of visited states V. If it succeeds, the remaining states
in the preimage are added to V and it again tries to add strong preimages.
If it fails, it adds a new, weak preimage and repeats the pruning process.
A partial search of strong cyclic planning is shown in Figure 8. A strong
cyclic plan only guarantees progress towards the goal in the strong parts.
In the weak parts, cycles can occur. To keep the plan length finite, it must
be assumed that a transition leading out of the weak parts eventually will
be taken. The algorithm is complete as a strong solution will be returned
if it exists. If no strong or strong cyclic solution exist the algorithm returns
that no solution exists.

6.3 Strengths and Limitations

An important reason for studying universal planning is that universal plan-
ning algorithms can be made generally complete. Thus, if a plan exists for
painting the floor, an agent executing a universal plan will always avoid
to paint itself into the corner or reach any other unrecoverable dead-end.

20

Figure 8: Preimage calculations in strong cyclic planning. Dashed ellipses
denote weak preimages while solid ellipses denote strong preimages. Only
one action is assumed to exist in the domain. All the shown transitions are
included in the universal plan. Dashed transitions are from “weak” parts of
the plan while solid transitions are from “strong” parts of the plan.

Strong planning and strong cyclic planning algorithms contribute by pro-
viding complete OBDD based algorithms for universal planning.

A limitation of strong and strong cyclic planning is their criteria for plan
existence. If no strong or strong cyclic plan exist, these algorithms fail. The
domains that strong and strong cyclic planning fail in are characterized by
having unrecoverable dead-ends that cannot be guaranteed to be avoided.

Unfortunately, real world domains often have these kinds of dead-ends.
Consider, for example, Schoppers’ robot-baby domain described in Section 4.
As depicted in Figure 6 no universal plan represented by a state-action set
can guarantee the goal to be reached in a finite or infinite number of steps,
as all relevant actions may lead to an unrecoverable dead-end.

A more interesting example is how to generate a universal plan for con-
trolling, for example, a power plant. Assume that actions can be executed
that can bring the plant from any bad state to a good state. Unfortunately
the environment can simultaneously fail subsystems of the plant which makes
the resulting joint action non-deterministic, such that the plant may stay in
a bad state or even change to an unrecoverable failed state (see Figure 9).
No strong or strong cyclic solution can be found because an unrecoverable
state can be reached from any initial state. An NADL description of a power

21

plant domain is studied in Section 8.2.2.

Bad States Good States

a@ -
O

Failed
States

Figure 9: Abstract description of the NFA of a power plant domain.

Another limitation of strong and strong cyclic planning is the inherent
pessimism of these algorithms. Strong cyclic planning will always prefer to
return a strong plan if it exists, even though a strong cyclic plan may exist
with a shorter, best case plan length. Consider for example the domain
described in Figure 10. The strong cyclic algorithm would return a strong

Figure 10: The NFA of a domain with two actions (drawn as solid and
dashed arrows) showing the price in best case plan length when preferring
strong solutions. IS is the initial state while GS is the goal state.

plan only considering solid actions. This plan would have a best and worst
case length of n. But a strong cyclic plan considering both solid and dashed
actions also exists and could be preferable because the best case length of 1
of the cyclic solution may have a much higher probability than the infinite
worst case length.

By adding a unrecoverable dead-end for the dashed action and making
solid actions non-deterministic (see Figure 11) strong cyclic planning now
returns a strong cyclic plan considering only solid actions. But we might
still be interested in a plan with best case performance even though the goal
is not guaranteed to be achieved.

22

0
}

.S@_,Z @

Figure 11: The NFA of a domain with two actions (drawn as solid and
dashed arrows) showing the price in best case plan length when preferring
strong cyclic solutions. IS is the initial state while GS is the goal state.

6.4 Optimistic Planning

The analysis in the previous section shows that there exist domains and
planning problems for which we may want to use a fully relaxed algorithm,
that always includes the best case plan and returns a solution even if it
includes dead-ends which cannot be guaranteed to be avoided. An algorithm
similar to the strong planning algorithm, that adds an ordinary preimage in
each iteration has these properties. Because state-action pairs that can have
transitions to unrecoverable dead-ends are added to the universal plan, this
algorithm is called optimistic planning. The algorithm is shown in Figure 12.

The optimistic planning algorithm is incomplete because it does not nec-
essarily return a strong solution if it exists. Intuitively, optimistic planning
only guarantees that there exists some effect of a plan action leading to the
goal, where strong planning guarantees that all effects of plan actions lead
to the goal.

The purpose of optimistic planning is not to substitute strong or strong
cyclic planning. In domains where strong or strong cyclic plans can be found
and goal achievement has the highest priority these algorithms should be
used. On the other hand, in domains where goal achievement cannot be
guaranteed or the shortest plan should be included in the universal plan,
optimistic planning might be the better choice.

Consider again, as an example, the robot-baby domain described in Sec-
tion 4. For this problem an optimistic solution makes the robot try to lift
the block as long as it is working. A similar optimistic plan is generated in
the power plant domain. For all bad states the optimistic plan recommend
an action that brings the plant to a good state in one step. This continues as
long as the environment keeps the plant in a bad state. Because no strategy
can be used to avoid the environment from bringing the block lifting robot
and power plant to an unrecoverable dead-end, the optimistic solution is

23

procedure OptimisticPlanning(7nit, Goal)

VisitedStates := Goal

UniversalPlan := (}

while (Init ¢ VisitedStates)
StateActions := Preimage(VisitedStates)
PrunedStateActions := Prune(StateActions, VisitedStates)
if StateActions # () then

UnwersalPlan := UniversalPlan U PrunedState Actions

VisitedStates := VisitedStates U StatesOf(PrunedStateActions)

else
return “No optimistic plan exists”
return UniversalPlan

Figure 12: The optimistic planning algorithm. All sets in this
algorithm are represented by their characteristic function, which is
implemented as an OBDD. Preimage(VisitedStates) returns the set
of state-action pairs U associated with the preimage of the vis-
ited states. Prune(StateActions,VisitedStales) removes the state-action
pairs, where the state already is included in the set of visited states.
StatesOf(PrunedStateActions) returns the set of states of the pruned state-
action pairs.

24

quite sensible.

For the domains shown in Figure 10 and 11 optimistic planning would
return a universal plan with two state-action pairs: (1, dotted) and (n —
1, solid). For both domains this is a universal plan with the shortest best
case length. Compared to the strong cyclic solution the price in the first
domain is that the plan may have an infinite length, while the price in the
second domain is that a dead-end may be reached.

7 The Umor Planner

Umopr is written in C and C++. It uses the programs lex and yacc for
generating a scanner and parser for NADL descriptions and includes the
BUDDY OBDD package (Lind-Nielsen, 1999) for handling 0BDD operations.
The uMoP program is actually comprised of three subprograms: a program
for classical deterministic and non-deterministic planning (see Figure 13), a
program for extracting sequential plans from universal plans (see Figure 14)
and finally a program for analyzing universal plans and other OBDDs pro-
duced by uMoOP (see Figure 15). A detailed description of these subprograms
is given in the following two sections.

7.1 Planning

A flow diagram of a planning session is shown in Figure 13. A planning
session begins with a parsing of the NADL description. The parsing is done
by a parser generated by lex and yacc from the script files mnp.1 and mnp.y
(see Appendix D.2 and D.3). The domain is represented internally by the
structure defined in domain.h (see Appendix D.4.5). The parser is written
in C, because lex and yacc generates C files. The rest of the code is written
in C++4 partly to exploit the C++ interface of the BUDDY package. The
corresponding C++ domain representation is defined in domain.hpp (see
Appendix D.4.6). The domain representation is analyzed and translated to
a domain definition structure defined in £sm.hpp (see Appendix D.4.7). The
domain definition is a large structure containing all the domain information
needed by any function. Its most important structures are:

1. A mapping of each domain variable and action to the set of OBDD
variables representing it (e.g. used for translating formulas to 0BDD’s).

2. A 2D array of pointers to action descriptions. number).

25

NADL description

Parse

Domain definition

Build T

Classical Strong Cyclic Optimistic

i i

Sequential plan Universal plan Universal plan Universal plan

or
Universal Plan

Figure 13: Flow diagram of a UMOP planning session.

3. A disjoint segmentation of the domain variables defining the largest
number of transition relation partitions.

4. An OBDD representation of action variables and current and next state
variables.

The domain definition is generated by mkdomdef in fsm.cc (see Appendix
D.5.5).

Next, the transition relation is calculated. By default the largest number
of partitions is chosen. In this version of umoP, there is no automatic union
of small partitions. This must be done by hand for example by joining some
of the sets in the variable segmentation in the domain definition.

The partitioned transition relation is computed by the function T in
fsm.cc. T uses the functions A, IV and AC. A computes the action relation
(A) for a single action, IV computes the frame relation (F) for a partition
and AC computes the interference relation (/). The translation of a formula
to an OBDD is done by formula2bdd. It computes the OBDD by a recursive
descent of the formula expression. Numerical values are represented by an
array of oBDDs with a size corresponding to the number of digits in their
binary representation. Thus, a domain variable represented by the oBDD
variables 1, zq, - - -, , have the array representation [y, &9, -, &,], where

26

Z1,%9,+, T, denote the OBDD encoding of the variables.

Because arithmetic operations can be performed directly on the 0BDD
arrays, the arithmetic functions are implemented as the usual logical algo-
rithms for addition, subtraction etc.. Due to the time limitations of the
project the current version of UMOP only includes addition and subtrac-
tion. An explicit algorithm for subtraction has been avoided by rearranging
the arithmetic expression (see numberprop: :minus2plusin domain.cc, Ap-
pendix D.5.4).

The partitioned transition relation returned by T is used for generat-
ing plans by the planning algorithms. UMoOP has four planning algorithms
implemented:

1. Classical deterministic planning (described below).
2. Strong planning.

3. Strong cyclic planning.

4. Optimistic planning.

The algorithms are implemented in plan.cc (see Appendix D.5.7). Only
the deterministic algorithm will be described here, as the non-deterministic
algorithms already have been presented in previous sections.

NADL description

Parse

Universal plan Domain definition

Extract

Sequential plan
Figure 14: Flow diagram of a uMOP plan extraction session.

The backward search of the deterministic planning algorithm is similar
to the optimistic planning algorithm. A sequential plan is generated from

27

the universal plan by choosing an initial state and iteratively adding an ac-
tion from the universal plan until a goal state is reached. The output of
the deterministic planning algorithm can either be the extracted sequential
plan or the universal plan, it is based on. The universal plan can be used to
extract other sequential plans. The flow diagram of such a plan extraction
session is shown in Figure 14. As depicted in the figure, the NADL domain
description must be read again to produce the domain definition structure.
The deterministic planning algorithm has been implemented to verify the
performance of UMOP compared to other classical planners. It has not been
intended to be a fast OBDD based classical planning algorithm like the algo-
rithms developed by Di Manzo et al. (1998).

7.2 Analyzing

Universal plans, and any other OBDDs representing an expression on some
domain variables, can be analyzed in an interactive session. To analyze an
OBDD, the domain definition, of the domain it origins from, is first computed.
The domain definition is used to generate OBDDs representing formulas for
constraining the input 0BDD (see Figure 15). The analyzer is implemented in

NADL description

Parse

Domain definition
Universal plan Constraint

Analyze

OBDD print

Figure 15: Flow diagram of a UMOP analyze session.

analyse.cc (see Appendix D.5.1). Commands can be executed for counting
the number of nodes in the 0BDD, writing the constrained 0BDD to a file or
constraining the oBDD by a formula that may be read from a file.

28

8 Results

In the following four subsections the results obtained with the umop plan-
ning system are presented in 10 different domains ranging from determinis-
tic and single-agent with no environment actions to non-deterministic and
multi-agent with complex environment actions®. For each domain, a domain
example and the raw results of the experiments are shown in the appendix.

8.1 Deterministic Domains

A number of experiments have been carried out in deterministic domains
from the AIPS’98 planning competition in order to compare UMOPs per-
formance with some of the AIPS’98 planners. Subsequently, an obstacle
domain is presented to demonstrate that a deterministic, universal plan can
comprise a large number of classical sequential plans. Finally, a determin-
istic approach for handling non-determinism in the power plant domain is
shown.

8.1.1 AIPS’98 Competition Domains

Five planning systems BLACKBOX, IPP, STAN, HSP and SGP participated in
the competition. Only the first four of these planners competed in the three
examined domains. BLACKBOX is based on SATPLAN (Kautz & Selman,
1996), while 1PP and sTAN are graphplan-based planners (Blum & Furst,
1995). HsP uses a heuristic search approach based on a preprocessing of the
domain. The AIPS’98 planners were run on 233/400 MHz” Pentium PCs
with 128 MB RAM equipped with Linux.

The Gripper Domain. The gripper domain (see Appendix C.1) con-
sists of two rooms A and B, a robot with a left and right gripper and a
number of balls that can be moved by the robot. The task is to move all
the balls from room A to room B, with the robot initially in room A. The
state variables of the NADL encoding of the domain are the position of the

5 All experiments were carried out on a 350 MHz Pentium PC with 1 GB RAM running
Red Hat Linux 4.2.

"Unfortunately no exact record has been kept on the machines and there is some
disagreement about their clock frequency. According to Drew McDermott, who chaired
the competition, they were 233 MHz Pentiums, but Derek Long (STAN) believes, they were
at least 400 MHz Pentiums, as STAN performed worse on a 300 MHz Pentium than in the
competition.

29

Problem umop Part. umop Mono. stan hsp ipp blackbox
1 20 11 1 20 11 46 11 2007 13 50 15 113 11
2 150 17 1 130 17 1075 17 2150 21 380 23 7820 17
3 710 23 1 740 23 54693 23 2485 31 3270 31 - -
4 1490 29 2 2230 29 3038381 29 3060 37 26680 39

5 3600 35 2 6040 35 - - 3320 47 226460 47

6 7260 41 2 11840 41 - - 3779 53 - -

7 13750 47 2 24380 47 - - 4797 63

8 23840 53 2 38400 53 - - 5565 71

9 36220 59 3 68750 59 - - 6675 79

10 56200 65 3 95140 65 - - 7583 85

11 84930 71 3 145770 71 - - 9060 93

12 127870 77 3 216110 77 - - 10617 101

13 197170 83 3 315150 83 - - 12499 109

14 290620 89 4 474560 89 - - 15050 119

15 411720 95 4 668920 95 - - 16886 125

16 549610 101 4 976690 101 - - 20084 135

17 746920 107 4 - - - - 23613 143

18 971420 113 4 26973 151

19 1361580 119 5 29851 157

20 1838110 125 5 33210 165

Table 1: Gripper domain results. Column one and two show the execution
time in milliseconds and the plan length. umop Part. and umop Mono.
show the execution time for UMOP using a partitioned and a monolithic tran-
sition relation respectively. For umoP with partitioned transition relation
the third column shows the number of partitions. (- -) means the planner
failed. Only results for executions using less than 128 MB are shown for
UMOP.

robot and the position of the balls. The position of the robot is either 0
(room A) or 1 (room B), while the position of a ball can be 0 (room A), 1
(room B), 2 (in left gripper) or 3 (in right gripper). For the AIPS’98 gripper
problems the number of plan steps in an optimal plan grows linear with
the problem number. Problem 1 contains 4 balls, and the number of balls
grow with two for each problem. The result of the experiment is shown in
Table 1 together with the results of the planners in the AIPS’98 competi-
tion. A graphical representation of the execution time in the table is shown
in Figure 16. UMOP generates shortest plans due to its parallel breadth
first search algorithm. As depicted in Figure 16, it avoids the exponential
growth of the execution time that characterizes all of the competition plan-
ners except HSP. When using a partitioned transition relation umMoP is the
only planner capable of generating optimal plans for all the problems. For
this domain the transition relation of an NADL description can be divided
into » + 1 basic partitions, where n is the number of balls. As discussed
in Section 5, the optimal number of partitions is not necessarily the largest
number of partitions. For the results in Table 1 each partition equaled a
conjunction of 10 basic partitions. Compared to the monolithic transition
relation representation the results obtained with the partitioned transition

30

10000 F T T T T T T T T T
o
1000 |
100 |
a
g . Ff
n .
) 10 ¢ x !/
1S [
F 3
XX UMOP Part.
1L UMOP Mono. —+- |
i STAN -&--
HSP -
I IPP &~
BLACKBOX -
01}]
001 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20

Problem Number

Figure 16: Execution time for uMOP and the AIPS’98 competition planners
for the gripper domain problems. UMOP Part. and umoP Mono. show the
execution time for UMOP using a partitioned and a monolithic transition
relation respectively.

relation was significantly better on the larger problems. The memory usage
for problem 20 with a partitioned transition relation was 87 MB, while it, for
the monolithic transition relation, exceeded the limit of 128 MB at problem
17.

The Movie Domain. In the movie domain (see Appendix C.2) the task
is to get chips, dip, pop, cheese and crackers, rewind a movie and set the
counter to zero. The only interference between the subgoals is that the
movie must be rewound, before the counter can be set to zero. The prob-
lems in the movie domain only differs by the number of objects of each type
of food. The number of objects increases linear from 5 for problem 1 to 34
for problem 30.

The NADL description of the movie domain represents each type of food
as a numerical state variable with a range equal to the number of objects
of that type of food. Table 2 shows the execution time for umoP and the
competition planners for the movie domain problems. In this experiment

31

Problem UMOP STAN HSP IPP BLACKBOX
1 14 7 19 7 2121 7 10 7 11 7
2 12 7 18 7 2104 7 10 7 12 7
3 14 7 19 7 2144 7 10 7 14 7
4 4 7 20 7 2188 7 10 7 16 7
5 14 7 21 7 2208 7 10 7 18 7
6 16 7 22 7 2617 7 10 7 20 7
7 14 7 22 7 2316 71 20 7 22 7
8 12 7 23 7 2315 71 20 7 24 7
9 14 7 25 7 2357 7 - - 26 7
10 14 7 26 7 2511 7 10 7 29 7
11 14 7 27 7 2427 71 30 7 30 7
12 4 7 28 7 2456 71 30 7 32 7
13 16 7 29 7 | 3070 71 20 7 36 7
14 14 7 31 7 2573 71 30 7 35 7
15 16 7 32 7 2577 71 30 7 38 7
16 14 7 34 7 2699 7 10 7 39 7
17 16 7 35 7 2645 71 30 7 41 7
18 14 7 37 7 2686 7 10 7 43 7
19 16 7 39 7 2727 71 30 7 45 7
20 12 7 40 7 2787 71 20 7 47 7
21 16 7 42 7 2834 71 20 7 49 7
22 14 7 45 7 2834 71 20 7 51 7
23 16 7 48 7 2866 71 20 7 53 7
24 14 7 50 7 | 3341 71 20 7 55 7
25 16 7 52 7 2997 71 30 7 57 7
26 16 7 54 7 | 3013 7| 40 7 58 7
27 16 7 57 7 | 3253 7 | 50 7 60 7
28 4 7 62 7 | 3049 7| 40 7 63 7
29 18 7 64 7 | 3384 7 | 50 7 64 7
30 16 7 67 7 | 3127 7| 40 7 66 7

Table 2: Movie domain results. For each planner column one and two show
the run time in milliseconds and the plan length. (- -) means the planner
failed. UMOP used far less than 128 MB for any problem in this domain.

32

and the remaining experiments UMOP used its default partitioning of the
transition relation. For every problem all the planners find the optimal
plan. Like the competition planners UMOP has a low computation time, but
it is the only planner not showing any increase in computation time even
though, the size of the state space of its encoding increases from 224 to 239,

The Logistics Domain. The logistics domain (see Appendix C.3) con-
sists of cities, trucks, airplanes and packages. The task is to move packages
to specific locations. Problems differ by the number of packages, cities, air-
planes and trucks. The logistics domain is hard and only problem 1,2,5,7
and 11 of the 30 problems were solved by any planner in the AIPS’98 com-
petition (see Table 3). The NADL description of the logistics domain uses
numerical state variables to represent locations of packages, where trucks
and airplanes are treated as special locations. Even though, the state space
for the small problems is moderate, UMOP fails to solve any of the problems
in the domain. It succeeds to generate the transition relation but fails to
finish the preimage calculations. The reason for this might be a bad rep-
resentation or variable ordering. It might also be that no compact 0OBDD
representation exists for this domain in the same way, that no compact
OBDD representation exists for the integer multiplier (Bryant, 1986). More
research is needed to decide this. Appendix C.3 shows results from a number
smaller logistics domains, where UMOP succeeds to find a solution.

Problem STAN HSP IPP BLACKBOX
1 767 27 79682 43 900 26 2062 27
2 4319 32 97114 44 - - 6436 32
5 364932 29 144413 26 2400 24 - -
7 - - 788914 112 - - - -
11 12806 34 86195 30 6940 33 6544 32

Table 3: Logistics domain results. For each planner column one and two
show the run time in milliseconds and the plan length. (- -) means the
planner was unable to find a solution.

8.1.2 The Obstacle Domain

The obstacle domain (see Appendix C.4) has been constructed to demon-
strate the generality of universal plans. It consists of a 8 x 4 grid world, n
obstacles and a robot agent. The position of the obstacles are not defined.
The goal position of the robot is the upper right corner of the grid, and the

33

task for the robot is to move from any position in the grid, different from the
goal position, to the goal position. Because the initial location of obstacles
is unknown, the universal plan must take any possible position of obstacles
into account, which gives 25(n+1) _ 957 initial states. For a specific initial
state a sequential plan can be generated from the universal plan. Thus,
25(n+1) _ 957 gequential plans are comprised in one universal plan. Note
that a universal plan with n obstacles includes any universal plan with 1 to
n obstacles, as obstacles can be placed at the same location. Note moreover,
that the universal plans never covers all initial states, because obstacles can
be placed at the goal position, and obstacles can block the way for the agent.

A universal plan for an obstacle domain with 5 obstacles was generated
with uMoOP in 420 seconds and contained 488296 0BDD nodes (13.3 MB).
Sequential plans were extracted from the universal plan for a specific po-
sition of the obstacles, for which 16 step plans existed. Figure 17 shows

0.008 T T T T T T T

0.007 | E

0.006 1

0.005 | E

Time / Sec

0.004 E

0.003 1

0.002 - 1

0001 1 1 1 1 1 1 1
6 8 10 12 14 16
Number of Plan Steps

Figure 17: Time for extracting sequential plans from a universal plan for
the obstacle domain with 5 obstacles.

the extraction time of sequential plans for an increasing number of steps in
the plan. Even though the OBDD representing the universal plan is large,
the extraction is very fast and only grows linear with the plan length. The
set of actions associated with a state s in a universal plan p is extracted
by computing the conjunction of the 0BDD representation of s and p. As

34

described in Section 3, this operation has an upper bound complexity of
O(|s||p|). For the universal plan in the obstacle domain with five obstacles
this computation was fast (less than one millisecond) and would allow an
executing agent to meet low reaction time constraints, but in the general
case, it depends on the structure of the universal plan and might be more
time consuming.

8.1.3 Deterministic Power Plant Domain

The deterministic power plant domain shows how a deterministic approach
can be used to handle non-determinism caused by the environment. The
power plant domain consists of reactors, heat exchangers, turbines and
valves. The task is to execute the right control actions in order to bring
the plant from some bad state, where the plant is unsafe or not working
properly, to some good state, where the plant is safe and working optimally.
An agent is associated to each controllable unit such that any adjustment
can be made at each time step. The actions of the environment consist of
breaking units (like heat exchangers, valves and turbines). In the determin-
istic approach the actions of the environment are ignored, such that control
actions always have their expected outcome.

Consider a universal plan covering as many bad states as possible. The
plan is obviously sensible, if we assume, no environment actions can hap-
pen. But for the power plant domain, the plan is also sensible, even if the
environment executes actions simultaneously with the control actions. To
realize this, consider the plant to be in some bad state. Because the actions
of the environment are unpredictable, the only sensible thing to do is to ex-
ecute a control action that brings the plant nearer to a good state. If some
environment actions do happen, the rationale still applies to the resulting
bad state (or no rationale applies if a failed state is reached). Thus, the
effect of simultaneous environment actions can be ignored.

The studied power plant domain is shown in figure 18. The NADL description
is shown in Appendix C.5. The domain consists of one reactor R, four heat
exchangers H1, H2, H3 and H4 and four turbines T1, T2, T3 and T4. The
heat exchangers can fail and leak radio active water from the internal water
loop to the external water loop. If this happens the blocking valve (al, a2,
a3 or a4) of the heat exchanger must be closed. Unfortunately, these valves
can fail too in which case, the valves m2, m3 or ml are used. Similarly,
if turbines break, they must be shut down by closing one of the valves b1,
b2, b3 or b4, or m4, m5 and m1, when the turbine valves are failed. These
safety requirements are expressed in the goal condition by:

35

< okml

oktl okbl p1

m4
B

|
| Okt2 okb2 pp |okm4
|

g

|
| oki3 okb3 b3
|

m5
| A A

f 1 oki4 okba pg | OKMS
|

Figure 18: The deterministic power plant domain. The reactor R is sur-
rounded by the four heat exchangers H1, H2, H3 and H4. The heat exchang-
ers produce high pressure damp to the four electricity generating turbines
T1, T2, T3 and T4. The heat exchangers can fail and leak radio active wa-
ter from the internal water loop to the external water loop. If this happens,
the blocking valve (al, a2, a3 or a4) of the heat exchanger must be closed.
Unfortunately, these valves can fail too in which case, the valves m2, m3 or
m1 are used. Similarly, if turbines break, they must be shut down by clos-
ing one of the valves b1, b2, b3 or b4, or m4, mb and m1, when the turbine
valves are failed. The energy production of the plant p can either be 0,1,2,3
or 4 energy units pr. time unit. The production must be adjusted to fit the
demand f. A heat exchanger can only transfer energy to one turbine, and
one turbine can only produce one energy unit of electricity.

36

% environment security

("okh1l => (a1 \/ ai1/\"okal/\"m2 \/
a1/\~okai1/\m2/\~okm2/\"m1)) /\

("okh2 => (a2 \/ a2/\"oka2/\"'m2 \/
a2/\~oka2/\m2/\~okm2/\"m1)) /\

("okh3 => (a3 \/ a3/\"oka3/\"m3 \/
a3/\~oka3/\m3/\~okm3/\"m1)) /\

(“okh4 => (a4 \/ a4/\"okad/\"m3 \/
a4/\~oka4/\m3/\~okm3/\"m1)) /\

% turbine security

("oktl1 => ("b1 \/ bi/\"okbi/\"m& \/
b1/\~okbil/\m4/\"okm4/\"m1)) /\

("okt2 => ("b2 \/ b2/\"okb2/\"m& \/
b2/\~okb2/\m4/\"okm4/\"m1)) /\

("okt3 => ("b3 \/ b3/\"0kb3/\"m5 \/
b3/\~0kb3/\m5/\"okm5/\"m1)) /\

("okt4 => ("b4 \/ b4/\"okb4/\"m5 \/
b4/\"okb4/\m5/\ " okm5/\"m1))

The energy production can be controlled by p to be either 0,1,2,3 or 4 energy
units per time unit. If p fails the energy production stays at its last value.
An energy production of n requires that at least n heat exchangers and
turbines are working and that the necessary valves are open. Moreover, at
least a demand of f should be present. The production requirements are
stated in the goal condition by:

% produce 0 units if system blocked or no demand

(p=0=>f=0\/ "ml\/ "m2/\"m3 \/ "m2/\"a3/\"as \/
"m3/\"a1/\"a2 \/ "m4/\"m56 \/ "m4/\"b1/\"b2 \/
"m&/\"b3/\"b4) /\

% produce 1 unit if:
% A: can get 1 energy unit through and have more than O unit demand
(p=1=£f>0/\m /\

(m2/\(a1\/a2) \/ m3/\(a3\/a4)) /\

(ma/\(b1\/b2) \/ m&/\(b3\/b4))) /\

% B: haven’t got an ok and more than 1 unit demand
(p=1=>"(f>1/\ml/\
(m2/\a1/\a2 \/ m3/\a3/\at \/
m2/\(a1\/a2)/\m3/\(a3\/a4)) /\

37

(m4/\b1/\b2 \/ m5/\b3/\bs \/
m4/\(b1\/b2)/\m5/\(b3\/b4)))) /\

% produce 4 energy units if:

% can get 4 energy units through and have a 4 unit demand

(p=4=f=4/\a1/\a2/\m2/\a3/\a4/\m3/\m1/\
b1/\b2/\m4/\b3/\b4/\m5)

Finally valves of working subsystems should be open. This is expressed by:

(okh1 => al) /\
(okh2 => a2) /\
(okh3 => a3) /\
(okh4 => a4) /\
(okhi /\ okh2 => m2) /\
(okh3 /\ okh4 => m3) /\

(oktl => b1) /\
(okt2 => b2) /\
(okt3 => b3) /\
(okt4 => b4) /\
(okt1l /\ okt2 => m4) /\
(okt3 /\ okt4 => m5) /\

(“((Tokhi/\ai1 \/ ~okh2/\a2)/\m2 \/
("okh3/\a3 \/ ~okh4/\a4)/\m3 \/
("okt1/\b1 \/ ~“okt2/\b2)/\m& \/
("okt3/\b3 \/ ~“okt4/\b4)/\m5) => mi)

The initial states of the planning problem is simply defined to be states,
that are not goal states.

The domain shown in Appendix C.5 was solved by UMOP in 14.0 sec-
onds. The universal plan does not cover the initial state, as some states are
unrecoverably failed (e.g. p is failed at level 4 and T1 is failed).

13 other versions of the domain with 1 to 13 agents were defined to
examine the complexity of the multi-agent decomposition. The results are
shown in the graph in Figure 19. As depicted the execution time is lower for
domains with a large number of agents. One reason for this could be, that
fewer preimage calculations are necessary for domains with many agents.

38

1000

100 |

Time / Sec

10 |

1 1 1 1 1 1 1
0 2 4 6 8 10 12 14
Number of Agents

Figure 19: Execution time of uMoPp for power plant domains with 1 to 14
agents.

But the result is not trivial, as the number of OBDD variables, used to
represent the joint actions, grows linear with the number of agents. In the
soccer domain, presented in Section 8.2.3, it turns out that a version of the
doamin with only a single system and environment agent is executed much
faster than the multi-agent version.

8.2 Non-Deterministic Domains

In this section uMoP’s performance is first tested for some of the non-
deterministic domains solved by MBP (Cimatti et al., 1998a, 1998b). Next,
the power plant domain briefly described in Section 6.2 is presented and
finally, results from a multi-agent soccer domain are shown.

8.2.1 Domains Tested by MBPp

One of the domains introduced by Cimatti et al. (1998a, 1998b) is a non-
deterministic transportation domain. The domain consists of a set of loca-
tions and a set of actions like drive-truck, drive-train and fly to move between
the locations. Non-determinism is caused by non-deterministic actions (e.g.,

39

a truck may use the last fuel) and environmental changes (e.g., fog at air-
ports). The two domain examples from Cimatti et al. (1998a, 1998b) (see
Appendix C.6 and C.7) were defined for strong and strong cyclic planning
in NADL and executed by UMOP using strong and strong cyclic planning.
Both examples were solved in less than 0.05 seconds. Similar results were
obtained with MBP. Cimatti et al. (1998a) also study a general version of
the hunter and prey domain (Koenig & Simmons, 1995) and a beam walk
domain. Their generalization of the hunter and prey domain is not de-
scribed in detail. Thus, an NADL implementation of this domain has not
been possible.

The problem in the beam walk domain is for an agent to walk from one
end of a beam to the other without falling down. If the agent falls, it has to
walk back to the end of the beam and try again. The finite state machine
of the domain is shown in Figure 20. The edges denotes the outcome of a
walk action. When the agent is on the beam, the walk action can either
move it one step further on the beam or make it fall to a location under the
beam. A generator program for NADL descriptions of beam walk domains

up

true .—».—».

AN .B

n-l pos

Figure 20: The beam walk domain. The NADL encoding of the beam walk
domain has one propositional state variable up, which is true if the agent is
on the beam and a numerical state variable pos, which denotes the position
of the agent either on the beam or on the ground. “I” and “G” are the intial
state and goal state repspectively.

were implemented and used to produce domains with 4 to 4096 positions
(see Appendix C.8). Because the domain only contains two state variables,
UMOP cannot exploit a partitioned transition relation for this domain, but
have to use a monolithic representation. Asshown in Figure 21 the execution
time of UMOP was a little smaller than MBP. When discounting that a 75%
faster machine was used for umoP, MBP performs better in this domain.
This is probably not due to an inefficient representation, as UMOP exploits

40

10000 ¢ T T T T T T T T
1000 |
100 F

10 £

Time / Sec

0.1

0.01 UMOP —~—

’ BMP —+-

0001 I 1 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Number of Beam Locations

Figure 21: Execution time of umMopP and MBP in the beam walk domain.
The MBP data has been extracted with some loss of accuracy from (Cimatti
et al., 1998a)

41

the regularity of the domain in the same way as MBP. A more reasonable
explanation is that UMOP uses a less efficient implementation of the strong
cyclic planning algorithm.

A detailed comparison of UMOP and MBP is very interesting, as the two
systems represent planning problems in a quite different way. Currently
MBP is unable to use a partitioned transition relation representation, but it
is still an open question if UMOP is able to solve larger problems than MBP
due to this feature.

8.2.2 The Non-deterministic Power Plant Domain

The non-deterministic power plant domain (see Appendix C.9) demonstrates
a multi-agent domain with an environment model and further exemplifies
optimistic planning. It consists of reactors, heat exchangers, turbines and
valves. A domain example is shown in Figure 22. In the power plant domain

okhl bl okh2 b2

vl oktl s1
T
v2 ok2 <2 1
-
v3 Oki3 S3 l
-
v4 okid A i]

okh3 b3 okh4 b4

Figure 22: A power plant domain example. The reactor R is surrounded by
the four heat exchangers H1, H2, H3 and H4. The heat exchangers produces
high pressure damp to the four electricity generating turbines T1, T2, T3
and T4. A failed heat exchanger must be closed by a block action b. For a
failed turbine the stop action s must be carried out. The energy production
of the reactor is p and can be controlled to fit the demand f. Each turbine
can be closed of by a valve v.

each controllable unit is associated with an agent such that all control actions
can be executed simultaneously. The environment consists of a single agent

42

that at any time can fail a number of heat exchanges and turbines and
ensures that already failed units remain failed. A failed heat exchanger leaks
radioactive water from the internal to the external water loop and must be
closed by a block action b. For a failed turbine the stop action s must be
carried out. The energy production from the reactor can be controlled by p
to fit the demand f, but the reactor will always produce two energy units.
To transport the energy from the reactor away from the plant at least one
heat exchanger and one turbine must be working. Otherwise the plant is in
an unrecoverable failed state, where the reactor will overheat.

The state space of the power plant can be divided into three disjoint sets:
good, bad and failed states. In the good states the power plant satisfies its
safety and activity requirements. In the example the safety requirements
ensures that energy can be transported away from the plant and failed units
are shut down:

% energy can be transported away from the plant
(okh1 \/ okh2 \/ okh3 \/ okh4) /\
(okt1 \/ okt2 \/ okt3 \/ okt4) /\

% heat exchangers blocked if failed
(“okh1i => b1) /\
(“okh2 => b2) /\
("okh3 => b3) /\
(“okh4 => b4) /\

% turbines stopped if failed
("oktl => s1) /\

("okt2 => s2) /\

("okt3 => s3) /\

(“okt4 => s4)

The activity requirements state that the energy production equals the
demand and that all valves to working turbines are open:

% power production equals demand

p=1%/\

% turbine valve is open if turbine is ok
(okt1 => v1) /\

43

(okt2 => v2) /\
(okt3 => v3) /\
(oktd => v4)

In a bad state the plant does not satisfy the safety and activity require-
ments, but on the other hand is not unrecoverably failed. Finally, in a failed
state all heat exchangers or turbines are failed.

The universal planning task is to generate a universal plan to get from
any bad state to some good state without ending in a failed state. Assuming
that no units fail during execution, it is obvious that only one joint action
is needed. Unfortunately, the environment can fail any number of units
during execution, thus, as described in Section 6.2, for any bad state the
resulting joint action may loop back to a bad state or cause the plant to end
in a failed state. (see Figure 9). For this reason no strong or strong cyclic
solution exists to the problem.

An optimistic solution simply ignores that joint actions can loop back to
a bad state or lead to a failed state and finds a solution to the problem after
one preimage calculation. Intuitively, the optimistic plan assumes that no
units will fail during execution and always chooses joint actions that lead
directly from a bad state to a good state. The optimistic plan is an optimal
control strategy, because it always chooses the shortest way to a good state
and no other strategy exists that can avoid looping back to a bad state or
end in a failed state.

The size of the state space of the above power plant domain is 224, An
optimistic solution was generated by umoP in 0.92 seconds and contained
37619 oBDD nodes. As an example, a joint action was extracted from the
plan for a bad state where H3 and H4 were failed and energy demand f
was 2 energy units, while the energy production p was only 1 unit. The
extraction time was 0.013 seconds and as expected the set of joint actions
included a single joint action changing 63 and b4 to true and setting p to 2.

8.2.3 The Soccer Domain

The purpose of the soccer domain (see Appendix C.10) is to demonstrate
a multi-agent domain with a more elaborate environment model than the
power plant domain. It consists of two teams of players that can move in a
grid world and pass a ball to each other. At each time step a player either
moves in one of the four major directions or passes the ball to another team

44

player. The task is to generate a universal plan for one of the teams that can
be applied, whenever the team possesses the ball in order to score a goal.

A simple NADL description of the soccer domain models the team pos-
sessing the ball as system agents that can move and pass the ball indepen-
dent of each other. Thus, a player possessing the ball can always pass to any
other team player. The opponent team is modelled as a set of environment
agents that can move in the four major directions but have no actions for
handling the ball. The goal of the universal plan is to have a player with
the ball in front of the opponent goal without having any opponents in the
goal area.

Clearly, it is impossible to generate a strong plan that covers all possible
initial states. But a strong plan covering as many initial states as possible
is useful, because it defines all the “scoring” states of the game and further
provides a plan for scoring the goal no matter what actions, the opponent
players choose.

An NADL generator was implemented for soccer domains with different
field sizes and numbers of agents. The Multi-Agent graph in Figure 23
shows UMOP’s execution time using the strong planning algorithm in soccer
domains with 64 locations and one to six players on each team. The execu-
tion time seems to grow exponential with the number of players. This is not
surprising as not only the state space but also the number of joint actions
grow exponential with the number of agents. To investigate the complex-
ity introduced by joint actions, a version of the soccer domain with only
a single system and environment agent was constructed. The Single-Agent
graph in Figure 23 shows a dramatic decrease in computation time. Its is
not obvious though, that a parallelization of domain actions increases the
computational load as this normally also reduces the number of preimage
calculations, because a larger number of states is reached in each iteration.
Indeed, in the deterministic version of the power plant domain the execution
time was found to decrease, when more agents were added (see Figure 19).
Again the time for extracting a joint action from the generated universal
plan was measured. For the multi-agent version of the five player soccer
domain the two joint actions achieving the goal shown in Figure 24 were
extracted from the universal plan in less than 0.001 seconds.

45

10000 [T T T T
r Multi-Agent <—
Single-Agent -+~
1000 | —
100 —
(8]
8 | o _
g A
° 10 | e -
E !
~ T
T
1r e i
0.1 - /// 1
001 1 1 1 1
2 4 10 12

6 8
Number of Players

Figure 23: Execution time of UMOP for generating strong universal plans in
soccer domains with one to six players on each team. For the multi-agent
experiment each player was associated with an agent, while only a single
system and environment agent was used in the single-agent experiment.

| | |
% @ | 8 @ (2]
(5] (3] (5) ® 6 e
®@ @ @ @ | | @ @
(4] O | ® 0
© o N6
€ e T
@ (b) ©

Figure 24: Plan execution sequence. The three states show a hypothetical
attack based on a universal plan. The state (a) is a “scoring” state, because
the attackers (black) can extract a nonempty set of joint actions from the
universal plan. Choosing some joint actions from the plan the attackers can
enter the goal area (shaded) with the ball within two time steps (state (b)
and (c)) no matter what actions, the opponent players choose.

46

9 Previous Work

Recurrent approaches performing planning in parallel with execution have
been widely used in non-deterministic robotic domains (e.g., Georgeff &
Lansky, 1987; Gat, 1992; Wilkins et al., 1994; Haigh & Veloso, 1998). A
group of planners suitable for recurrent planning is action selectors based on
heuristic search (Koenig & Simmons, 1995; Bonet et al., 1997). The min-
max LRTA* algorithm (Koenig & Simmons, 1995) can generate suboptimal
plans in non-deterministic domains through a search and execution iteration.
The search is based on a heuristic goal distance function, which must be
provided for a specific problem. The Asp algorithm (Bonet et al., 1997) uses
a similar approach and further defines a heuristic function for STRIPS-
like (Fikes & Nilsson, 1971) action representations. In contrast to min-max
LRTA*, ASP does not assume a non-deterministic environment, but is robust
to non-determinism caused by action perturbations (i.e., that another action
than the planned action is chosen with some probability).

In general recurrent approaches are incomplete, because acting on an
incomplete plan can make the goal unachievable. Precursor approaches per-
form all decision making prior to execution and thus may be able to generate
complete plans by taking all possible non-deterministic changes of the envi-
ronment into account.

The precursor approaches include conditional (Etzioni et al., 1992; Peot
& Smith, 1992), probabilistic (Drummond & Bresina, 1990; Dean et al.,
1995) and universal planning (Schoppers, 1987; Cimatti et al., 1998a, 1998b;
Kabanza et al., 1997). The cNLP (Peot & Smith, 1992) partial ordered,
conditional planner handles non-determinism by constructing a conditional
plan that accounts for each possible situation or contingency that could
arise. At execution time it is determined which part of the plan to execute
by performing sensing actions that are included in the plan to test for the
appropriate conditions.

Probabilistic planners try to maximize the probability of goal satisfac-
tion, given conditional actions with probabilistic effects. Drummond and
Bresina (1990) represent plans as a set of Situated Control Rules (SCRs)
(Drummond, 1989) mapping situations to actions. The planning algorithm
begins by adding SCRs corresponding to the most probable execution path
that achieves the goal. It then continues adding SCRs for less probable
paths, and may end with a complete plan taking all possible paths into
account.

Universal plans differs from conditional and probabilistic plans by spec-

47

ifying appropriate actions for every possible state of the domain®. Like
conditional and probabilistic plans universal plans require the world to be
accessible in order to execute the universal plan.

Universal planning was introduced by Schoppers (1987) who used de-
cision trees to represent plans. Recent approaches include Kabanza et al.
(1997) and Cimatti et al. (1998a, 1998b). Kabanza et al. (1997) represents
universal plans as a set of Situated Control Rules (Drummond, 1989). Their
algorithm incrementally adds SCRs to a final plan in a way similar to Drum-
mond and Bresina (1990). The goal is a formula in temporal logic that must
hold on any valid sequence of actions.

Reinforcement Learning (RL) (Kaebling et al., 1996) can also be re-
garded as a kind of universal planning. In RL the goal is represented by a
reward function in a Markov Decision Process (MDP) model of the domain.
In the precursor version of RL the MDP is assumed to be known and a
control policy maximizing the expected reward is found prior to execution.
The policy can either be represented explicitly in a table or implicitly by a
function (e.g., a neural network). Because RL is a probabilistic approach,
its domain representation is more complex than the domain representation
used by a non-deterministic planner. Thus, we may expect non-deterministic
planners to be able to handle domains with a larger state space than RL.
On the other hand, RL may produce policies with a higher quality, than a
universal plan generated by a non-deterministic planner.

All previous approaches to universal planning, except Cimatti et al.
(1998a, 1998b), use an explicit representation of the universal plan (e.g.,
SCRs). Thus, in the general case exponential growth of the plan size with
the number of propositions defining a domain state must be expected, as
argued by Ginsberg (1989).

The compact and implicit representation of universal plans obtained with
0BDDs do not necessarily grow exponentially for regular domains as shown
by Cimatti et al. (1998a). Further, the oBDD-based representation of the
NFA of a non-deterministic domain enables the application of efficient search
algorithms from model checking, capable of handling very large state spaces.

8The plan solving an NADL problem will only be universal if the initial states equals
all the states in the domain.

48

10 Conclusion and Future Work

In this thesis a new 0BDD-based planning system called umop for planning
in non-deterministic, multi-agent domains has been presented. An expres-
sive domain description language called NADL has been developed and an
efficient OBDD representation of its NFA semantics has been described. Pre-
vious planning algorithms for 0BDD-based planning have been analyzed and
the understanding of when these planning algorithms are appropriate has
been deepened. Finally, a planning algorithm called optimistic planning for
finding sensible solutions in some domains where no strong or strong cyclic
solution exists has been proposed. The results obtained with UMOP are en-
couraging, as UMOP has a good performance compared to some of the fastest
classical planners known today.

The work has raised a number of questions that would be interesting
to address in the future. The most exciting of these is how well umMOP’s
encoding of planning problems scales compared to the encoding used by MBP.
Currently MBP’s encoding does not support a partitioned representation of
the transition relation, but the encoding may have other properties that,
despite the monolithic representation, makes it a better choice than umMoP’s
encoding. On the other hand, the two systems may also have an equal
performance when both are using a monolithic representation (as in the
beam walk example), which should give umMOP an advantage in domains
where a partitioning of the transition relation can be defined. A joint work
with Marco Roveri has been planned in the Fall of 1999 to address these
issues.

Another interesting question is to investigate which kind of planning
domains are suitable for 0BDD-based planning. It was surprising that the
logistics domain turned out to be so hard for umMmoP. A thorough study of
this domain may be the key for defining new approaches and might bring
important new knowledge about the strengths and limitations of 0BDD-
based planning.

The current definition of NADL is powerful but should be extended to
enable modelling of constructive synergetic effects as described in Section 4.
Also, more experiments comparing multi-agent and single-agent domains
should be carried out to investigate the complexity of NADL’s representation
of concurrent actions.

As argued by Bacchus and Kabanza (1996), domain knowledge must be
used by a planning system in order to scale up to real world problems. They
show how the search tree of a forward chaining planner can be efficiently

49

pruned by stating the goal as formula in temporal logic on the sequence
of actions leading to the goal. In this way the goal can include knowledge
about the domain (e.g., that towers in the blocks world must be built from
bottom to top). A similar approach for reducing the complexity of 0BDD-
based planning is obvious, especially because techniques for testing temporal
formulas already have been developed in model checking.

Other future challenges includes introducing abstraction in 0BDD-based
planning and defining specialized planning algorithms for multi-agent do-
mains (e.g., algorithms using the least number of agents for solving a prob-
lem).

50

References

Bacchus, F., & Kabanza, F. (1996). Using temporal logic to control search
in a forward chaining planner. In Ghallab, M., & Milani, A. (Eds.),
New directions in Al planning, pp. 141-153. [SO Press.

Baral, C., & Gelfond, M. (1997). Reasoning about effects of concurrent
actions. The Journal of Logic Programming, 85-117.

Blum, A., & Furst, M. L. (1995). Fast planning through planning graph
analysis. In Proceedings of the 14’°th International Conference on Ar-
tificial Intelligence (IJCAI-95), pp. 1636-1642. Morgan Kaufmann.

Bonet, B., Loerincs, G., & Geffner, H. (1997). A robust and fast action
selection mechanism for planning. In Proceedings of the 14°th National
Conference on Artificial Intelligence (AAAI'97), pp. 714-719. AAAI
Press / The MIT Press.

Bryant, R. E. (1986). Graph-based algorithms for boolean function manip-
ulation. IFEF Transactions on Compulers, 8, 677-691.

Burch, J., Clarke, E., & Long, D. (1991). Symbolic model checking with
partitioned transition relations. In International Conference on Very
Large Scale Integration, pp. 49-58. North-Holland.

Cimatti, A., Giunchiglia, E., Giunchiglia, F., & Traverso, P. (1997). Plan-
ning via model checking: A decision procedure for AR. In Proceedings
of the 4’th European Conference on Planning (ECP’97), Lecture Notes
in Artificial Intelligence, pp. 130-142. Springer-Verlag.

Cimatti, A., Roveri, M., & Traverso, P. (1998a). Automatic OBDD-based
generation of universal plans in non-deterministic domains. In Pro-

ceedings of the 15°th National Conference on Artificial Intelligence
(AAAI'98), pp. 875-881. AAAI Press/The MIT Press.

Cimatti, A., Roveri, M., & Traverso, P. (1998b). Strong planning in non-
deterministic domains via model checking. In Proceedings of the 4’th
International Conference on Artificial Intelligence Planning System

(AIPS’98), pp. 36-43. AAAI Press.

Clarke, E. M., Emerson, E. A., & Sistla, A. P. (1986). Automatic verifi-
cation of finite-state concurrent systems using temporal logic specifi-

51

cations. ACM lransactions on Programming Languages and Systems,
8(2), 244-263.

Currie, K., & Tate, A. (1991). O-plan: the open planning architecture.
Artificial Intelligence, 52, 49-86.

Dean, T., Kaelbling, L. P., Kirman, J., & Nicholson, A. (1995). Planning
under time constraints in stochastic domains. Artificial Intelligence,
76, 35-74.

Di Manzo, M., Giunchiglia, E., & Ruffino, S. (1998). Planning via model
checking in deterministic domains: Preliminary report. In Proceedings
of the 8’th International Conference on Artificial Intelligence: Method-
ology, Systems and Applications (AIMSA’98), pp. 221-229. Springer-
Verlag.

Drummond, M. (1989). Situated control rules. In Proceedings of the 1’st
International Conference on Principles of Knowledge Representation
and Reasoning (KR’89), pp. 103-113. Morgan Kaufmann.

Drummond, M., & Bresina, J. (1990). Anytime synthetic projection: Max-
imizing the probability of goal satisfaction. In Proceedings of the 8’th
Conference on Artificial Intelligence, pp. 138—-144. AAAI Press / The
MIT Press.

Etzioni, O., Hanks, S., Weld, D., Draper, D., Lesh, N., & Williamson,
M. (1992). An approach for planning with incomplete information.
In Proceedings of the 3’rd International Conference on Principles of
Knowledge Representalion and Reasoning.

Fikes, R. E., & Nilsson, N. J. (1971). STRIPS: A new approach to the appli-
cation of theorem proving to problem solving. Artificial Intelligence,
2, 189-208.

Gat, E. (1992). Integrating planning and reacting in a heterogeneous asyn-
chronous architecture for controlling real-world mobile robots. In Pro-
ceedings of the 10°th Nalional Conference on Artificial Intelligence
(AAAI’92), pp. 809-815. MIT Press.

Gelfond, M., & Liftschitz, V. (1993). Representing action and change by
logic programs. The Journal of Logic Programming, 17, 301-322.

52

Georgeff, M. P., & Lansky, A. L. (1987). Reactive reasoning and planning. In
Proceedings of the 6°th National Conference on Artificial Intelligence
(AAAI'87), pp. 677-682.

Ginsberg, M. L. (1989). Universal planning: An (almost) universal bad idea.
Al Magazine, 10(4), 40-44.

Giunchiglia, E., Kartha, G. N., & Lifschitz, Y. (1997). Representing action:
Indeterminacy and ramifications. Aritificial Intelligence, 95, 409-438.

Giunchiglia, E., & Lifschitz, V. (1998). An action language based on causal
explanation: Preliminary report. In Proceedings of the 15°th National
Conference on Artificial Intelligence (AAAI’98), pp. 623-630. AAAI
Press/The MIT Press.

Haigh, K. Z., & Veloso, M. M. (1998). Planning, execution and learning in
a robotic agent. In Proceedings of the 4’th International Conference
on Artificial Intelligence Planning Systems (AIPS’98), pp. 120-127.
AAATI Press.

Kabanza, F., Barbeau, M., & St-Denis, R. (1997). Planning control rules
for reactive agents. Artificial Intelligence, 95, 67-113.

Kaebling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement
learning: a survey. Journal of Artificial Intelligence Research, 4, 237—
285.

Kautz, H., & Selman, B. (1996). Pushing the envelope: Planning, propo-
sitional logic and stochastic search. In Proceedings of the 13°th Na-
tional Conference on Artificial Intelligence (AAAI’96), Vol. 2, pp.
1194-1201. AAAI Press/MIT Press.

Koenig, S., & Simmons, R. G. (1995). Real-time search in non-deterministic

domains. In Proceedings of the 14’°th International Joint Conference on
Artificial Intelligence (1JCAI-95), pp. 1660-1667. Morgan Kaufmann.

Lever, J., & Richards, B. (1994). Parcplan: a planning architecture with
parallel actions and constraints. In Lecture Notes in Artificial Intelli-
gence, pp. 213-222. ISMIS’94, Springer-Verlag.

Lind-Nielsen, J. (1999). BuDDy - A Binary Decision Diagram Package. Tech.
rep. I'T-TR: 1999-028, Institute of Information Technology, Technical
University of Denmark. http://cs.it.dtu.dk/buddy.

53

Lingard, A. R., & Richards, E. B. (1998). Planning parallel actions. Artificial
Intelligence, 99, 261-324.

McMillan, K. L. (1993). Symbolic Model Checking. Kluwer Academic Publ.

Penberthy, J. S., & Weld, D. S. (1992). UCPOP: A sound, complete, partial
order planner for ADL. In Proceedings of the 3’rd International Con-
ference on Principles of Knowledge Representation and Reasoning, pp.
103-114. Morgan Kaufmann.

Peot, M., & Smith, D. (1992). Conditional nonlinear planning. In Pro-
ceedings of the 1’st International Conference on Artificial Intelligence
Planning Systems (AIPS’92), pp. 189-197. Morgan Kaufmann.

Ranjan, R. K., Aziz, A., Brayton, R. K., Plessier, B., & Pixley, C. (1995).
Efficient BDD algorithms for FSM synthesis and verification. In
IEEE/ACM Proceedings International Workshop on Logic Synthesis.

Schoppers, M. J. (1987). Universal plans for reactive robots in unpredictable
environments. In Proceedings of the 10°th International Joint Con-
ference on Artificial Intelligence (IJCAI-87), pp. 1039-1046. Morgan
Kaufmann.

Sutton, R. S., & G., B. A. (1998). Reinforcement Learning: An Introduction.
MIT Press.

Veloso, M., Carbonell, J., Pérez, A., Borrajo, D., Fink, E., & Blythe, J.
(1995). Integrating planning and learning: The PRODIGY architec-
ture. Journal of Experimental and Theoretical Artificial Intelligence,

7(1).

Weld, D. (1999). Recent advances in Al planning. Artificial Intelligence
Magazine. (in press).

Wilkins, D. E., Myers, K. L., Lowrance, J. D., & Wesley, L. P. (1994). Plan-
ning and reacting in uncertain and dynamic environments. Journal of
Ezxperimental and Theoretical Artificial Intelligence, 6, 197-227.

54

Appendix

Note that the source code and the result files in this appendix refer to umop
as MNP. Note further, that the syntax of NADL used by the test domains
is a little different from the definition in Appendix A. Thus, the list of
constrained variables is prefixed with var: and not con: and numerical
state variables are defined by scalar and not nat. The ASCII symbols
used for operators are: = (=), /\ (A), \/ (V), => (=), <=> (&) and -> ().

55

A BNF Definition of NADL

(NADLDesc) ::= variables (VarDecls)
system (AgtDecls)
environment (AgtDecls)
initially (Formula)
goal (Formula)

(VarDecls) == ¢

| (VarLst) (VarDecls)
(VarLst) = (VarType) (IdLst)
(VarType) == bool

| nat((Number))
(IdLst) n= €

| (IdLstl)
(ldLst1) = (Id)

| (Id) , (IdLst1)

(AgtDecls) == ¢
| agt: (Id) (ActionDecls) (Agtdecls)

(ActionDecls) ::== (ActionDecl)
| (ActionDecl) (ActionDecls)

(ActionDecl) == (Id)
con: (IdLst)

pre: (Formula)
eff: (Formula)

56

B NADL Includes the AR Family

Theorem 1 If A is a domain description for some AR language A, then
there exists a domain description D in the NADL language with the same
semantics as A

Proof: let M, = (Q,%,) denote the NFA (see Definition 1) equal to the
semantics of A as defined by Giunchiglia et al. (1997). An NADL domain
description D with semantics equal to M, can obviously be constructed in
the following way: let D be a single-agent domain, where all fluents are
encoded as numerical variables and there is an action for each element in
the alphabet Y of M,. Consider the action a associated to input ¢ € ¥. Let
the set of constrained state variables of a equal all the state variables in D.
The precondition of a is an expression that defines the set of states having
an outgoing transition for input z. The effect condition of @ is a conjunction
of conditional effects P, = N,. There is one conditional effect for each
state that has an outgoing transition for input . F; in the conditional effect
associated with state s is the characteristic expression for s and N; is a
characteristic expression for the set of next states é(s,). O

57

C UwmopP Planning Domains

C

C.1.1

1

Gripper

Generator Script

/%K ok ok ok ok ok ok ok KoK ok ok oK ok ok KoK ok ok KoK o ok ok KoK K ok ok Kok ok ok ok ok ok ok ok ok KK
File
Desc.

*

*
*
*
*

1 gripper.cc
. Generator program for mnp n-gripper worlds
domain used in AIPS’98

Author: Rune M. Jensen CS, CMU, (IAU, DTU)
Date
koo koK K KKKk sk sk ok oK KKk ok ok o ok K Kok ok ok ok sk ok K Kk Kok ok ok ok ok K Kok ok ok k /

1 4/5/99

#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>

int main(int argc, char **argv) {

int ballnum,i,j;

// check input
if (argc !'= 3)

{

}

cout << "Usage: gripper <n> <domain>.mnp\n'";
exit (1) ;

ofstream out(argv[2],ios::out);
ballnum = atoi(argv[1]);

// write head

out
out
out
out

<<
<<
<<
<<

"\% File: " << argv[2] << "\n";

"\% Desc: AIPS’98 Competition Gripper problem with" << ballnum << " balls\n";
"\% Date: 99\n";

"\% Author: Rune M. Jensen CS, CMU, (IAU, DTU)\n";

// write variablesVARIABLES

out
out
out
out
out
for

<<
<<
<<
<<
<<

"\nVARIABLES\n";

" scalar(1) pr \% position of robot: O:rooma, 1:roomb\n";

" \% position of balls: O:rooma, l:roomb 2:leftgripper 3:rightgripper\n";
" gscalar(2) ";

l|p0l|;

(i=1; i<ballnum; i++)
out << ",p" << i;
out << "\n";

58

// write actions
<< "\nSYSTEM\n";
"\n agt: Action\n\n";

out
out

out
out
out
out

out
out
out

out

for

{

if (j
out

for

if (j
out

for

for

<<

<<
<<
<<
<<

<<
<<
<<
<<

MoveRobotA2B\n";
var: pr\n";
pre: pr = O\n";
1\n\n";

eff: pr’

MoveRobotB2A\n";
var: pr\n";
pre: pr = 1\n";
0\n\n";

eff: pr’

(i=0; i<ballnum; i++)

out << "
out << "
out << "
for (j=0; j<ballnum;
1= i)

<<

out << "

PickLeft"

var:
pre:

pn
pn

/\\ p"

eff:

pn

<< i
<< i
<< i
j++)

<< j
<< i

(1i=0; i<ballnum; i++)

out << "
out << "
out << "
for (j=0; j<ballnum;
1= i)

<<

out << "

<<
<<
<<

<<
<<

”\Il”;

”\Il”;

no= pr\nn;
o> 2\nl|;
"y = 2\11\11”;

PickRight" << i << "\n";
<< i << "\n";

var: p"
pre: p"

/\\ p"
eff: p"

<< i << " = pr\n";
j++)

<< j << " <> 3\n";
<< i << "’ = 3\n\n";

(i=0; i<ballnum; i++)

out
out
out
out

<<
<<
<<
<<

DropLeft"
var: p"
pre: p"
eff: p"

<<
<<
<<
<<

He e e e

(1i=0; i<ballnum; i++)

<<
<<
<<
<<

"\n";

"\n'";

" = 2\n";

"’ = pr\n\n";

59

out << " DropRight" << i << "\n";

out << " var: p" << i << "\n";

out << " pre: p" << i << " = 3\n";

out << " eff: p" << i << "’ = pr\n\n";

out << "ENVIRONMENT\n\n";

out << "INITIALLY\n";

out << " pr = 0";
for (i=0; i<ballnum; i++)
out << " /\\ p" << i << " = 0";

out << "\mn\n'";

out << "GODAL\n";
out << " pO = 1";
for (i=1; i<ballnum; i++)
out << " /\\ p" << i << " = 1";
out << "\n";

60

C.1.2 Domain Example

% File: probOl.mnp

% Desc: ATPS’98 Competition Gripper problem with4 balls
% Date: 99

% Author: Rune M. Jensen CS, CMU, (IAU, DTU)

VARIABLES
scalar(1l) pr % position of robot: O:rooma, 1:roomb
% position of balls: O:rooma, l:roomb 2:leftgripper 3:rightgripper
scalar(2) p0,pl,p2,p3
SYSTEM

agt: Action

MoveRobotA2B
var: pr
pre: pr = 0
eff: pr’ =1
MoveRobotB2A
var: pr
pre: pr = 1
eff: pr’ =0
PickLeft0
var: pO0
pre: p0 = pr
/\ pl <> 2
/\ p2 <> 2
/\ p3 <> 2
eff: p0’ =2
PickLeft1
var: pl
pre: pl = pr
/\ p0 <> 2
/\ p2 <> 2
/\ p3 <> 2
eff: pl1’ =2
PickLeft2
var: p2
pre: p2 = pr
/\ p0 <> 2
/\ pl <> 2
/\ p3 <> 2

61

eff: p2’ =2

PickLeft3
var: p3
pre: p3 = pr
/\ p0 <>
/\ pl <>
/\ p2 <>
eff: p3’ =2
PickRightO
var: pO0
pre: p0 = pr
/\ pl <>
/\ p2 <>
/\ p3 <>
eff: p0’ =3
PickRight1
var: pl
pre: pl = pr
/\ p0 <>
/\ p2 <>
/\ p3 <>
eff: p1’ =3
PickRight2
var: p2
pre: p2 = pr
/\ p0 <>
/\ pl <>
/\ p3 <>
eff: p2’ =3
PickRight3
var: p3
pre: p3 = pr
/\ p0 <>
/\ pl <>
/\ p2 <>
eff: p3’ =3
DropLeft0
var: po0
pre: p0 = 2

eff: p0’ = pr

N

w

w

w

w

62

DropLefti
var: pl
pre: pl = 2
eff: pl’ = pr

DropLeft2
var: p2
pre: p2 = 2
eff: p2’ = pr

DropLeft3
var: p3
pre: p3 = 2
eff: p3’ = pr

DropRight0
var: pO
pre: p0 = 3
eff: p0’ = pr

DropRight1
var: pl
pre: pl =3
eff: pl’ = pr

DropRight2
var: p2
pre: p2 = 3
eff: p2’ = pr

DropRight3
var: p3
pre: p3 = 3
eff: p3’ = pr

ENVIRONMENT
INITIALLY
pr=0/\p0=0/\pl=0/\p2=0/\p3 =0
GOAL
po=1/\pt=1/\p2=1/\p3 =1

63

C.1.3 Result File

Result of comparison between Monolithic and Partitioned
transition relation in the gripper2 domain

Rune M Jensen
5/16/99.

Machine:
Humuhumu, 350 MHz Pentium, 1GB base memory

0S:
Linux

Experimentl: Partitioned transition relation

humuhumu was run with
/afs/cs/project/prodigy-3/runej/HUMMNP/domains/gripper2/probxx.mnp

mnp was called:
time ../../src/mnp -planl XXXXX probXX.mnp probXX.sat

The initial nodecount was chosen such that no dynamic reordering
happend during planning.

The domain by default has the same number of partitions as number of balls
in the problem + 1. This number was reduced to get a more optimal size
of partitions by collapsing groups of 10 together.

DATA:

problem number, time in msec, intial nodes , plan length, number of partitions
20 20000 11 1
150 40000 17 1
710 50000 23 1
1490 100000 29 2
3600 150000 35 2
7260 250000 41 2
13750 350000 47 2
23840 500000 53 2
36220 700000 59 3
56200 1000000 65 3
84930 1200000 71 3
127870 1400000 77 3
197170 1600000 83 3
290620 1800000 89 4
411720 2200000 95 4

© 00 N O O v W N =

=
= O

[Y
gl W N

64

16 549610 2400000 101 4
17 746920 2900000 107 4
18 971420 3500000 113 4
19 1361580 3900000 119 5
20 1838110 4400000 125 5

Experiment1: Monolithic transition relation

humuhumu was run with
/afs/cs/project/prodigy-3/runej/HUMMNP/domains/gripper2/probxx.mnp

mnp was called:
time ../../src/mnp -planl XXXXX probXX.mnp probXX.sat

The initial nodecount was chosen such that no dynamic reordering
happend during planning.

DATA:

problem number, time in msec, intial nodes , plan length, number of partitions
20 20000 11 1
130 40000 17 1
740 50000 23 1
2230 100000 29 1
6040 150000 35 1
11840 350000 41 1
24380 450000 47 1
38400 750000 53 1
68750 950000 59 1
95140 1800000 65 1
145770 2200000 71
216110 2800000 77
315150 3200000 83
474560 3500000 89
668920 4300000 95
976690 5500000 101 1

- RAM usage > 128 MB

© 00 ~N O Ul WN =

=
= O

I T e T e
O W WO N U wN
N e e

65

C.2 Movie

C.2.1 Domain Example

% File: movielO.mnp

% Desc: MNP representation of AIPS’98 competition planning problem
% domain: movie

% problem: 10

% Date: 3/10/99

% Author: Rune M. Jensen CS, CMU, (IAU, DTU)

%

VARIABLES
bool movie_rewound,counter_a_t_hours,counter_a_o_t_t_hours
bool counter_at_zero,have_chips,have_dip
bool have_pop,have_cheese,have_crackers

scalar(4) chips,dip,pop,cheese,crackers

SYSTEM
AGT: Action

rewind_movie_2
VAR: movie_rewound
PRE: counter_a_t_hours

EFF: movie_rewound’

rewind_movie
VAR: movie_rewound, counter_at_zero
PRE: counter_a_o_t_t_hours

EFF: movie_rewound’ /\ “counter_at_zero’

reset_counter
VAR: counter_at_zero
PRE: true
EFF: counter_at_zero’

get_chips
VAR: have_chips
PRE: chips < 14
EFF: have_chips’

get_dip
VAR: have_dip
PRE: dip < 14
EFF: have_dip’

66

get_pop
VAR: have_pop
PRE: pop < 14
EFF: have_pop’

get_cheese
VAR: have_cheese
PRE: cheese < 14
EFF: have_cheese’

get_crackers
VAR: have_crackers
PRE: crackers < 14
EFF: have_crackers’

ENVIRONMENT

INITIALLY
chips < 14 /\ dip < 14 /\ pop < 14 /\
“movie_rewound /\ “counter_at_zero /\
“have_chips /\ “have_dip /\
~“have_cheese /\ “have_pop /\
~“have_crackers /\ “counter_a_t_hours
GOAL
movie_rewound /\ counter_at_zero /\
have_chips /\ have_dip /\
have_cheese /\ have_pop /\
have_crackers

67

C.2.2 Result File

Result of movie domain

Rune M Jensen
5/18/99.

Machine:
Humuhumu, 350 MHz Pentium, 1GB base memory

0S:
Linux

Experiment

humuhumu was run with
/afs/cs/project/prodigy-3/runej/HUMMNP/domains/movie/moviexx.mnp

mnp was called:
time ../../src/mnp -planl XXXXX movieXX.mnp movieXX.sat

The initial nodecount was chosen such that no dynamic reordering
happend during planning.

DATA:

problem number, time in msec, plan length
14 7

12 (same for all)
14
4

14

16

14

12

14

14

14

4

16

14

16

14

16

14

16

© 00 ~N O U W N =

_
= O

e e e e N e e e
O 00 ~N O U = W N

68

20
21
22
23
24
25
26
27
28
29
30

12
16
14
16
14
16
16
16

18
16

C.3 Logistics

C.3.1

// File:
// Desc:
// Date:

Generator Script

genl.cc
File generating the log-1 domain
3/18/99

// Author: Rune M. Jensen

#include <iostream.h>

#include <stream.h>
#include <fstream.h>

int main() {

int i,j;
ofstream out ("genl.mnp",ios: :out);

// checked
// load_truck(i,j)

for (i=0; i<6; i++) // package number
for (j=0; j<6; j++) // trucknumber

out <<
out <<
out <<
out <<

// checked
// load_airplane(i,j)

for (i=0; i<6; i++) // package number
for (j=0; j<2; j++) // airplane number

load_truck_ppa" << i + 1 << "_ptr" << j + 1 << "\n";

var: " << '"ppa" << i + 1 << "\n";
pre: " << '"ppa'" << i+ 1 << " = ptr" << j 4+ 1 <<+ MK 2%] << "\n";
eff: "o nppan << 1 + 1 <LK M) =g 12 + J << l|\n\nl|;

69

out
out
out
out
out

// checked

<<
<<
<<
<<
<<

load_airplane_ppa" << i + 1 << "_pai'" << j + 1 << "\n";

var: " << "ppa" << i + 1 << "\n";
pre: " << "ppa" << i+ 1 <" ="y
"pai << j+1 << " + pai' << j+1 << " + 1\n";
eff: "o nppan << i + 1 KL M) o=KL 18 + j << n\n\nn;

// unload_truck (i, j)

for (i=0; i<6; i++)
for (j=0; j<6; j++) // truck number

{
out
out
out
out
out

// checked

<<
<<
<<
<<
<<

unload_truck_ppa'" <<
var: " << "ppa" <<
pre: " << '"ppa" <<
eff: " << "ppa" <<

+ " <KL 2*j << n\n\nn;

// unload_airplane(i,j)

for (i=0; i<6; i++)
for (j=0; j<2; j++)

{
out
out
out
out
out

// checked

<<
<<
<<
<<
<<

He e e e

// package number

+ + + o+
=R R

// package number
// airplane number

<<
<<
<<
<<

unload_airplane_ppa" << i + 1

var: " << "ppa" << i + 1 <<
pre: " << '"ppa" << i + 1 K
eff: " << "ppa" << i+ 1 <<

"_ptr" << j + 1 << "\n";
l|\nl|;

"= K< j o+ 12 << "\n"y
"n) = n << l|ptrl| << j+1;

<< ”_pai” << j + 1 << n\nn;
n\nn;
"= " << 18 + j << "\n';

"y = u,
bl

"pai << j+1 << " + pai' << j+1 << " + 1\n\n";

// drive_truck(i,j)

for (i=0; i<6; i++)

for (j=0; j<2; j++) // pos (0 - 1)

{
out
out
out
out

// checked

<<
<<
<<
<<

// truck number

drive_truck_ptr" << i + 1 << "_to'" << 2%i + j << "\n";
var: " << "ptr" << i + 1 << "\n";

pre: true\n";

eff: "o ”ptr” << i + 1 <LK M) o= gL j << n\n\nn;

// fly_airplane(i,j)

0

for (i=0; i<2; i++) // plane number
for (j=0; j<6; j++) // pos (0 - 9)

{
out << " fly_airplane_pai'" << i + 1 << "_to" << 2%j + 1 << "\n";
Out << " var: " << l|pail| << i + 1 << l|\nl|;
out << " pre: true\n";
out << " eff: " << "pai" << i + 1 << "2 =" << j << "\n\n";
}

71

C.3.2 Domain Example

% File: log-x-1.mnp

% Desc: MNP representation of AIPS’98 competition planning problem

% domain: logistics

% problem: 1

% -This planning problem was solved by some planner in the competition
% Date: 3/18/99

% Author: Rune M. Jensen CS, CMU, (IAU, DTU)

VARIABLES
scalar (1) ptrl,ptr2,ptr3,ptrd,ptr5,ptr6
scalar(5) ppal,ppa2,ppa3,ppa4d,ppab,ppab
scalar(3) pail,pai?2

SYSTEM
agt: Action

load_truck_ppal_ptril
var: ppal
pre: ppal = ptrl + 0
eff: ppal’ = 12

load_truck_ppal_ptr2
var: ppal
pre: ppal = ptr2 + 2
eff: ppal’ = 13

load_airplane_ppal_pail
var: ppal
pre: ppal = pail + pail + 1
eff: ppal’ = 18

load_airplane_ppal_pai2
var: ppal
pre: ppal = pai2 + pai2 + 1
eff: ppal’ = 19

unload_truck_ppal_ptril
var: ppal
pre: ppal = 12
eff: ppal’ = ptrl + 0

unload_truck_ppal_ptr2

72

var: ppal
pre: ppal = 13
eff: ppal’ = ptr2 + 2

unload_airplane_ppal_pail
var: ppal
pre: ppal = 18
eff: ppal’ = pail + pail + 1

unload_airplane_ppal_pai2
var: ppal
pre: ppal = 19
eff: ppal’ = pai2 + pai2 + 1

drive_truck_ptril_to0
var: ptril
pre: true
eff: ptrl’ =0

drive_truck_ptri_tol
var: ptril
pre: true
eff: ptr1’ =1

fly_airplane_pail_tol
var: pail
pre: true
eff: pail’ =0

fly_airplane_pail_to3
var: pail

pre: true
eff: pail’ =1

ENVIRONMENT

INITIALLY
ppal= 2 /\ ppa2= 1 /\ ppa3= 0 /\ ppad= 0 /\ ppab=7 /\ ppa6=4 /\

73

ptri= 0 /\ ptr2= 0 /\ ptr3= 0 /\ ptr4=0 /\ ptr5=0 /\ ptré=0 /\
pail= 3 /\ pai2=3

GOAL
ppal= 2 /\ ppa2=11 /\ ppa3=10 /\ ppa4=5 /\ ppab=11 /\ ppaé=1

74

C.3.3 Result File

Logistics experiments 5/27/99 Rune M. Jensen CMU

machine : Humuhumu, 350 MHz 1 GB RAM, Linux 4.2

call : time ../../src/mnp -planl XXX logXXXX.mnp logXXXX.sat

The logistics domains from the AIPS competition

/afs/cs.cmu. edu/project/prodigy-3/runej/HUMMNP/domains/logistics?2
log-x-1.mnp run more than 2 hours allocating 365 MB without result
log=x-2.mnp

log=x-3.mnp

log4-irst.mnp: logistics domain 4 for the Medic planner probably
used in irst deterministic paper

2 trucks, 4 packages, 2 airplanes, 6 cities

log4-irst.mnp

time SA count nodes allocated planlength
2.620 46203 550000 9

75

C.4 Obstacle

C.4.1 Generator Script

/**

* File : obs2.cc

* Desc. : Generator program for obstacle worlds
* with different x, y dimensions

* Author: Rune M. Jensen CS, CMU, (IAU, DTU)

* Date : 4/7/99

ook ok Kok ok o ok ok ok ok ok ok KoK KK K ok ko ok ok skok ko sk ok ok ok ok ok K KK KK K kK kK k ok /
#include <math.h>
#include <time.h>
#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>

int main(int argc, char **argv) {

int sizex, sizey,obsnum,agtnum;
int i,j, sizeg;

// check input
if (argc !'= 6)

{
cout << "Usage: obstacles <sizex> <sizey> <obsnum> <agtnum> <domain>.mnp\n”;
exit (1) ;
¥
ofstream out(argv[5],ios::out);
sizex = atoi(argv[il);
sizey = atoi(argv[2]);
obsnum = atoi(argv[3]);

agtnum = atoi(argv([4]);
// WRITE DOMAIN

// uwrite head

out << "\ File: " << argv[5] << "\n";
out << "\% Desc: Obstacle world with size X:" << sizex << " Y:" << sizey << "\n";
out << "\% obstaclenum " << obsnum << ", agtnum " << agtnum << "\n";

out << "\% Date: 99\n";
out << '"\% Author: Rune M. Jensen CS, CMU, (IAU, DTU)\n\n";

// write variables

out << "\nVARIABLES\n'";
out << " \% agents\n";

76

for (i=0; i<agtnum; i++)
{
out << " scalar(" << sizex << ") ax"
out << " sgcalar(" << sizey << ") ay"
}
out << " \% objects\n";
for (i=0; i<obsnum; i++)
{
out << " scalar(" << sizex << ") ox"
out << " sgcalar(" << sizey << ") oy"
}

// write system agent actions
out << "\nSYSTEM\n";

for (i=0; i<agtnum; i++)

<< i << "\n";
<< i << "\n";
<< i << "\n";
<< i << "\n";

{

out << "\n agt: a" << i << "\n\n";

out << " MoveA" << i << "Up\n";

out << " var: ay" << i << "\n";

out << " pre: \n";

for (j=0; j<obsnum; j++)
if (j !'= obsnum - 1)

out << " “(ay" << 1 << M+ 1 = oy" << j << /\\ ax" << 1 <"
else

out << " “(ay" << 1 <M+ 1 = oy" << j << /A ax" << 1<

out << " eff: ay" << i << "7 = ay" << i << " + 1\n\n";

out << " MoveA'" << i << "Down\n";

out << " var: ay" << i << "\n";

out << " pre: \n";

for (j=0; j<obsnum; j++)
if (j !'= obsnum - 1)

out << " “(ay" << 1 << M =1 = oy" << j << M /\\ ax" << 1 <"
else

out << " “(ay" << 1 << "M =1 =oy" << j << /\\ ax" << 1 << "

out << " eff: ay" << i << "? = ay" << i << " - 1\n\n";

out << " MoveA" << i << "Right\n";

out << " var: ax" << 1 << "\n'";

out << " pre: \n";

for (j=0; j<obsnum; j++)

if (j !'= obsnum - 1)

77

ox" << j << ") /\\\n";

ox" << j << ")\n";

ox" << j << ") /\\\n";

ox" << j << ")\n";

else

if (j

else

out
out

out

out

out
out

out
out
out
for

<&
<&

<< "
<< "
<< "
(j=0;

“(ax" << 1 << M+ 1 =o0x" << <" A\ ay" << i<« =

T(ax" << 1 << M+ 1 =o0x" << <" A\ ay" << i<« =

eff: ax" << i1 << "7 = ax" << i << " + 1\n\n";

MoveA" << i << "Left\n";
var: ax" << i << "\n";
pre: \n";

j<obsnum; j++)

'= obsnum - 1)

out

out
out

<&

<&y
<L "

T(ax" << 1 << M -1 = ox" << j << " /\\ ay" << 1 <<
T(ax" << 1 << M -1 = o0x" << j <" A\ ay" << 1<K =
eff: ax'" << 1 << "’ = ax" << i << " = 1\n\n";

<< "ENVIRONMENT\n";

<< "INITIALLY\n";

<< "GOAL\n ";

78

oyH << j <L l|) /\\\nH;

oy" << j << ")\n";

Oy” << J << n) /\\\Il”;

oy" << j << ")\n";

C.4.2 Domain Example

% File: ol.mnp

% Desc: Obstacle world with size X:8 Y:4
% obstaclenum 1, agtnum 1

% Date: 99

% Author: Rune M. Jensen CS, CMU, (IAU, DTU)

VARTABLES
% agents
scalar(3) ax0
scalar(2) ay0
% objects
scalar(3) ox0
scalar(2) oy0

SYSTEM
agt: a0l

MoveAOUp
var: ay0
pre:
“(ay0 + 1 = oy0 /\ ax0 = ox0)
eff: ay0’ = ay0 + 1

MoveAODown
var: ay0
pre:
“(ay0 - 1 = oy0 /\ ax0 = ox0)
eff: ay0’ = ay0 - 1

MoveAORight
var: ax0
pre:
“(ax0 + 1 = ox0 /\ ay0 = oy0)
eff: ax0’ = ax0 + 1

MoveAOLeft
var: ax0
pre:
“(ax0 - 1 = ox0 /\ ay0 = oy0)
eff: ax0’ = ax0 - 1

ENVIRONMENT

INITIALLY
“(ax0 = 7 /\ ay0 = 3)

79

GOAL
ax0 = 7 /\ ay0 = 3

80

C.4.3 Result File

Result of obstacle domain experiments with
0,1,2,3,4,5 obstacles

Rune M Jensen
5/16/99.

Machine:
Humuhumu, 350 MHz Pentium, 1GB base memory

Linux

generation of the universal plans in obstacle world with
1 agent, n obstacles, and a 8x4 grid. Goal pos 7,3
Init: anything else.

mnp was called e.g.:
time ../../src/mnp -planl 150000 03.mnp 03.bdd

#obstacle mnpfile result file SA size time msec
00.mnp 00.bdd 8 0

ol.mnp ol.bdd 196 10

o2.mnp o2.bdd 1353 40

03.mnp o3.bdd 10607 990

o4.mnp o4.bdd 80797 18810

o5.mnp o5.bdd 488296 421080

GO W N RO

Extracting single plans.

problem files: obp4eXX.mnp
resultfile obp4exx.sat

SA file: ob5.bdd

plansteps time/ msec
11
22

81

ANMm M FH 0w
(3P U Fo TN S e)

© © © M~ M~

— N M W ©
o o o o

82

C.5 Power Plant (Deterministic)

C.5.1 Domain Example

% File: powerl4.mnp

% Desc: Nuclear Power Plant test domain to demonstrate non-deterministic
% multi-agent planning

% Author: Rune M. Jensen CS, CMU, (IAU, DTU)

% Date: 5/20/99

VARIABLES
scalar(3) p, f
bool sys,okp,al,okal,okhl,m2,0kn2,a2,o0ka2,0kh?2,a3,o0ka3,okh3,mn3,0kn3,a4,oka4,okh4,
ml,okml,bl,0kbl,oktl,m4,0km4,b2,0kb2,0kt2,b3,0kb3,0kt3,m5,0km5,b4,0kb4d,0ktd

SYSTEM
% valves in reactor hall
agt: al

change
var: al,sys
pre: okal /\ sys
eff: (al -> ~al’, al’) /\ “sys’

nop
var: sys
pre: true
eff: sys -> "sys’,sys’

agt: a2
change

var: a2

pre: oka2

eff: a2 -> "a2’, a2’
nop

var:

pre: true

eff: true

agt: a3

change

83

var:
pre:
eff:

nop
var:
pre:
eff:

agt: a4

change
var:
pre:
eff:

nop
var:
pre:
eff:

agt: m2

change
var:
pre:
eff:

nop
var:
pre:
eff:

agt: m3

change
var:
pre:
eff:

nop
var:
pre:
eff:

agt: p

a3
oka3
a3 -> "a3’, a3’

true
true

ad
oka4d
a4 -> "ad’, a4’

true
true

m2
okm?2
m2 -> "m2’, m2’

true
true

m3
okm3
m3 -> "m3’, m3’

true
true

84

poO
var: p
pre: p < 5 /\ okp
eff: p

pl
var: p
pre: p < 5 /\ okp
eff: p’ =
p2
var: p
pre: p < 5 /\ okp
eff: p’ =
p3
var: p
pre: p < 5 /\ okp
eff: p

nop
var:
pre: true
eff: true
% main valve between reactor and turbine hall
agt: ml
change
var: ml
pre: okml
eff: m1 -> "m1’, ml’
nop
var:
pre: true
eff: true
% valves in turbine hall

agt: bl

change

85

var:
pre:
eff:

nop
var:
pre:
eff:

agt: b2

change
var:
pre:
eff:

nop
var:
pre:
eff:

agt: b3

change
var:
pre:
eff:

nop
var:
pre:
eff:

agt: b4

change
var:
pre:
eff:

nop
var:
pre:
eff:

agt: m4

b1l
okb1l

bl -> "b1’, bl’

true
true

b2
okb2

b2 -> "b2’,

true
true

b3
okb3

b2’

b3 -> "b3’, b3’

true
true

b4
okb4

b4 -> "b4’,

true
true

b4’

change
var: m4
pre: okm4
eff: m4 -> "m4’, n4d’

nop
var:
pre: true
eff: true

agt: mb

change
var: m5
pre: okmb
eff: mb -> "mb’, m5’

nop
var:
pre: true
eff: true

ENVIRONMENT

INITIALLY
“(% turbine security
(Tokt1 => ("b1 \/ bi1/\"okbil/\"md \/
b1/\~"okb1/\m4/\~okm4/\"m1)) /\
("okt2 => ("b2 \/ b2/\"okb2/\"md \/
b2/\~okb2/\m4/\~okm4/\"m1)) /\
(Tokt3 => ("b3 \/ b3/\"0kb3/\"m5 \/
b3/\~"okb3/\m5/\~ckm5/\"m1)) /\
(Tokt4 => ("b4 \/ b4/\"okb4d/\"m5 \/
b4/\~okb4/\m5/\~ockm5/\"m1)) /\

% environment security

("okhl => ("al \/ al/\"okal/\"m2 \/
al/\"okal/\m2/\~okm2/\"mi)) /\

(Tokh2 => ("a2 \/ a2/\"oka2/\"m2 \/
a2/\"oka2/\m2/\"okm2/\"m1)) /\

(Tokh3 => ("a3 \/ a3/\"oka3/\"m3 \/
a3/\"oka3/\m3/\"okm3/\"m1)) /\

(Tokh4 => ("a4 \/ a4/\"oka4/\"m3 \/
a4/\"oka4/\m3/\"okm3/\"m1)) /\

87

% Production requirement

% produce 0 units if system blocked or no demand

(p=0=>£f=0\ "ml\/ "m2/\"m3 \/ "m2/\"a3/\ a4 \/
"m3/\"a1/\"a2 \/ "m4/\"m5 \/ "m4/\"b1/\"b2 \/
“m5/\"b3/\"b4) /\

% produce 1 unit if:
% A: can get 1 energy unit through and have more than 0 unit demand
(p=1=>1£f>0/\ml/\

(m2/\ (a1\/a2) \/ m3/\(a3\/a4)) /\

(m4/\ (b1\/b2) \/ m5/\(b3\/b4))) /\

% B: haven’t got an ok more than 1 unit demand
(p=1=>"(f£>1/\m /\
(m2/\a1/\a2 \/ m3/\a3/\ad \/
m2/\ (a1\/a2) /\m3/\(a3\/a4)) /\
(m4/\b1/\b2 \/ m5/\b3/\b4 \/
m4/\ (b1\/b2) /\m5/\ (b3\/b4)))) /\

% produce 2 units if:
% A: can get 2 energy units through and have more than 1 unit demand
(p=2 => £ > 1 /\ mi /\
(m2/\a1/\a2 \/ m3/\a3/\ad \/
m2/\ (a1\/a2) /\m3/\(a3\/a4)) /\
(m4/\b1/\b2 \/ m5/\b3/\b4 \/
m4/\ (b1\/b2) /\m5/\ (b3\/b4))) /\

% B: haven’t got an ok more than 2 unit demand

(p=2 => “(£ > 2 /\ ml /\
m2/\m3/\(a1/\a2/\ (a3\/a4) \/ a3/\a4/\(ai\/a2)) /\
m4/\m5/\ (b1/\b2/\ (b3\/b4) \/ b3/\b4/\(b1\/b2)))) /\

% produce 3 units if:
% A: can get 3 energy units through and have more than 2 unit demand
(p=3=>f>2/\ml/\

m2/\m3/\(a1/\a2/\ (a3\/a4) \/ a3/\a4/\(ai\/a2)) /\

m4/\m5/\ (b1/\b2/\ (b3\/b4) \/ b3/\b4/\(b1\/b2))) /\

% B: haven’t got an ok more than 3 unit demand
(p = 3 => "(f = 4/\a1/\a2/\m2/\a3/\a4/\n3/\mn1/\
b1/\b2/\m4/\b3/\b4/\u5)) /\

% produce 4 energy units if:
% can get 4 energy units through and have a 4 unit demand

88

(p=4=>f=4/\a1/\a2/\n2/\a3/\a4/\n3/\m1/\
b1/\b2/\m4/\b3/\b4/\n5) /\

% setting requirements
p<5/\Nf<5/\

% activity requirements

% valves should be open if their subsystems are ok
(okh1 => al) /\

(okh2 => a2) /\

(okh3 => a3) /\

(okh4 => a4) /\

(okh1 /\ okh2 => m2) /\

(okh3 /\ okh4 => m3) /\

(okt1 => b1) /\
(okt2 => b2) /\
(okt3 => b3) /\
(okt4 => b4) /\
(okt1 /\ okt2 => m4) /\
(okt3 /\ okt4 => m5) /\

(7((Tokh1/\al \/ “okh2/\a2)/\m2 \/
(“okh3/\a3 \/ “okh4/\a4)/\m3 \/
("okt1/\b1l \/ “okt2/\b2)/\m4 \/
("okt3/\b3 \/ “okt4/\b4)/\m5) => m1))

GOAL

% turbine security

(Tokt1 => ("b1 \/ b1/\"okbil/\"md \/
b1/\~okb1/\m4/\~okm4/\"m1)) /\

(Tokt2 => ("b2 \/ b2/\"okb2/\"md \/
b2/\~okb2/\m4/\~okm4/\"m1)) /\

(Tokt3 => ("b3 \/ b3/\"0kb3/\"m5 \/
b3/\~"okb3/\m5/\~ckm5/\"m1)) /\

("okt4 => (“b4 \/ b4/\"okb4/\"m5 \/
b4/\~okb4/\m5/\~okm5/\"m1)) /\

% environment security

(Tokh1l => (Tal \/ al/\"okal/\"m2 \/
al/\~okal/\m2/\~okm2/\"m1)) /\

(Tokh2 => (a2 \/ a2/\"oka2/\"m2 \/
a2/\~oka2/\m2/\~okm2/\"m1)) /\

("okh3 => ("a3 \/ a3/\"oka3/\"m3 \/
a3/\~oka3/\m3/\"okm3/\"m1)) /\

89

(“okh4 => (a4 \/ a4/\"okad/\"m3 \/
a4/\ " oka4/\m3/\"okm3/\"m1)) /\

% Production requirement

% produce 0 units if system blocked or no demand

(p=0=>£f=0\ "mnl \/ "m2/\"n3 \/ "m2/\a3/\"ad \/
"m3/\"a1/\"a2 \/ "m4/\"m5 \/ "m4/\"b1/\"b2 \/
“m5/\"b3/\"b4) /\

% produce 1 unit if:
% A: can get 1 energy unit through and have more than 0 unit demand
(p=1=>£f>0/\ml/\

(m2/\ (a1\/a2) \/ m3/\(a3\/a4)) /\

(m4/\ (b1\/b2) \/ m5/\(b3\/b4))) /\

% B: haven’t got an ok more than 1 unit demand
p=1=>"(£>1/\ml /\
(m2/\a1/\a2 \/ m3/\a3/\ad \/
m2/\ (a1\/a2) /\m3/\(a3\/a4)) /\
(m4/\b1/\b2 \/ m5/\b3/\b4d \/
m4/\ (b1\/b2) /\m5/\ (b3\/b4)))) /\

% produce 2 units if:
% A: can get 2 energy units through and have more than 1 unit demand
(p=2 =>f > 1 /\ m1 /\
(m2/\a1/\a2 \/ m3/\a3/\ad \/
m2/\ (a1\/a2) /\m3/\(a3\/a4)) /\
(m4/\b1/\b2 \/ m5/\b3/\b4 \/
m4/\ (b1\/b2) /\m5/\ (b3\/b4))) /\

% B: haven’t got an ok more than 2 unit demand

(p=2 => (£ > 2 /\ m1 /\
m2/\m3/\(a1/\a2/\(a3\/a4) \/ a3/\a4/\(a1\/a2)) /\
m4/\m5/\ (b1/\b2/\ (b3\/b4) \/ b3/\b4/\(b1\/b2)))) /\

% produce 3 units if:
% A: can get 3 energy units through and have more than 2 unit demand
(p=3=>£f>2/\ml/\

m2/\m3/\(a1/\a2/\ (a3\/a4) \/ a3/\ad/\(a1\/a2)) /\

m4/\m5/\ (b1/\b2/\ (b3\/b4) \/ b3/\b4/\(b1\/b2))) /\

% B: haven’t got an ok more than 3 unit demand
(p = 3 => "(f = 4/\al/\a2/\n2/\a3/\a4/\n3/\n1/\
b1/\b2/\m4/\b3/\b4/\u5)) /\

90

% produce 4 energy units if:

% can get 4 energy units through and have a 4 unit demand

(p=4=>f=4/\a1/\a2/\m2/\a3/\a4/\m3/\m1/\
b1/\b2/\m4/\b3/\b4/\u5) /\

% setting requirements
P<5/\NEf <5/

% activity requirements

% valves should be open if their subsystems are ok
(okh1 => al) /\

(okh2 => a2) /\

(okh3 => a3) /\

(okh4 => a4) /\

(okh1 /\ okh2 => m2) /\

(okh3 /\ okh4 => m3) /\

(okt1 => b1) /\
(okt2 => b2) /\
(okt3 => b3) /\
(okt4 => b4) /\
(okt1 /\ okt2 => m4) /\
(okt3 /\ okt4 => m5) /\

(7((Tokh1/\al \/ “okh2/\a2)/\m2 \/
(“okh3/\a3 \/ “okh4/\a4)/\m3 \/
("okt1/\b1l \/ ~“okt2/\b2)/\m4 \/
(“okt3/\b3 \/ “okt4/\b4)/\m5) => ml)

91

C.5.2 Result File

Power plant multiagent experiments Deterministic : No environment

Power plant domain: number of states: 2742
doesn’t change for the different problems.

Experiment 1:

Machine: humuhumu, 350 MHz, Pentium, 1 GB RAM,

Experiment purpose: examine the impact of using a different number of agents.

notes: dynamic reordering used in this experiment as the variable ordering
turns out to be bad. (all problems started with 5000 nodes such that
variable reordering was necessary for all problems)
(in the other JAIR experiments the initial variable ordering was ok, thus
dynamic reordering could be avoided)

files: /afs/cs/project/prodigy-3/runej/HUMMNP/domains/power2/powerXX.mnp ,
powerXX.bdd

Optimistic planning used: does not matter: domain is deterministic.
call: time ../../src/mnp -pland 5000 powerXX.mnp powerXX.bdd
The problem number indicate the number of agents used.

Problem# SA node count time/ msec #clusters
11871 73650 10
347982 266540
915766 467740
449624 91020
193824 41060
2423862 847090
759441 208810
558946 148000
192593 36460
10 67154 16750
31362 2960
23080 3080
10203 2300
31847 14020 10

© 00 N O U v W N =

e
B W N =

92

Experiment 2:

Machine: humuhumu, Pentium PC, 350 Mhz, 1 GB RAM, Linux 4.2

A: Build an universal plan

dir: /afs/cs.cmu.edu/project/prodigy-3/runej/HUMMNP/domains/power?2

in: poweri14.mnp
out: powerl4.bdd (covering as many initstates as possible)
call: time ../../src/mnp -plan4d 5000 powerl4.mnp powerl4.bdd

10 partitions.

state space size: 2742

number of joint actions: 5%2714
number of agents: 15

Used: Dynamic reordering.

time / msec SA node count

14060 31847

B: Extract a single joint action

dir: /afs/cs.cmu.edu/project/prodigy-3/runej/HUMMNP/domains/power?2
in: power15.bdd (covering as many init states as possible)
constraint file: power.con

% constraint

% constraint

sys /\ al /\ a2 /\ a3 /\ a4 /\

~“okal /\ oka2 /\ oka3 /\ oka4d /\

“okh1 /\ okh2 /\ okh3 /\ okh4 /\

ml /\ m2 /\ m3 /\ m4 /\ m5 /\

okm1l /\ okm2 /\ okm3 /\ okm4 /\ okm5 /\

bl /\ b2 /\ b3 /\ b4 /\

93

okt1 /\ okt2 /\ okt3 /\ okt4d /\
okbl /\ okb2 /\ okb3 /\ okb4 /\
f=1/\p=4/\ okp

call:

time ../../src/mnp -analyse 1500000 powerl4.mnp powerl4.bdd powerl4.sat
using constraint file: power.con

extaction time: 0 msec

extracted joint action:

powerl4.sat:

ACTION
al: nop
a2: nop
a3: nop
a4: nop
m2: change
m3: nop
p: pl

ml: nop
bl: nop
b2: nop
b3: nop
b4: nop
m4: nop
m5: nop
VARIABLES
okt4d: 1 *
okb4: 1 *
bd: 1 *

o

94

C.6 Transport (Strong Planning)

C.6.1 Domain Example

% File: irstl.mnp

% Desc: Irst transport domain in AIPS’98 paper
% Date: 5/19/99

% Author: Rune M. Jensen CS, CMU, (IAU, DTU)

% used as result in JAIR paper 1999

VARIABLES

% {train_station = 0, Victoria_station = 1, Gatwick=2, Luton=3, air_station=4,
% truck_station=5, city_center=6 }
scalar(3) pos

% {green=1, red=0}
scalar (1) 1light

bool fuel,fog

SYSTEM
AGT: trans

drive_train
VAR: pos
PRE: pos = 0 \/ (pos =1 /\ light
EFF: (pos = 0 => pos’ = 1) /\
(pos /\ light = 1 => pos’ = 2)

1)

1]
—

wait_at_light

VAR:

PRE: true

EFF: (light = 1 => 1light’ = 0) /\
(1ight = 0 => 1light’ = 1)

drive_truck
VAR: pos,fuel
PRE: (pos = 5 \/ pos = 6) /\ fuel
EFF: (pos = 5 => pos’ = 6) /\
(pos 2)

6 => pos’
make_fuel

VAR: fuel

PRE: "fuel

EFF: fuel’

fly

95

VAR: pos

PRE: pos = 4

EFF: ("fog => pos’
(fog => pos’

2) /\
3)

air_truck_transit
VAR: pos
PRE: pos = 4
EFF: pos’ =5

ENVIRONMENT
AGT: 1lftagt

1ftact
VAR: fog,light
PRE: true
EFF: true

INITIALLY

(pos = 0 \/ pos = 4) \/ (pos =
GOAL

pos = 2

5 /\ fuel)

96

C.6.2 Result File

IRST AIPS’98 train domain:

Machine humuhumu, 350 MHz Pentium, 128 MB RAM,
call: time ../../../src/mnp -plan2 5000 train.mnp train.bdd

result:

0.000u 0.020s 0:03.75 0.5% 0+0k 0+0io 109pf+0w
0.000u 0.010s 0:01.35 0.7% 0+0k 0+0io 109pf+0w
0.000u 0.010s 0:01.23 0.8% 0+0k 0+0io 109pf+0w
0.010u 0.000s 0:01.57 0.6% 0+0k 0+0io 109pf+0w

97

C.7 Transport (Strong Cyclic Planning)

C.7.1 Domain Example

% File: irst.mnp

% Desc: IRST test domain in AAAT 98 paper

% Author: Rune M. Jensen CS, CMU, (IAU, DTU)
% Date: 3/26/99

VARIABLES
scalar(2) pos % 1: at_station, 2:at_light, 3:at_airport
scalar(1) light % 0: red, 1: Green

SYSTEM
agt: sys

drive_train
var: pos
pre: pos = 1 \/ (pos = 2 /\ light = 1)
eff: (pos = 1 => pos’ = 2) /\
(pos = 2 /\ light = 1 => pos’ = 3)

wait_at_light
var:
pre: pos = 2
eff: true

ENVIRONMENT
agt: env

light
var: light
pre: true
eff: true

INITIALLY
pos =1
GOAL
pos = 3

98

C.7.2 Result File

IRST AIPS’98 train domain:
Rune M. Jensen 5/19/99, JAIR results

Machine humuhumu, 350 MHz Pentium, 128 MB RAM,

call: time ../../../src/mnp -plan3 5000 train.mnp train.bdd

result:

0.000u 0.020s 0:01.59 1.2% 0+0k 0+0io 109pf+0w
0.000u 0.020s 0:01.24 1.6% 0+0k 0+0io 109pf+0w
0.000u 0.010s 0:01.30 0.7% 0+0k 0+0io 109pf+0w
0.000u 0.010s 0:01.35 0.7% 0+0k 0+0io 109pf+0w
0.010u 0.000s 0:01.60 0.6% 0+0k 0+0io 109pf+0w
0.000u 0.010s 0:03.66 0.2% 0+0k 0+0io 109pf+0w

99

C.8 Beam Walk

C.8.1 Generator Script

/%K ok K ok K ok ok KoK o ok KoK ok ok KoK 3 3 ok KoK o 3K o KoK K o ok KK o ok KK ok ok KK ok ok KK
* File : beam2.cc
* Desc. : Generator program for beam walks
* Author: Rune M. Jensen CS, CMU
* Date : 5/19/99
3K K 3 oK K oK KK 3 oK oK KK 3 oK ok KK 3 3k 3k oK 3 3 3k ok K ok 3 ok oK oK oK ok K ok ok KK ok ok ok KK sk ok /
#include <math.h>
#include <time.h>
#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>

int main(int argc, char **argv) {
int logsize, size;

// check input
if (argc !'= 3)
{
cout << "Usage: beam <logsize> <domain>.mnp\n";
exit (1) ;
}

ofstream out(argv[2],ios::out);
logsize = atoi(argv[1il);
size = int(pow(2,logsize));

// WRITE DOMAIN

// uwrite head

out << "\% File: " << argv[2] << "\n";

out << "\% Desc: Beam? walk with size " << 2%size << '"\n";
out << "\% Date: 99\n";

out << "\% Author: Rune M. Jensen CS, CMU \n\n";

// write variables
out << "\nVARIABLES\n";

out << " \} obstacles and agents\n";
out << " scalar(" << logsize << ") pos";
out << " bool up\n";

100

// write system agent actions
out << "\nSYSTEM\n\n";

out << " agt:sys\n\n";
out << " Walk\n";
out << " var: pos, up\n";
out << " pre: “(up /\\ pos = " << size - 1 << ")\n";
out << " eff: (pos = 0 /\\ “up -> up’ /\\ pos’ = 0,\n";
out << " (up -> pos’ = pos + 1,\n";
out << " (pos’ = pos - 1 /\\ "up’)))\n\n";

out << "ENVIRONMENT\n";

out << "INITIALLY\n";

out << " pos = 0 /\\ “up\n\n";

out << "GOAL\n ";

out << " pos = " << size - 1 << " /\\ up\n";

101

C.8.2 Domain Example

% File: 2beam4.mnp

% Desc: Beam2 walk with size 4
% Date: 99

% Author: Rune M. Jensen CS, CMU

VARIABLES
% obstacles and agents
scalar(1) pos bool up

SYSTEM
agt:sys

Walk
var: pos, up
pre: “(up /\ pos = 1)
eff: (pos = 0 /\ “up -> up’ /\ pos’ =0,
(up -> pos’ = pos + 1,
(pos’ = pos - 1 /\ "up’)))

ENVIRONMENT
INITIALLY
pos = 0 /\ “up

GOAL
pos =1 /\ up

102

C.8.3 Result File

IRST AIPS’98 beam walk domain:
Rune M. Jensen 5/19/99, JAIR results

Machine humuhumu, 350 MHz Pentium, 128 MB RAM,

Using strong cyclic plannning:
call: time ../../../src/mnp -plan3 5000 train.mnp train.bdd

Experiment: 1 beamXX.mnp files
locations SA size time/ msec
4365

845

16 56 5

32 6 20

64 7 50

128 8 240

256 9 990

512 10 5440

1024 11 23290

2048 12 119160

4096 - -

Using strong cyclic plannning:
call: time ../../../src/mnp -plan3 5000 train.mnp train.bdd

Experiment: 2 2beamXX.mnp files
locations SA size time/ msec
430

840

16 5 0

32 6 20

64 7 80

128 8 200

256 9 810

512 10 4020

1024 11 18590

2048 12 89690

4096 13 399800

8192 14 1874650

IRST only count every second location in their AAAI’98 paper
so they would represent our results:

locations SA size time/ msec
230

103

440

850

16 6 20

32 7 80

64 8 200

128 9 810

256 10 4020

512 11 18590
1024 12 89690
2048 13 399800
4096 14 1874650

104

C.9 Power Plant (Non-Deterministic)

C.9.1 Domain Example

%
%
%
%
%
%

File: power14.mnp

Desc: Nuclear Power Plant test domain to demonstrate non-deterministic
multi-agent planning

Author: Rune M. Jensen CS, CMU, (IAU, DTU)

Date: 5/20/99

14 agents (13 sys)

VARIABLES

scalar(2) p, £
bool okh1l,bl,0kh2,b2,0kh3,b3,0kh4,b4,
vli,v2,v3,v4,0kt1,s1,0kt2,82,0kt3,s83,0kt4,s4

SYSTEM

%

block agents

agt: bl
block1
var: bl
pre: “okhil
eff: bl’
nop
var:

pre: true
eff: true

agt: b2
block?2
var: b2
pre: “okh2
eff: b2’
nop
var:

pre: true
eff: true

agt: b3

block3
var: b3

105

pre: “okh3
eff: b3’

nop
var:
pre: true
eff: true

agt: b4
block4
var: b4
pre: “okh4
eff: b4’
nop
var:

pre: true
eff: true

% valve agents
agt: vi

changel
var: vl
pre: true
eff: vi -> “v1’, v1’

nop
var:
pre: true
eff: true

agt: v2

change?2

var: v2

pre: true

eff: v2 -> “v2’, v2°’
nop

var:

pre: true

eff: true

agt: v3

106

change3
var: v3
pre: true
eff: v3 -> “v3’, v3’

nop
var:
pre: true
eff: true

agt: v4

change4
var: v4
pre: true
eff: v4 -> “v4’, v4’

nop
var:
pre: true
eff: true

% turbine stop agents

agt: sl
stopl
var: sl
pre: “oktl
eff: s1’
nop
var:

pre: true
eff: true

agt: s2

stop2
var: s2
pre: “okt2
eff: s2’

nop

107

var:
pre: true
eff: true

agt: s3
stop3
var: s3
pre: “okt3
eff: s3’
nop
var:

pre: true
eff: true

agt: s4
stop4
var: s4
pre: “okt4
eff: s4’
nop
var:

pre: true
eff: true

% reactor control agent

agt: p
poO
var: p
pre: true
eff: p? =0
pl
var: p
pre: true
eff: p> =1
p2
var: p

pre: true

108

eff: p? = 2

p3
var: p
pre: true
eff: p> =3

ENVIRONMENT
agt: env

fail

var: okhil,okh2,o0kh3,0kt1,0kt2,0kt3,o0kt4

pre: true

eff: (“okhl => “okhil’) /\
(“okh2 => ~okh2’) /\
(“okh3 => ~okh3’) /\
(“okh4 => ~okh4’) /\
(Toktl => “okt1’) /\
(Tokt2 => “okt2’) /\
("okt3 => “okt3’) /\
("okt4 => “okt4’)

INITIALLY
% not irreversibly failed
(okh1 \/ okh2 \/ okh3 \/ okh4) /\
(okt1 \/ okt2 \/ okt3 \/ okt4)

GOAL

% not irreversibly failed
(okh1 \/ okh2 \/ okh3 \/ okh4) /\
(okt1 \/ okt2 \/ okt3 \/ okt4) /\

% safety requirements

% heat exchangers blocked if failed
("okh1 => b1) /\
("okh2 => b2) /\
("okh3 => b3) /\
(“okh4 => b4) /\

% turbines stopped if failed

("oktl => s1) /\
(Tokt2 => 82) /\

109

("okt3 => 83) /\
("okt4d => s4) /\

% activity requirements

% power production equals demand
p=£f/\

% turbine valves are open if turbine is ok
(okt1 => v1) /\

(okt2 => v2) /\
(okt3 => v3) /\
(okt4d => v4)

110

C.9.2 Result File

Power plant multiagent experiments for JAIR paper : power domain 3

Power plant domain: number of states: 2724

Experiment 1: Generate a universal plan with optimistic planning

Machine: humuhumu, 350 MHz, Pentium, 1 GB RAM,

files: /afs/cs/project/prodigy-3/runej/HUMMNP/domains/power3/power14.mnp

call: time ../../src/mnp -pland 50000 powerl4.mnp powerl4.bdd

RESULT:

[runejOhunuhumul$ time ../../src/mnp -pland 50000 powerl4.mnp powerl4.bdd
Number of clusters 16

going into preimagef

replaced old2new

Finished partition 0 node count 96

Garbage collection #1: 50000 nodes / 33361 free / 0.0s / 0.0s total
Garbage collection #2: 50000 nodes / 20021 free / 0.0s / 0.1s total
going into prunedpreimage

Garbage collection #3: 50000 nodes / 29708 free / 0.0s / 0.1s total
updating sa

SA node count: 37620

updating acc

Garbage collection #4: 50000 nodes / 6643 free / 0.0s / 0.1s total
Garbage collection #5: 100000 nodes / 56643 free / 0.1s / 0.2s total
Start reordering (98102 nodes)

Garbage collection #6: 100000 nodes / 57049 free / 0.1s / 0.2s total
End reordering (42951 nodes, 0.2 sec)

ACC node count: 8

Added preimage 1

SA covers Init

Final node count of SA: 37619

Write SA to output file "power14.bdd" (y/n): y

0.920u 0.070s 0:19.14 5.1% 0+0k 0+0io 113pf+0w

[rune j@hunuhumul $

Experiment 2:

111

A) Extraction by analyse
Machine: humuhumu, 350 MHz, Pentium, 1 GB RAM,
Experiment purpose: extract a couple of example plans

extract file: /afs/cs/project/prodigy-3/runej/HUMMNP/domains/power2/poweri4.bdd
logical formula: powerexpX.con:

outputfile: powerXl.sat

[runejohumuhumul$../../src/mnp -analyse 50000 powerl4.mnp powerl4.bdd powerXlb.sat
Number of clusters 3

Analyse BDD Type "help'" for command list
$ f

constraint file: powerexpl.con

Time elapsed: 13 msec

powerXl.con
% constraint

“b1 /\ b2 /\ b3 /\ “b4 /\
okh1 /\ okh2 /\ “okh3 /\ ~“okh4 /\

“s1 /\ "s2 /\ "s3 /\ "s4 /\
okt1l /\ okt2 /\ okt3 /\ okt4 /\

vl /\ v2 /\ v3 /\ v4 /\
f=2/\p=1

powerexpl.sat
ACTION

env: *

bl: nop

112

b2: nop
b3: block3
b4: block4
vl: nop
v2: nop
v3: nop
v4: nop
sl: nop
s2: nop
s3: nop
s4: nop

p: p2
VARIABLES

113

C.10 Soccer

C.10.1 Generator Script

/3K ko ok ok Kok ok KK KK K K K 3 ok o o Ko ok ok 3k ok 3k ok ok K KoK K K K K 3 kK ok o sk ok
* File : soccer.cc
* Desc. : Generator program for JAIR paper soccer domains
* Author: Rune M. Jensen CS, CMU
* Date : 5/20/99
K ok KKk oK oK 3 oK KoK oK K KK K K K 3 o o o ko ok ok ok 3k ok Kok Kok K KK KK K KK KK Kk k [
#include <math.h>
#include <time.h>
#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>

int main(int argc, char **argv) {

int logsizex, logsizey, sizex, sizey, ournum, oppnum, i,j,k;

// check input
if (argc !'= 6)

{
cout << "Usage: soccer <logsizex> <logsizey> <#four (<=8)> <#opp> <domain>.mnp\n";
exit (1) ;
¥
ofstream out(argv[5],ios::out);
logsizex = atoi(argv([1]);
sizex = int (pow(2,logsizex));
logsizey = atoi(argv[2]);
sizey = int (pow(2,logsizey));
ournum = atoi(argv[3]);
oppnum = atoi(argv[4]);

// WRITE DOMAIN

// uwrite head

out << "\ File: " << argv[5] << "\n";
out << "\% Desc: JAIR paper Soccer domain with logX:" << logsizex
<< " logY: " << logsizey << " #our:" << ournum << " #opp:" << oppnum << "\n";

out << "\% Date: 99\n";
out << "\% Author: Rune M. Jensen CS, CMU \n\n";

// write variables
out << "\nVARIABLES\n";

114

out << " \% ball \n";

out << " scalar(3) has_ball\n";
out << " \% our agents\n";
for (i=0; i<ournum; i++)
{
out << " scalar(" << logsizex << ") our" << i
out << " scalar(" << logsizey << ") our" << i
}

out << " \% opp agents\n";
for (i=0; i<oppnum; i++)

out << " scalar(" << logsizex << ") opp" << i
out << " scalar(" << logsizey << ") opp" << i

// write system agent actions
out << "\nSYSTEM\n\n";

for (i=0; i<ournum; i++)

{
out << " agt: our" << i << "\n\n";
out << " move_right" << i << "\n";
out << " var: our" << i << "x\n"
out << " pre: true\n";
out << " eff: our" << i << "x’ = our" <<
out << " move_left" << i <<'"\n";
out << " var: our" << i << "x\n"
out << " pre: true\n";
out << " eff: our" << i << "x’ = our" <<
out << " move_up'" << i << "\n";
out << " var: our'" << i << "y\n";
out << " pre: true\n";
out << " eff: our" << i << "y’ = our" <<
out << " move_down" << i << '"\n";
out << " var: our" << i << "y\n";
out << " pre: true\n";
out << " eff: our" << i << "y’ = our" <<

for (j=0; j<ournum; j++)
if (i '=)

115

<<
<<

<<
<<

”x\n”
ny\nn

”x\n”
ny\nn

<<

<<

<<

<<

+ 1\n\n";

- 1\n\nn;

+ 1\n\n";

- 1\n\nn;

out << "
out << "

out

I<a

out << "

}
}

pass'" << i << "_"

<< j << "\n";

var: has_ball\n";

pre: has_ball

=" << i << "\n";

eff: has_ball’ = " << j << "\n\n";

// write system agent actions
out << "\nENVIRONMENT\n\n";

for (i=0; i<oppnum; i++)

{

out
out
out
out
out
out
out

for

out

out
out
out
out

out
out
out
out

out
out
out
out

out
out
out
out

<<
<<
<<
<<
<<
<<
<<

(i

+ 1\n\n";

- 1\n\nn;

+ 1\n\n";

- 1\n\nn;

<< " agt: opp" << i << "\m\n'";

<< M move_right" << i << "\n';

<< " var: opp" << i << "x\n";

<< " pre: true\n";

<< eff: opp" << i << "x’ = opp" <K i <K "x
<< M move_left" << i <<'"\n";

<< " var: opp" << i << "x\n";

<< " pre: true\n";

<< eff: opp" << i << "x’ = opp" <K i <K "x
<< M move_up'" << i << "\n";

<< " var: opp" << i << "y\n";

<< " pre: true\n";

«< " eff: opp" << i << "y’ = opp" KK i K"y
<< M move_down' << i << '"\n'";

<< " var: opp" << i << "y\n";

<< " pre: true\n";

«< " eff: opp" << i << "y’ = opp" <K i K"y
"\nINITIALLY\n";

" true\n\n";

"GOAL\n\n";

" ((our0Oy < " << int (0.75*sizex) << " /\\ \n";
" ourQy > " << int(0.25%sizex)-1 << " /\\ \n";
" ourOx = " << sizey - 1 << " /\\ \n";

" has_ball = 0) \n\n";

=1; i < ournum; i++)

116

out
out
out

for

out <<
out <<
out <<
out <<

out <<

I<a

I<a
I'<a

out <<
out <<
out <<

out <<

\\/ (our" << i << "y < " << int(0.75*sizex) << " /\\\n";
our" << i << "y > " << int(0.25*sizex) << " /\\\n";
our" << i << "x =" << gizey - 1 << " /\\\n";
has_ball = " << i << ")\n\n";

) A\ \n\n";
“((opp0y < " << int(0.75%*sizex) << " /\\ \n";
opp0y > " << int(0.25*sizex)-1 << " /\\ \n";
opp0x = " << gizey - 1 << ") \n";

i < oppnum; i++)

\\/ (opp" << i << "y < " << int(0.75*sizex) << " /\\\n";
opp" << i << "y > " << int(0.25%sizex) << " /\\\n";
oppn << 1 << ”X =" K< sizey - 1 << n) \n\n";

) \n\n";

117

C.10.2 Domain Example

% File: soccertest.mnp

% Desc: JAIR paper Soccer domain with logX:3 logY: 3 #our:6 #opp:6
% Date: 99

% Author: Rune M. Jensen CS, CMU

VARIABLES
% ball
scalar(3) has_ball
% our agents
scalar(3) ourOx
scalar(3) ourOy

% opp agents
scalar(3) oppOx
scalar(3) oppOy

SYSTEM
agt: our0

move_right0
var: ourOx
pre: true
eff: our0x’ = ourOx + 1

move_leftO
var: ourOx
pre: true
eff: ourOx’ = ourOx - 1

move_up0
var: ourOy
pre: true
eff: our0y’ = ourOy + 1

move_down0
var: ourOy
pre: true
eff: our0y’ = ourOy - 1

passO_1
var: has_ball
pre: has_ball
eff: has_ball’

]
= O

118

pass0_2
var: has_ball
pre: has_ball = 0
eff: has_ball’ = 2

pass0_3
var: has_ball
pre: has_ball =0
eff: has_ball’ = 3

pass0_4
var: has_ball
pre: has_ball =0
eff: has_ball’ = 4

pass0_5
var: has_ball
pre: has_ball = 0
eff: has_ball’ = 5

agt: ourl

ENVIRONMENT

agt: opp0

move_right0
var: oppOx
pre: true
eff: oppOx’ = opplOx + 1

move_leftO
var: oppOx
pre: true
eff: oppOx’ = opplOx - 1

move_up0
var: oppOy
pre: true
eff: oppOy’ = opplOy + 1

move_downO
var: oppOy
pre: true
eff: oppOy’ = opplOy - 1

119

agt: oppl

move_right1l
var: opplx
pre: true
eff: opplx’

move_leftil
var: opplx
pre: true
eff: opplx’

move_upl
var: opply
pre: true
eff: opply’

move_downl

var: opply
pre: true
eff: opply’
agt: opp2
INITIALLY
true
GOAL
((our0x < 6 /\
our0x > 1 /\
ourO0y = 7 /\

has_ball = 0)

\/ (ourlx < 6 /\
ourlx > 2 /\
ourly = 7 /\
has_ball = 1)

D EVAN
“((opp0x < 6 /\
opp0x > 1 /\
opply = 7)
\/ ...)

opplx

opplx

opply

opply

120

121

C.10.3 Result File

JAIR paper soccer domain 5/21/99

Experiment 1: Planning time for different number of agents

Machine: humuhumu, 350 MHz, 1 GB RAM, Linux

files:
in /afs/cs/project/prodigy-3/runej/HUMMNP/domains/soccer2/soccerX.mnp
out /afs/cs/project/prodigy-3/runej/HUMMNP/domains/soccer2/soccerX.bdd

call: time ../../src/mnp -plan2 50000 soccerX.mnp soccerX.bdd
(that is: strong planning was used)

Note: We used dynamic reordering, as the obdd sizes seemed to benefit from it.

epx# #our #opp SA size / nodes t/msec
1 126 50

2149 2040

18428 10920

123191 83250

36927 145360

2502209 5003030

O U W N =
O Ul W N
oUW N

Experiment 2a: Extracting a strong plan.

Base domain: Soccer doamin with 8 system agents, no environment agents
Machine: humuhumu, 350 MHz, 1 GB RAM, Linux

files:

in /afs/cs/project/prodigy-3/runej/HUMMNP/domains/soccer2/socagt5.mnp

1 /afs/cs/project/prodigy-3/runej/HUMMNP/domains/soccer2/socerl.con
2 /afs/cs/project/prodigy-3/runej/HUMMNP/domains/soccer2/socer2.con

out: /afs/cs/project/prodigy-3/runej/HUMMNP/domains/soccer2/soccer5_X.sat

122

call: ../../src/mnp -analyse 10000000 soccerb5.mnp soccer5.bdd soccer5_X.sat

$ f
constraint file: soccerl.con
Time elapsed: 1 msec

$
$ f
constraint file: soccer2.con

Time elapsed: 1 msec

$

Experiment 2b: Planning time for different decomposition number of agents.

Base domain: Soccer doamin with 8 system agents, no environment agents
Machine: humuhumu, 350 MHz, 1 GB RAM, Linux

files:

in /afs/cs/project/prodigy-3/runej/HUMMNP/domains/soccer2/socagtX.mnp

out /afs/cs/project/prodigy-3/runej/HUMMNP/domains/soccer2/socagtX.bdd

call: time ../../src/mnp -plan2 XXXXXX socagtX.mnp socagtX.bdd
(that is: strong planning was used)

Note: We used dynamic reordering, as the obdd sizes seemed to benefit from it.
epx# #our #opp SA size / nodes t/msec allocated nodes

110 94 25960 150000

2 2 0 82021 58880 450000

440---
880 ---

Experiment 3: Planning time for a single agent version. (1 sys and 1 env agent)

Base domain: Soccer doamin with 8 system agents, no environment agents

Machine: humuhumu, 350 MHz, 1 GB RAM, Linux

123

files:
in /afs/cs/project/prodigy-3/runej/HUMMNP/domains/soccer2/soccerXS.mnp
out /afs/cs/project/prodigy-3/runej/HUMMNP/domains/soccer2/socagtX.bdd

call: time ../../src/mnp -plan2 XXXXXX soccerXS.mnp soccerXS.bdd
(that is: strong planning was used)

epx# #our #opp SA size / nodes t/msec allocated nodes
1 126 30 50000

1103 770 50000

3528 2100 50000

8100 3200 50000

13593 12870 50000

23734 24950 50000

U W N
=R s R e
e e e

124

D UwmopP Program Files

D.1 Makefile

#

Makefile for MNP files

#

CFLAGS = -03 -W -Wtraditional -Wmissing-prototypes -Wall
LIBDIR = /afs/cs/project/prodigy-3/runej/BUDDYHUM/1ib
INCDIR = /afs/cs/project/prodigy-3/runej/BUDDYHUM/include
--- full object list

0BJ = lex.yy.o y.tab.o domain.o fsm.o bddprint.o plan.o dissets.o analyse.o reorder.o time.o main.o
CFILES = lex.yy.c y.tab.c
CCFILES = domain.cc fsm.cc bddprint.cc plan.cc disslets.cc analyse.cc reorder.cc time.cc main.cc

.SUFFIXES: .cc .c

.CC.0:
g++ -I$(INCDIR) -c $<

.C.0:

cc -c -I$(INCDIR) $<

__
The primary targets.

__
mnp: $(0BJ)

gt+ $(CFLAGS) -o mnp $(0BJ) -L$(LIBDIR) -1bdd -1fl -1m
chmod u+x mnp

lex.yy.c: mnp.1
lex mnp.1

y.tab.c y.tab.h: mnp.y
yacc -d -v mnp.y

125

clean:

rm —-f *.0 core %~

rm -f lex.yy.c y.tab.c y.tab.h
rm —-f mnp

depend:
gcc -MM $(CFILES) -I$(INCDIR) > depend.inf
g++ -MM $(CCFILES) -I$(INCDIR) >> depend.inf

backup:
tar cvf ../../MNP.tar ../../HUMMNP/

###
include depend.inf

126

D.2 Lex File (mnp.l)

Number [0-9]+
Id [a-zA-Z_]1[0-9A-Za-z_]%*’7
yAS

/R ok ok ok ok ok ok ok sk ok sk ok ook sk ok ok sk ok ok ok ok ok ok ok o ok o ok ok o
¥ File : np.l

* Desc. : lex file for NP Language

* Author: Rune M. Jensen

* Date : 2/21/99, CS,CMU

Kok o KoKk KKK KK KK oK K ok K oK ok K oK oK sk oK oK oK ok oK ok ok ok ok ok sk ok ok sk ok /

#include "y.tab.h"

int lineno = 1;

%>

%%

AL /* ignore comments, (rest of line from %) */ ;
[\t 1+ /* ignore whitespace */ ;
\n { lineno++; }

"system" { return(SYSTEM); }
"environment" { return(ENVIRONMENT); }
"yvariables" { return(VARIABLES); }
"initially" { return(INITIALLY); }
"goal" { return(GOAL); }

"bool" { return(BOOL); }
"scalar" { return(SCALAR); }
"agt:" { return(AGT); }

"pre:" { return(PRE); }

"eff:" { return(EFF); }

"yar:" { return(VAR); }

"true" { return(TRUE); }
"false" { return(FALSE); }
"SYSTEM" { return(SYSTEM) ; }
"ENVIRONMENT" { return(ENVIRONMENT); }
"VARIABLES" { return(VARIABLES); }
"INITIALLY" { return(INITIALLY); }
"GOAL" { return(GDAL); }

"BOOL" { return(BOOL); }
"SCALAR" { return(SCALAR); }
"AGT: " { return(AGT); }

"PRE:" { return(PRE); }

"EFF:" { return(EFF); }

"VAR:" { return(VAR); }

"TRUE" { return(TRUE); }

127

"FALSE"
ng=s
n=yn
nosn
n/\\n

||\\/||
nesn

Hen
"=t
nyn
ngn
N

non
s

l|(||

l|)||

{14}
{Number}
%%

L N T e e W W e W e B e B e B e W e B e e N e N e i e B

return(FALSE); }
return(BIIMPL); }
return(IMPL); }
return (ARROW) ; }
return(AND); }
return(OR); }
return(NE); }
return(’~’); }
return(’=’); }
return(’>’); }
return(’<’); }
return(’+’); }
return(’-’); }
return(’,’); }
return(’ (*); }
return(’)’); }
return(ID); }
return (NUMBER) ; }

128

D.3 Yacc File (mnp.y)

%token SYSTEM ENVIRONMENT INITIALLY GOAL
%token PRE EFF VAR AGT SCALAR ARROW TRUE FALSE
%token NE ID NUMBER VARIABLES BOOL

%token BIIMPL IMPL AND OR

Y%nonassoc ARROW
%left BIIMPL IMPL
%left OR

%left AND
Y%nonassoc ’7’
Yleft 747 2-7

%start mnpproblem
hh
/R Rk ok oKk ok ok sk ok sk ok ok sk ok ok sk ok ok sk ok ok ok ok ok ok o ko ok o K
¥ File : mnp.y
* Desc. : Yacc file for MNP language
Abstract Syntax described in domain.h
See also lex file mnp.1
Author: Rune M. Jensen, CS, CMU (IAU, DTU)
Date : 3/2/99
ok ok o KoK KKK KK KK KKK ok K oK ok oK oK sk oK oK oK ok oK ok ok ok ok ok sk ok ok sk ok /

*
*
*
*

mnpproblem: VARIABLES vardecls SYSTEM agtdecls ENVIRONMENT agtdecls INITIALLY formula GOAL formula
{ mnpprob = (mnpproblem*) malloc(sizeof (mnpproblem)) ;
mnpprob->vars = (varlst*) $2;
mnpprob->sys = (agent*) $4;
mnpprob->env = (agent*) $6;
mnpprob->init = (formulax) $38;
mnpprob->goal = (formulax) $10;

¥
vardecls:
{ $¢ = (int) NULL; }
| varlst vardecls
{ vars = (varlstx*) $1;
vars->next = (varlst*) $2;
$$ = (int) vars; }
varlst: vartype idlst
{ vars = (varlst*) malloc(sizeof(varlst));
vars->type = (vartypex) $1;
vars->ids = (idlstx*) $2;
$$ = (int) vars; }

129

vartype: BOOL
{ vatype = (vartype*) malloc(sizeof (vartype));
vatype->type = vt_bool;
$$ = (int) vatype; }
| SCALAR ’ (°’ number ’)’
{ vatype = (vartype#*) malloc(sizeof (vartype));
vatype->type = vt_scalar;
vatype->range = (int) $3;
$$ = (int) vatype; }

H

idlst:
{ $$ = (int) NULL; }
| idlsti
{ %8 =91; }
idlst1: id
{ ids = (idlst*) malloc(sizeof (idlst));
ids->id = (char*) $1;
ids=->next = NULL;
$$ = (int) ids; }
| id ’,’ idlsti
{ ids = (idlst*) malloc(sizeof (idlst));
ids->id = (char*) $1;
ids->next = (idlst*) $3;
$$ = (int) ids; }
agtdecls:

{ $$ = (int) NULL; }
| AGT id actiondecls agtdecls
{ agt = (agent#*) malloc(sizeof (agent));
agt->name = (char#) $2;
agt->actions = (action*) $3;
agt->next = (agentx) $4;
$$ = (int) agt; }

actiondecls: actiondecl
{ act = (action*) $1;
act->next = NULL;
$$ = (int) act; }
| actiondecl actiondecls

130

{ act = (actionx) $1;
act->next = (action*) $2;

$$ = (int) act; }

actiondecl: id VAR idlst PRE formula EFF formula
{ act = (action*) malloc(sizeof(action));
act->name = (char*) $1;
(idlst*) $3;
act->pre = (formula*) $5;
act->eff (formulax) $7;
$$ = (int) act; }

act->var

formula: formulal ARROW formulal ’,’ formulal
{ f = (formula*) malloc(sizeof(formula));
f->type = ft_ite;
f->f1 = (formulax) $1;
f->f2 = (formulax) $3;

f->£3 = (formulax) $5;
$$ = (int) f; }
| formulal
{83 =815 }
formulal: formulal IMPL formulal
{ £ = (formula*) malloc(sizeof(formula));

f->f1 = (formulax) $1;
f->type = ft_impl;
£f=>f2 = (formulax) $3;
$$ = (int) £f; }
| formulal BIIMPL formulail
{ £ = (formula*) malloc(sizeof(formula));
f->f1 = (formulax) $1;
f->type = ft_biimpl;
f->f2 = (formulax) $3;
$$ = (int) f; }
| formulal OR formulail
{ f = (formula*) malloc(sizeof(formula));
f->f1 = (formulax) $1;
f->type = ft_or;
f->f2 = (formulax) $3;
$$ = (int) £; }
| formulal AND formulal
{ £ = (formula*) malloc(sizeof(formula));
f->f1 = (formulax) $1;
f->type = ft_and;

131

f->f2 = (formula%*) $3;

$$ = (int) £; }
>~ formulal
{ f = (formula*) malloc(sizeof (formula));

f->type = ft_neg;
f->f1 = (formula*) $2;

$$ = (int) £; }
| 7’ formula ’)°’
{ f = (formula*) malloc(sizeof (formula));

f->type = ft_paren;
£->f1 = (formula*) $2;

$$ = (int) £; }
| TRUE
{ f = (formula*) malloc(sizeof (formula));
f->type = ft_true;
$$ = (int) £; }
| FALSE
{ f = (formula*) malloc(sizeof (formula));
f->type = ft_false;
$$ = (int) £; }
| atom
{ f = (formula*) malloc(sizeof (formula));
f->type = ft_atom;
f->atomic = (atom*) $1;
$$ = (int) £; }
atom: id

{ a = (atom*) malloc(sizeof (atom));
a->type = at_boolvar;
a->var = (char#) $1;
$$ = (int) a; }
| numprop
{ a = (atom*) malloc(sizeof(atom));
a->type = at_numprop;
a->prop = (numberprop#*) $1;
$$ = (int) a; }

numprop: numberexp relop numberexp
{ np = (numberprop*) malloc(sizeof (numberprop));
np->left = (numberexp*) $1;
np->op = (relop) $2;
np->right = (numberexp*) $3;
$$ = (int) np; }

132

relop:

numberexp:

id:

number:

A

{ $$ = (int) ro_eq; }
NE
{ $$ = (int) ro_ne; }
)>)
{ $$ = (int) ro_gt; }
?<?
{ $$ = (int) ro_1t; }
id
{ ne = (numberexp*) malloc(sizeof (numberexp));
ne->type = nt_var;
ne->var = (charx) $1;
$$ = (int) ne; }
number

{ ne = (numberexp*) malloc(sizeof (numberexp));
ne->type = nt_number;
ne->number = (int) $1;
$$ = (int) ne; }
numberexp ’+’ numberexp
{ ne = (numberexp*) malloc(sizeof (numberexp));
ne->type = nt_plus;
ne->left = (numberexp*) $1;
ne->right = (numberexp*) $3;
$$ = (int) ne; }
numberexp ’-’ numberexp
{ ne = (numberexp*) malloc(sizeof (numberexp));
ne->type = nt_minus;
ne->left = (numberexp#*) $1;
ne->right = (numberexp*) $3;
$$ = (int) ne; }

ID
{ s = (char*) malloc (MAXNAMELENGTH) ;
strcpy(s,yytext);
$$ = (int) s; }
NUMBER

{ $$ = (int) atoi(yytext); 1}

#include <stdio.h>
#include <stdlib.h>

133

#include "domain.h"
ftdefine MAXNAMELENGTH 128

extern char *yytext; /* defined in mnp.l */
extern int lineno; /* defined in mnp.l */

mnpproblem *mnpprob; /* pointer to abstract syntax (only extern var)*/

agent *agt;
formula *f ;
varlst *vars;
vartype *vatype;
idlst *ids;
char *g;
action *act;
atom *a;

numberprop *np;
numberexp *ne;

yyerror(s)
char *s;

{
fflush(stdout);
printf ("\n%s! lineno:%d at:\"%s\"\n", s, lineno, yytext);

134

D.4 Header Files
D.4.1 Analyse.hpp

/e kskok sk ok ok ok skok ki ok sk ok sk sk ok ki ok skok sk sk ok ek sk ok sk sk sk ok ke sk ok ok sk ok sk sk sk ok ok sk ok ok ok ok
¥ File : analyse.hpp

* Desc. : header file for analyse.cc

* Author: Rune M. Jensen CS, CMU (IAU,DTU)

* Date : 3/29/99

skeok ok sk ok ok sk ok ok sk ook sk skok ok sk ok ok sk skok ok sk ok skok sk sk sk ki skok sk sksk sk ok sk skok sk sk sk sk ok sk ok /

#ifndef ANALYSEHPP
#tdefine ANALYSEHPP

void bddanalyse(char *bbdinfile, char *satoutfile,int nodenum,domdef *def);
void dumdomain(char *formula);

#endif

135

D.4.2 Bddprint.hpp

/KK koK KoK ok K oK ok K oK sk oK oK ok ok oK ok ok sk ok ok sk ok ok sk ok ok ok ok
¥ File : bddprint.hpp

* Desc. : header for bddprint.cc

* Author: Rune M. Jensen, CS, CMU, (IAU, DTU)

* Date : 2/26/99

ok ok o KoK Ko KKK o KK Ko KK ok KK K kK Ko K kK oK oK ok K koK ok KK koK kK Kk ok

#ifndef BDDPRINTHPP
#tdefine BDDPRINTHPP

#tinclude <stdio.h>
#include <iostream.h>
#include <fstream.h>
#include <bdd.h>
#include "fsm.hpp"
#include "common.hpp"

struct bddprintabs {

FILE *setfile;

domdef *def ;

ofstream outfile;

char outfilename [MAXNAMELENGTH] ;

int *actlen; // the length of the action output must be explicitly stored

int parse(int *,int);

void reset () ;

void bddprint (bdd b) ;

void bddprintv(bdd b);

void bddinfo (bdd b);

void bddprinthead();

void bddprintline(bdd b);

bddprintabs (char *filename,domdef *d);

};
#endif

136

D.4.3 Common.hpp

/%% ok K ok K ok ok K o oK ok KK 3 3k ok K ok 3k ok K K o oK K 3 KoK K oK ok K 3 ok ok K ok ok ok Kk
* File : common.h

* Desc. : Shared defines for MNP files

* Author: Rune M. Jensen

* Date : 2/19/99

oK K 3 oK K oK K ok ok ok K ok ok ok K ok o ok oK o sk KoK K K KoK K o ok ok ko okok Kk ok ok kK sk k ok k /

#ifndef COMMONHPP
#define COMMONHPP

#define MAXNAMELENGTH 128
#define DEBUG 0
#define MAXPLANLENGTH 256

#endif

137

D.4.4 Dissets.hpp

/Rkskoskskokkokosk ok kkokok ok sk ook skokok sk sk sk ook sk skok ko sk ki sk sk ok ko sk sk skok sk sksk sk ok sk ok ok
¥ File : dissets.hpp

* Desc. : Header for Disjoint set ADT

* Author: Rune M. Jensen

* Date : 3/16/99

skeok ok sk ok ok ok ok ko sk ok ok sk ok ko sk ok ok skok ok sk sk ok sk skok sk ok skok sk skok sk sk skok sk sk ok sk sk ok ok sk ok /

#ifndef DISSETSHPP
#define DISSETSHPP

#include "domain.hpp"

struct disnode {
struct disnode *parent;
int size;
int setnum;

};

struct idmap {
char *id;
disnode *node;
struct idmap *next;
disnode #*lookup(char *id);

};

struct disset {
idlst **partvars; // array of variables in each subset
int subsetnum;
idmap *map;
disset ()
{ map = NULL; }
void makeset (char *id);
disnode *find(char *id);
disnode *setunion(disnode *v, disnode *w);
void enumerate();
void mkpartvars();

};

#endif

138

D.4.5 Domain.h

/e skskok sk ok ok ok skok kok ok sk ok sk sk ok ki ok skok sk sk ok sk sk ok sk sk sk ok ke sk ok sk sk ok sk sk sk ok ok sk ok ook ok ok
¥ File : doamin.h

* Desc. : Domain theory representation for MNP-domains,
* c compatible.

* Author: Rune M. Jensen

* Date : 3/3/99

sokokokok ok sk ok ok sk ook sk okok ok sk ook sk okok ok sk ok skok s ko sk ki skok sk sksk sk ok sk skok sk ok sk ok ok sk ok /

/**

* Number expressions *
seokok sk ok sk ok ok sk ok ok ok sk okok sk sk ok sk sk skok sk sk ok sk sk ok sk sk sk ok sk sk ok ok skok sk ok sk ok ok skok ok /

typedef enum _relop {ro_lt,ro_gt,ro_eq,ro_ne} relop;
typedef enum _exptype {nt_number, nt_plus, nt_minus, nt_var} exptype;

typedef struct _numberexp {
exptype type;
int number;
struct _numberexp *left;
struct _numberexp *right;
char *var;

} numberexp;

typedef struct _numberprop {
relop op;
numberexp *left;
numberexp *right;

} numberprop;

/**

* atoms *
ok 3k 3k 3K 3K 3K 3k 3K 3K KK oK oK 3 oK oK 3 oK 3 3K oK 3 oK oK 3 3k K 3K ok 3k 3 oK 3 3k K 3 ok 3k 3 ok 3k ok ok ok 3k Kk ok sk ok kK /

typedef enum _atomtype {at_numprop, at_boolvar} atomtype;

typedef struct _atom {
atomtype type;
numberprop *prop;
char *var;

} atom;

139

/**

* Fomula representation *
seokok ok sk ok ok ko sk ok sk skok sk ko sk sk skok sk sksk ok ok sk skok skok sk ki sk sk ok sk sk sk sk sk ok ok ksk sk ok ok /

typedef enum _formulatype {ft_atom,ft_neg,ft_and,ft_or,ft_impl,
ft_biimpl,ft_ite, ft_true, ft_false, ft_paren} formulatype;

typedef struct _formula {
formulatype type;
atom *atomic;
struct _formula *f1;
struct _formula *f2;
struct _formula *£f3;

} formula;

/**

* Action representation *
HK ok o KK KK K KR Ko KK Ko KK Kok Kok K KK Ko KK K kK KKK kK Kk K kK koK [

typedef struct _idlst {
char *id;
struct _idlst *next;
} idlst;

typedef struct _action {
char *name ;
idlst *var;
formula *pre;
formula *eff;
struct _action *next;
} action;

[RRF R Rk KKk Kok Kok koK KKk ok ok koK kR ok kK Kok Kok koK K skok ok ok
* agent representation *
ook kok ok ok ok okok sk okok Kok ook sk okok Rk ook skokok Kok ok skok sk ok kk ok okok ok ok kok ok ok /

typedef struct _agent {
char *name ;

action *actions;

struct _agent *next;

} agent;

140

/**

* varlst, vartype representation *
Fokokokokokokokok ko kok Rk ok ok ok sk kR ok ook ik sk ko ok Kok ok ko ok ok ok ok sk ok ok /

typedef enum _vtype {vt_bool, vt_scalar} vtype;

typedef struct _vartype {
vtype type;
int range;

} vartype;

typedef struct _varlst {
vartype *type;

idlst *ids;
struct _varlst *next; /% next varlst %/
} varlst ;

/**

* Problem representation *
skeok ok sk ok sk ok ok ok ok sk ok ok sk skok sk ok sk ok sk sk sk ok sk sk ok ke sk ok sk sk sk ok ok sk ok ok skok sk sk ok sk ok ok skok ok /

typedef struct _mnpproblem {

varlst *vars;
agent *sys;
agent *env;
formula *init;
formula *goal;

} mnpproblem;

141

D.4.6 Domain.hpp

/e ksksk sk ok sk sk sk ok ki skok sk ok sk ok ok sk okok sk sk sk ok ok sk skok sk ok sk sk sk sk ok sk ok sk ks sk ok ok sksk sk ok sk ok ok
¥ File : doamin.hpp

* Desc. : Domain theory representation for MNP-domains,
* ct++ compatible.

* Author: Rune M. Jensen

* Date : 3/3/99

sokokskok ok sk ok ok sk ook skok ok ko sk ok ok ko sk ko sk ok ok skok sk ok skok sk skok sk ok skok sk sk ok ok sk ok ok sk ok /

#ifndef DOMAINHPP
#define DOMAINHPP

/s sk ok ok sk ok ok ks skok sk sk ok sk sk skok sk skok sk ok skok sk sk ok ko sk ok ok sk ok ko sk ok sk skok ok sk
* Number expressions *
seokok ok sk ok ok skok sk ook skok sk kok sk sk skok sk sksk ook sk okok skok sk sk sk sk ok sksk ok sk ok ok ok ksk sk ok ok /

enum relop {ro_lt,ro_gt,ro_eq,ro_ne};
enum exptype {nt_number, nt_plus, nt_minus, nt_var};

struct numberexp {
exptype type;
int number;
struct numberexp *left;
struct numberexp *right;
char *var;
void minus2plus();
void print();

struct numberprop {
relop op;
numberexp *left;
numberexp *right;
void minus2plus();
void print();

/3 3k 3K 3k 3k 3k ok 3k oKk ok K ok ok 3K 3 KK 3K oK 3 oK 3K 3 oK K 3 oK 3 oK ok 3 3k K 3 ok K 3K ok 3 ok K 3 ok Kk ok 3k ok oK K K
* atoms *
sk 3k 3k 3k 3k 3K 3k 3K 3ok K 3K ok 3 3k K 3 ok K 3 ok 3 o ok 3 3k K 3k ok 3k o ok K 3k Kk 3k 3k 3 ok K 3k Kok Kok 3 ok ok sk sk ok /

enum atomtype {at_numprop, at_boolvar};

142

struct atom {
atomtype type;
numberprop *prop;
char *var;
void print();

};

/ksksksk sk ok sk ok skok sk ok skok sk ok ko sk sk skok ok sk sk ok sk skok sk ks sk ok sk skok ko sk ok ok sk ok ok k ok
* Fomula representation *
sokokskok sk ok ok sk oksk ook sk skok ko sk ok sk sk skok sk sk ok sk skok sk sk sk ok sk sk ok ok ko sk ok sk ok ok skok ok /

enum formulatype {ft_atom,ft_neg,ft_and,ft_or,ft_impl,
ft_biimpl,ft_ite, ft_true, ft_false, ft_paren};

struct formula {
formulatype type;
atom *atomic;
struct formula *f1;
struct formula *£f2;
struct formula *£f3;
void print();

}s;

/R ok ok ok ok ok ok ok sk ok ok ok sk sk ok ook ok ok ok ok ok ok ok ook ok ok ok ok ok
* Action representation *
Kok o KKk R KKK Ko K KKK K oK K K ok oK ok K ok oK ok K ok K oK oK ok KoK oK kK oKk oK ok ok sk ok

struct idlst {
char *id;
struct idlst *next;
void print();
idlst (char *nm, struct idlst *nx)
{ id = nm; next = nx; }
struct idlst *lookup(char *name);

};

struct action {
char *name ;
idlst *var;
formula *pre;
formula *eff;
struct action *next;
void print();

143

/**

* agent representation *
ook kok sk ok ok ok okok sk okok oKk ook okok Rk kK skok ok Kok ok skok sk ok kok ok kokok ok ok kokkk ok /

struct agent {
char *name ;
action *actions;
struct agent *next;
void print();

/**

* varlst, vartype representation *
Fokokokokokokok koo kok Rk ko Kok kR kR ok kiR ko ook sk Kok ko ok Kok sk ok ok ko ok /

enum vtype {vt_bool, vt_scalar};

struct vartype {
vtype type;
int range;
void print();
};

struct varlst {
vartype *type;
idlst *ids;
struct varlst *next; /% next varlst */
void print();

/**

* Problem representation *
seokokskok sk ok ok ko sk ok sk skok sk ko skok sk skok sk sksk ook sk skok skok sk sk sk sk ok sk sk sk sk sk ok ok ksk sk ok ok /

struct mnpproblem {

varlst *vars;
agent *sys;
agent *env;
formula *init;

144

formula *goal;
void print();
3

#endif

145

D.4.7 Fsm.hpp

/e ksksk sk ok sk sk sk ok ki skok sk ok sk ok ok sk okok sk sk sk ok ok sk skok sk ok sk sk sk sk ok sk ok sk ks sk ok ok sksk sk ok sk ok ok

¥ File : fsm.hpp

Desc. : Structures for constructing the FSM
transition relation for MNP problems.

Author: Rune M. Jensen, CS, CMU, (IAU, DTU)

Date : 3/3/99

sokokskok ok sk ok ok sk ook skok ok ko sk ok ok ko sk ko sk ok ok skok sk ok skok sk skok sk ok skok sk sk ok ok sk ok ok sk ok /

*
*
*
*

#ifndef FSMHPP
#define FSMHPP

#include <bdd.h>
#include <fstream.h>
#include "domain.hpp"
#include "dissets.hpp"

/**

* structures for representing domain info *
sk ok sk ok ok ok skok sk ook ok sk ok skok sk ok s kok sk sk ok ok skok sk ok sk ok sk sk ok sk ok sk ok skok sk ok ok ok /

[/ xxxkkkkkkkkkkk vardel sokkskskokkokkokkokkkk kKK kK Kk K kkkk ok kok

struct actdef {
char *name ;
int number;
action *act;
struct actdef *next;
actdef (char *id,int n, action *a, struct actdef *nt)
{name = id; number = n; act = a; next = nt;}
void print (ofstream &out,int *actlen);
void print();
}s

[/ xkFdkkkrkkrkk agtdef R
enum sysclass {sc_env, sc_sys};

struct agtdef {
char *name;
int number;
int actnum;
sysclass sclass;
actdef *acts;
struct agtdef *next;
agtdef (char *nm, int n, int an, sysclass sc, actdef *ac, struct agtdef *nx)

146

{ name = nm; number = n; actnum = an; sclass = sc; acts = ac; next = nx; }
struct agtdef *lookup(int i);
void print (ofstream &out,int *actlen);
void print();
}s;

//xxxkkkkkkkkkkx vardef 0ok ok K Kk o ok ok KoK Kok ok KoK K oK K KK K K Kk K

struct vardef {

char *name ; // the action var has a name corresponding to their agent num.
vtype type; // boolean, scalar

int length; // no. of variables

int *var; // mapping to bddvars

struct vardef *next;
vardef (char *n,vtype vt,int 1, int *v, struct vardef #*nt)
{ name = n; type = vt; length = 1; var = v; next = nt; }
void print();
struct vardef *lookupnew(char *name) ;
struct vardef *lookup(int i);
struct vardef *lookup(char #name);

};

// bdd variable location info
struct varrels {

bddPair *old2new;

bddPair *new2o0ld;

bdd oldstate;
bdd *newstate; // an array corresponding to partition numbers
bdd envactions; // (to enable early quantification)
bdd sysactions;
};
//*xxkkkkxxkkkk domdef sokok ok sk sk ok ok sk ok ok skok ook sk sk ok ok sk sk ok ok

// total bdd variable layout description
struct domdef {
agtdef *agt;

int envnum;
int agtnum;
int *actnum;
action ***act ;
vardef *var;

idlst *varnames;
int bddvarnum;

147

disset *dset;
varrels *rels;

domdef (agtdef *a, int en, int agnum, int *acnum, action ***ac, vardef *v,

idlst *varn, int bvc, disset *ds)

{ agt = a; envnum=en; agtnum = agnum; actnum = acnum; act

varnames = varn; bddvarnum = bvc; dset = ds;}
void print();
}s;

/% 3k 3 ok ko ok ok ok ok Kok ok ok ok oK 3 ok ok KoK 3 3 ok oK oK 3 3K oK oK ok 3 sk ok ok K ok ok ok ok ok ok ok oKk ok ok
* structure for representing *
* binary number expresions *
oK K 3 oK K 3 oK K 3 oK ok K o ok ok KK 3 ok ok oK 3 3k ok K kK oK oK K 3k ok ok K ok ok KKk ok ok kK ok /

struct binary {
int digitnum;
bdd *digit;
binary(int dn, bdd *d)
{ digitnum = dn; digit = d; }

3

7Aook ok ok okokokok sk kok ok ok sk sk ko ok sk ik ko ok ok sk skok ok ok ok Kok ok ko ok ok
* structure for representing *
* a partitioned transition relation *

**/

struct bddtrel {
bdd *T; // transition partitions
bdd *IV; // corresponding invariant part
bdd A; // action value condition
bddtrel (int size)
{ T = new bdd[size]; IV = new bdd[size]; }
}s

// kkkkkkkkkkkx function prototypes % %k 3k 3K %K %k %k 3K % 3K %k %k %k 3Kk 3k 5k %k %k %k
void mkbddblocks (domdef *def);

domdef *mkdomdef (mnpproblem *mnp) ;

varrels *mkvarrels(domdef *def);

void adjust2order(int *order, domdef *def);

148

ac;

var = v;

bdd formula2bdd(formula *f, domdef *def) ;
bdd atom2bdd(atom *a, domdef *def) ;

bdd numprop2bdd (numberprop *prop,domdef *def);
binary *numexp2binary(numberexp *num,domdef *def);

bdd int2bdd(int #var,int length,int n) ;

bdd I(int i, int j, domdef *def) ;

bdd F(char *v, int i, int j, domdef *def) ;

bdd ADEF (domdef *def) ;

bdd IND(int i1, int j1, int i2, int j2, domdef *def);
bdd AC(domdef *def);

bdd P(int i, int j, domdef *def) ;

bdd E(int i, int j, domdef #*def) ;

bdd IV(int partno,domdef *def) ;

bdd A(int i,int j,domdef *def) ;

bddtrel *T(domdef *def) ;
#endif

149

D.4.8 Main.hpp

/**

*
*
*
*

File

Desc.
Author:
Date

: main.hpp
: Header for mnp main file main.cc

Rune M. Jensen CS, CMU, (IAU,DTU)

: 4/3/99

**/

#ifndef MAINHPP
#define MAINHPP

//extern
extern mnpproblem *mnpprob; // parse tree structure
#endif

150

D.4.9 Plan.hpp

/R KKk oKk ok ok sk ok sk ok ok sk ok ok sk ok ok ok ok ok ok ok ok ok o ok ok o K
¥ File : plan.hpp

* Desc. : Header for plan.cc

* Author: Rune M. Jensen CS, CMU, (IAU, DTU)

* Date : 4/4/99

ok ok o KoK KKK Ko K koK oK o K ok K K oK ok K oK ok oK oK ok ok ok ok ok ok ok ok sk ok ok ok ok /

#ifndef PLANHPP
#define PLANHPP

#include <bdd.h>
#include "fsm.hpp"
#include "bddprint.hpp"

// function prototypes

// aux. functions

bdd prunestates(bdd preimage, bdd acc);

bdd projact(bdd stateact_rules, domdef *def);

bdd image(bddtrel *tr, bdd s,domdef *def);

bdd successor(bdd action,domdef *def);

void printplan(bddtrel *tr,bdd init,bdd goal,bdd sa,char *planfile,domdef *def);
bdd strongpreimage (bddtrel *tr, bdd acc,domdef *def);

bdd weakpreimage(bddtrel *tr, bdd acc,domdef *def);

// planning algorithm 1
bdd preimagef (bddtrel *tr, bdd acc,domdef *def);
int planl(bddtrel *tr, bdd init, bdd goal, bdd *sa,domdef *def);

// nondet algorithms
// planning algorithm 2
int strongplan(bddtrel *tr, bdd init, bdd goal, bdd #*sa,domdef *def);

// planning algorithm 3

int strongcyclicplan(bddtrel #tr, bdd init, bdd goal, bdd #*sa,domdef *def);
bdd 0SA(bddtrel *tr,bdd CSA,bdd s,domdef *def);

void faircycles(bddtrel *T, bdd *acc, bdd *sa,bdd *oldacc, domdef *def);

// planning algorithm 4

bdd preimagef2(bddtrel *tr, bdd acc,domdef *def);

int plan4(bddtrel *tr, bdd init, bdd goal, bdd *sa,domdef *def);
#endif

151

D.4.10 Reorder.hpp

/**

*
*
*
*

File
Desc.
Rune M.
Date

: reorder.hpp
: header for reorder.cc

Jensen CS, CMU, (IAU, DTU)

: 4/4/99

**/

#ifndef REORDERHPP
#define REORDERHPP

// prototypes

void writeorder(char *filename,domdef *def);
int *readorder (char *filename,domdef *def);
#tendif

152

D.4.11 Time.hpp

/%% 3ok K ok K ok ok K o ok ok KK 3 3k ok K ok 3k ok K K o oK K 3 KoK K 3 oK ok K 3 ok ok K ok ok ok Kk
¥ File : time.hpp

* Desc. : Header file for time.cc

* Author: Rune M. Jensen

* Date : 4/8/99

3K K 3 oK K oK K ok ok ok K ok 3k ok K ok ok KoK o 3k KoK K K KoK K o ok ok ko okok Kk ok ok Kk sk k ok k /

#ifndef TIMEHPP
#tdefine TIMEHPP

void startwatch();

void stopwatch();
#endif

153

D.5 Source Files

D.5.1 Analyse.cc

/kksksk sk ok kokosk ok ki skok sk oksk ook sk skok sk sk sk ok ok sk skok ko sk ki sk sk ok sk sk sk ki skok sk sksk sk ok sk ok ok
¥ File : analyse.cc

* Desc. : tool for analysing BDDs

* Author: Rune M. Jensen CS, CMU, (IAU,DTU)

* Date : 3/29/99

sokokskok ok sk ok ok sk ook skok ok ko skok ok ko sk ko skok sk skok sk ok skok sk skok sk ok skok sk sk ok ok sk ok ok sk ok /

#include <bdd.h>
#include <string.h>
#include <stdio.h>
#include "bddprint.hpp"
#include "reorder.hpp"
#include "analyse.hpp"
#include "common.hpp"
#include "plan.hpp"
#include "time.hpp"

// parsetree structure
extern mnpproblem *mnpprob;

void bddanalyse(char *bddinfile, char *satoutfile, int nodenum,domdef *def) {

bdd f,b,inbdd,init,goal;

int loop,i,knownc;

int *ordering;

char command[32];

char argument[512];

extern FILE *yyin;

bddprintabs *bp;

char orderinfile[MAXNAMELENGTH] ;

char cnames[18][16] = {"print","con","nodes","sat","logsat","help","quit","reset","file",
npn ,e! ,'n" ,ig LU ,"h" ,nqn, npt, Ural };

// read reordering information and adjust domdef
sprintf (orderinfile,"%so",bddinfile);

ordering = readorder (orderinfile,def);
adjust2order (ordering,def) ;

// initialize bdd package

// NOTE: addref system breaks down if node number is
// increased during load of file

bdd_init (nodenum, 10000) ;

154

bdd_setvarnum(def->bddvarnum) ;

// read bdd infile
if (bdd_fnload(bddinfile,inbdd))
{
cout << "mnp: Cannot load bdd from file \"" << bddinfile << "\'"\nexiting\n";
exit (1) ;
}

// open sat outfile
bp = new bddprintabs (satoutfile,def);

// main command loop
cout << "\nAnalyse BDD Type \'"help\" for command list\n";
argument [0] = ’\0’;
b = inbdd;
loop = 1;
while (loop)
{
cout << "$ ";
gets (command) ;

knownc = 0;
for (i=0; 1 < 18; i++)
if (!strcmp(command,cnames[i])) knownc = 1;
if ('knownc && command[0] !'= 0)
cout << "unknown command\n";
else

switch (command[0]) {

case ’p’
cout << "vertical or horizontal (v/h): '";
gets (argument) ;
if (argument[0] == ’v’)
{
bp->bddprintv(b) ;
bp->outfile.flush();
}
else
{
bp->bddprint (b) ;
bp->outfile.flush();
}

break;

155

case ’c’
cout << "formula: ";
gets (argument) ;
dumdomain (argument) ;
yyin = fopen("deleteme.mnp","r");
if (yyin == NULL)
{
printf ("analyse.cc bddanalyse : cannot open deleteme.mnp\nexiting\n");
exit (1) ;
}

if (!yyparse())
{
// parsing succeeded
f = formula2bdd (mnpprob->init,def);
b &= f;
}
fclose(yyin);
break;

case 'f’
cout << "constraint file: ";
gets (argument) ;
yyin = fopen(argument,'"r");
if (yyin == NULL)
printf ("Cannot open file : \"%s\"\n",argument) ;
else

{
if (!'yyparse())

// parsing succeeded
f = formula2bdd (mnpprob->init,def);

// start timing
startwatch() ;

b &= f;

// stop timing
stopwatch();

fclose(yyin);
}

break;
case 'n’

cout << "BDD node count : " << bdd_nodecount(b) << "\n'";
break;

156

case ’s’
cout << "BDD sat count : " << bdd_satcount(b) << "\n";
break;
case ’1’
cout << "BDD log sat count : " << bdd_satcountln(b) << "\n";
break;
case ’h’
cout << "(p)rint : Print the bdd to file.\n";
cout << "(c)on : Constrain bdd by formula.\n";
cout << "(f)ile : Constrain bdd by file with formula.\n";
cout << '"(n)odes : Print number of nodes in bdd.\n";
cout << '"(s)at : Print sat count.\n";
cout << "(l)ogsat : Print logsat count.\n";
cout << "(h)elp : Print this message.\n";
cout << "(r)eset : Reset BDD to input BDD and reset outfile
cout << "(q)uit : End session.\n";
break;
case ’'r’
b = inbdd;
bp->reset();
break;
case ’q’
loop = 0;
break;
}
}

// close bdd package
bdd_done();

void dumdomain(char *formula) {
FILE *out;

// writes dummy mnp domain with formula stated
// as init to lex input.
out = fopen('"deleteme.mnp","w+");

157

.\Il";

if (out == NULL)
{

printf ("analyse.cc dumdomain : cannot open deleteme.mnp\nexiting\n");
exit (1) ;
¥
fprintf (out,'"variables bool dum\n");
fprintf (out,"system agt: dum dum var: pre: true eff: true\n");
fprintf (out,"environment initially %s goal true",formula);
fclose(out);

158

D.5.2 Bddprint.cc

/R ook ok ok ok ok ok ok sk ok sk ok ok sk ok ook sk ok ok ok ok ok ok ok o ok o ok ok o

% File : bddprint.cc

* Desc. : functions for nice prints of BDD trans. rel.

* of MNP domains.

* Author: Rune M. Jensen, CS, CMU, (IAU, DTU)

* Date : 3/4/99

ok ok o oKk KKK KK KK oK K ok K oK ok oK oK sk oK oK oK ok oK ok ok ok ok ok sk ok ok sk ok /

#include <iostream.h>
#include <fstream.h>
#include <stream.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include "fsm.hpp"
#include "bddprint.hpp"
#include "common.hpp"

bddprintabs: :bddprintabs(char *filename,domdef *d) {
strcpy(outfilename,filename) ;
outfile.open(filename,ios: :out) ;
def = d;

void bddprintabs::reset() {
outfile.close();
outfile.open(outfilename,ios: :out);

}

// reads one variable assignment

// of the bdd_printset format

int bddprintabs::parse(int *as,int aslen) {
int i, varno, ordno,value;
char c¢;

//check if file T or False
c = getc(setfile);

if (¢ == ’F’ || <¢==EOF)

return 0;
else

159

if (¢ =="T")
{
// set all variables to -1 (any value)
for (i=0;i<aslen;i++)

as[i] = -1;
return 1;
}
else
if (¢ == 7<)

// there is an assignment to read

// set all variables to -1 (any value)
for (i=0;i<aslen;i++)
as[i] = -1;

// read assignment
while(c !'= ’>?) {

// pre: pointer is at first digit
// in var. assignment
if (fscanf (setfile,"%d/%d:%d",&varno,&ordno,&value) '= 3)
{
cout << "\nbddprint.cc printbddabs::parse: scan error";
cout << "\nexiting\n\n";
}
as[varno] = value;
// post: pointer is just after last difit
// in var. assignment
c = getc(setfile);
¥
return 1;
}
}

// aux. for printbdd
void mkspace(ofstream &out,int n) {

int i;
for (i=0;i<n;i++)
out << " ",

int max(int a,int b) {
return a > b ? a : b;

160

int bin2intstr(int *as,int *var,int length,char #buf) {
int i,exp,res;

res = 0;
exp = length - 1;
for (i= 0; i < length; i++)
if (as[var[il] < 0)
return 0;
else
res += as[var[i]]*int (pow(2,exp--));
sprintf (buf,"%d" ,res);
return 1;

char *rawrep(int #as,int *var,int length,char xbuf) {
int i;

strcpy (buf,"");
for (i=0; i<length; i++)
switch (as[var[il]) {
case 0 :
strcat (buf,"0");
break;
case 1
strcat (buf,'"1");
break;
default:
strcat (buf,"*'");
break;
}
return buf;

}

void bddprintabs::bddprint (bdd b) {

agtdef *agtd, *agt;

idlst *varnames;

vardef *vard, *var;

int *as;

int i,len,plen,aslen;
char buf [MAXNAMELENGTH] ;

161

// open outputfile for bdd_printset
if ((setfile = fopen('"deleteme.txt","w+")) == NULL)
{
cout << "bddprint.cc printbddabs::bddprintline: ";
cout << "cannot open \'"deleteme.txt\"\nexiting\n\n";
exit (1) ;
¥

// make the set
bdd_fprintset(setfile,b);
fflush(setfile);
rewind(setfile);

// print action description (and fill the action length table)
agtd = def->agt;

actlen = new int[def->agtnum];

agtd->print (outfile,actlen);

outfile << "\n";

// write header
// agt names
for (i=0; i < def->agtnum; i++) {
agt = agtd->lookup(i);
outfile << agt->name;
mkspace (outfile,actlen[agt->number] - strlen(agt->name));

}

// uwrite header

// write all old state variables
varnames = def->varnames;
vard = def->var;

while (varnames) {
var = vard->lookup(varnames->id);
len = max(strlen(var->name) + 2, (var->length + 1)%2);
outfile << var->name;
mkspace (outfile,len - strlen(var->name));
varnames = varnames->next;
¥

outfile << "\n";
// Init assignment table

aslen = def->bddvarnum;
as = new int[aslen];

162

// go through all lines in the table
while (parse(as,aslen))
{
// write action var info
for (i=0; i<def->agtnum; i++)

var = vard->lookup(i);
if (bin2intstr(as,var->var,var->length,buf))
{
if (atoi(buf) < agtd->lookup(i)->actnum)

// action can be written by its name
outfile << (def->act)[i][atoi(buf)]->name;
mkspace (outfile,actlen[i] - strlen((def->act)[i][atoi(buf)]->name));

else

// action doesn’t exist write the number
outfile << buf;
mkspace (outfile,actlen[i] - strlen(buf));

}
else
{
// the line defines a set of actions
// we have to write the number pattern
outfile << rawrep(as,var->var,var->length,buf);
mkspace (outfile,actlen[i] - strlen(buf));

// write individual variable info
varnames = def->varnames;
while (varnames)
{
var = vard->lookup(varnames->id);
len = max(strlen(var->name) + 2, (var->length + 1)%2);
plen = 0;
if (var->type == vt_bool)
{
// write old state var
outfile << rawrep(as,var->var,var->length,buf) << " ";
var = vard->lookupnew (varnames->id) ;
// write new state var
outfile << rawrep(as,var->var,var->length,buf);
mkspace (outfile,len - 3);

163

¥
else
{
// variable is scalar
// write old state scalar variable
if (bin2intstr(as,var->var,var->length,buf))

// scalar can be represented as a number
outfile << buf << " ";
plen += strlen(buf) + 1;

else
// scalar must be represented by its number pattern

outfile << rawrep(as,var->var,var->length,buf) << " ';
plen += strlen(buf) + 1;

¥

var = vard->lookupnew (varnames->id);

// write new state scalar variable

if (bin2intstr(as,var->var,var->length,buf))
{

// scalar can be represented as a number
outfile << buf << " ";
plen += strlen(buf) + 1;

else

// scalar must be represented by its number pattern
outfile << rawrep(as,var->var,var->length,buf) << " ';
plen += strlen(buf) + 1;

mkspace (outfile,len-plen);
}
// next variable pair
varnames = varnames->next;

// next line
outfile << '"\n";
}
outfile.flush();
fclose(setfile);

void bddprintabs::bddinfo(bdd b) {

164

//urite BDD size information

cout << "\n\nBDD node count = " << bdd_nodecount (b) ;

cout << "\nlog(BDD satcount) = " << bdd_satcountln(b) << "\n\n";
¥

void bddprintabs: :bddprinthead(){

agtdef *agtd, *agt;
idlst *varnames;
vardef *vard, *var;
int len,i;

// print action description (and fill the action length table)
agtd = def->agt;

actlen = new int[def->agtnum];

agtd->print (outfile,actlen);

outfile << "\n";

// write header
// agt names
for (i=0; i < def->agtnum; i++) {
agt = agtd->lookup(i);
outfile << agt->name;
mkspace (outfile,actlen[agt->number] - strlen(agt->name));

}

// write header

// write all old state variables
varnames = def->varnames;
vard = def->var;

while (varnames) {

var = vard->lookup(varnames->id);
len = max(strlen(var->name) + 2, (var->length + 1)%2);
outfile << var->name;
mkspace (outfile,len - strlen(var->name));
varnames = varnames->next;

¥

outfile << "\n";

}

void bddprintabs::bddprintline(bdd b) {

agtdef *agtd;

165

idlst *varnames;

vardef *vard, *var;

int *as;

int i,len,plen,aslen;
char buf [MAXNAMELENGTH] ;

vard = def->var;
agtd = def->agt;

// open outputfile for bdd_printset
if ((setfile = fopen('deleteme.txt","w+")) == NULL)
{
cout << "bddprint.cc printbddabs::bddprintline: ";
cout << "cannot open \'"deleteme.txt\"\nexiting\n\n";
exit (1) ;
¥

// make the set
bdd_fprintset(setfile,b);
fflush(setfile);
rewind(setfile);

// Init assignment table
aslen = def->bddvarnum;
as = new int[aslen];

// go through all lines in the table
while (parse(as,aslen))

{
// write action var info
for (i=0; i<def->agtnum; i++)

var = vard->lookup(i);
if (bin2intstr(as,var->var,var->length,buf))

{
if (atoi(buf) < agtd->lookup(i)->actnum)

// action can be written by its name

outfile << (def->act)[i][atoi(buf)]->name;

mkspace (outfile,actlen[i] - strlen((def->act) [i][atoi(buf)]->name));
else

// action doesn’t exist write the number

outfile << buf;
mkspace (outfile,actlen[i] - strlen(buf));

166

¥
else
{
// the line defines a set of actions
// we have to write the number pattern
outfile << rawrep(as,var->var,var->length,buf);
nmkspace (outfile,actlen[i] - strlen(buf));

// write individual variable info
varnames = def->varnames;
while (varnames)

var = vard->lookup(varnames->id);
len = max(strlen(var->name) + 2, (var—->length + 1)%2);
plen = 0;
if (var->type == vt_bool)
{
// write old state var
outfile << rawrep(as,var->var,var->length,buf) << " ";
var = vard->lookupnew (varnames->id) ;
// write new state var
outfile << rawrep(as,var->var,var->length,buf);
mkspace (outfile,len - 3);
¥
else
{
// variable is scalar
// write old state scalar variable
if (bin2intstr(as,var->var,var->length,buf))
{
// scalar can be represented as a number
outfile << buf << " ";
plen += strlen(buf) + 1;
¥
else
{
// scalar must be represented by its number pattern
outfile << rawrep(as,var->var,var->length,buf) << " ";
plen += strlen(buf) + 1;
¥

var = vard->lookupnew (varnames->id) ;

// write new state scalar variable

167

if (bin2intstr(as,var->var,var->length,buf))

// scalar can be represented as a number
outfile << buf << " ";
plen += strlen(buf) + 1;

else

// scalar must be represented by its number pattern
outfile << rawrep(as,var->var,var->length,buf) << " ";
plen += strlen(buf) + 1;

mkspace (outfile,len-plen);
}
// next variable pair
varnames = varnames->next;

¥
// next line
outfile << '"\n";
¥
fclose(setfile);
¥

void bddprintabs: :bddprintv(bdd b) {

agtdef *agtd, *agt;

idlst *varnames;

vardef *vard, *xvar;

int *as;

int i,aslen;

char buf [MAXNAMELENGTH] ;

// open outputfile for bdd_printset
if ((setfile = fopen('"deleteme.txt","w+")) == NULL)
{
cout << "bddprint.cc printbddabs::bddprintline: ";
cout << "cannot open \'"deleteme.txt\"\nexiting\n\n";
exit (1) ;
}

// make the set
bdd_fprintset(setfile,b);

168

fflush(setfile);
rewind(setfile);

// print action description (and fill the action length table)
agtd = def->agt;

vard = def->var;

actlen = new int[def->agtnum];

agtd->print (outfile,actlen);

outfile << "\n";

// Init assignment table
aslen = def->bddvarnum;
as = new int[aslen];

// go through all lines in the table
while (parse(as,aslen))
{
// write action var info
outfile << "ACTIONS\n";
for (i=0; i<def->agtnum; i++)

var = vard->lookup(i);
outfile << agtd->lookup(i)->name << ": ";
if (bin2intstr(as,var->var,var->length,buf))
{
if (atoi(buf) < agtd->lookup(i)->actnum)
// action can be written by its name
outfile << (def->act)[i][atoi(buf)]->name << "\n";
else
// action doesn’t exist write the number
outfile << buf << '"\n";
¥
else
{
// the line defines a set of actions
// we have to write the number pattern
outfile << rawrep (as,var->var,var->length,buf) << "\n";

¥
// write individual variable info
outfile << "VARIABLES\n'";
varnames = def->varnames;
while (varnames)

{

outfile << varnames->id << ": ";
var = vard->lookup(varnames->id);

169

if (var->type == vt_bool)

// write old state var
outfile << rawrep(as,var->var,var->length,buf) << " ";
var = vard->lookupnew (varnames->id);
// write new state var
outfile << rawrep (as,var->var,var->length,buf) << "\n";
¥
else
{
// variable is scalar
// write old state scalar variable
if (bin2intstr(as,var->var,var->length,buf))
// scalar can be represented as a number
outfile << buf << " ";
else
// scalar must be represented by its number pattern
outfile << rawrep(as,var->var,var->length,buf) << " ";

var = vard->lookupnew (varnames->id);

// write new state scalar variable
if (bin2intstr(as,var->var,var->length,buf))
// scalar can be represented as a number
outfile << buf << '"\n";
else
// scalar must be represented by its number pattern
outfile << rawrep (as,var->var,var->length,buf) << "\n";
¥
// next variable pair
varnames = varnames->next;

// next line
outfile << '"\n";
¥
outfile.flush();
fclose(setfile);
¥

170

D.5.3 Dissets.cc

/R ook ok ok ok ok ok ok sk ok sk ok ok sk ok ook sk ok ok ok ok ok ok ok o ok o ok ok o

* File : dissets.cc

* Desc. : Implementation of a disjoint set ADT,

* using both union by size and path compression.

* Note: id strings are looked up in a linked

* list for id# < 20, this is efficient.

* E.g. a splaytree should be used if id# > 20.
* Author: Rune M. Jensen

* Date : 3/16/99

Kok o KoK K KKK K KK oK K ok K oK ok K oK oK sk oK oK ok ok oK ok ok ok ok ok sk ok ok sk ok /

#include <string.h>
#tinclude <stream.h>
#include "common.hpp"
#include "dissets.hpp"

disnode *idmap::lookup(char *nm) {
if (this)
if (!strcmp(nm,id))
return node;
else
return next->lookup (nm) ;
else
return NULL;

void disset::makeset (char *id) {
disnode *n;
idmap *im;
char *str;

// add new disnode node
n = new disnode;
n->parent = NULL;
n->size = 1;

str = new char[MAXNAMELENGTH];
strcpy(str,id);

// add node in idmap
im = new idmap;
im->id = str;
im->node = n;
im->next = map;

map = im;

171

// IN

// id : variable identifier

// OUT

// disnode : identifier for id’s set

disnode *disset::find(char *id) {
disnode *x,*y,*z,*tmp;

x = map->lookup(id);
if (x == NULL)

{
cout << "dissets.cc disset::find : cannot find id \"'" <<
cout << "\" in idmap \nexiting\n\n";
exit (1) ;
¥
y = x5

// find set id.
while (y->parent)
y = y—>parent;

// compress the path
Z = X;
while (z->parent)
{
tmp = z->parent;
z->parent = y;
Z = tmp;
}

return y;

disnode *disset::setunion(disnode *v, disnode *w) {
if (v->size < w->size)
{
v->parent = w;
w->gize += v->gize;
return w;
¥
else
{
w->parent = v;
v->gize += w->gize;
return v;

}

172

id;

// OUT
// number of subsets
// Identifies all sets by a number
// (changes size of top nodes to an identifier number)
void disset::enumerate() {
idmap *m;
int i;

m = map;
i=0;

while (m)
{
if (!m->node->parent)
m->node->setnum = i++;
m = m—->next;
}

subsetnum = 1i;

// pre: disset is enumerated
void disset::mkpartvars() {
int i,setnum;
idmap *m;
idlst *n;

partvars = new idlst#*[subsetnum];

for (i=0; i<subsetnum; i++)
partvars[i] = NULL;

m = map;
while (m)
{
setnum = this->find (n->id)->setnum;
n = new idlst(m->id,partvars[setnum]);
partvars[setnun] = n;

m = m—->next;

173

D.5.4 Domain.cc

/**

* File : domain.cc

* Desc. : NP domain member functions

* (functions on the np problem description)
* Author: Rune M. Jensen

* Date : 2/22/99

**/

#tinclude <stream.h>
#include "domain.hpp"

/**

* access functions *
ook ok ok ok ok ok ok ok ok ok Kok ok K KoK KK K ok ko ok ok skok ko sk ok sk ok ok Kok K KK KK K kK Kk ok /

idlst #idlst::lookup(char *name) {
if (this)
if (!strcmp(name,id))
return this;
else
return next->lookup (name) ;
else
return NULL;

/**

* Manipulating functions *
sokok ok sk ok ok ok skok sk ook ok sk ok skok sk sk kok sk sk ok ok skok skok sk ok sk sk ok skok sk kok skok sk ok ok ok /

// 1IN

// this : numberprop

// OUT

// numberprop with all ’-’ expressions eliminated

void numberprop: :minus2plus() {
numberexp *1,*r,%*a,*b,*c,*d;

left->minus2plus();
right->minus2plus();

if (left->type == nt_number || left->type == nt_var || left->type

{

nt_plus)

if (right->type == nt_number || right->type == nt_var || right->type == nt_plus)

174

{
// left: +exp, right: +exp
// already ok: nothing to do

}
else
{
// org left: +exp, right: -exp
a = left;
b = right->left;
r = right;

r->type = nt_plus;
r->left = a;

1l = b;

left = r;

right = 1;

}
else
{
if (right->type == nt_number || right->type == nt_var || right->type == nt_plus)
{
// left: -exp, right: +exp
left->left;
right;
left;
1->type = nt_plus;
1->1eft = c;
r = aj;
left = r;
right = 1;

a

c
1

else

// left: -exp, right: -exp

b = left->right;
d = right->right;
1 = left;

1->type = nt_plus;
1->right = d;

r = right;

r->type = nt_plus;
r->right = b;

}

175

// IN

// this : numberexp
// OUT
// numberexp with only one top ’-’ expression

void numberexp::minus2plus() {
numberexp *1,*r,*a,*b,*c,*d;

switch (type) {
case nt_number:
case nt_var:
// already ok: do nothing
break;
case nt_plus:
left->minus2plus();
right->minus2plus () ;
if (left->type nt_number || left->type
{
if (right->type == nt_number || right->type
{

// org: +exp, left: +exp, right: +exp
// already ok: do nothing
}
else
{
// org +exp, left: +exp, right: -exp
a = left;
c = right->right;
1= c;
r = right;
r->right = a;
r->type = nt_plus;
type = nt_minus;
left = r;
right = 1;
}
}
else
{

if (right->type == nt_number || right->type
{
// org: +exp, left: -exp,
b = left->right;
c = right;
1 = left;
1->right = c;

right: +exp

176

nt_var || left->type nt_plus)

nt_var || right->type == nt_plus)

nt_var || right->type == nt_plus)

1->type = nt_plus;

r = b;
type = nt_minus;
left = 1;
right = r;

}

else

{
// org +exp, left: -exp, right: -exp
b = left->right;
¢ = right->left;
1 = left;
1->type = nt_plus;
1->right = c;
r = right;
r->type = nt_plus;
r->left = b;
type = nt_minus;

}

}

break;

case nt_minus:
left->minus2plus () ;
right->minus2plus() ;
if (left->type == nt_number || left->type == nt_var || left->type == nt_plus)

{
if (right->type == nt_number || right->type == nt_var || right->type == nt_plus)

{
// org: -exp, left: +exp, right: +exp
// already ok : do nothing

}

else

{
// org -exp, left: +exp, right: -exp
a = left;
b = right->left;
1l = b;
r = right;
r->type = nt_plus;
1->1eft = a;
left = r;
right = 1;

}

else

{
if (right->type == nt_number || right->type == nt_var || right->type == nt_plus)

177

// org: -exp, left: -exp, right: +exp
a = left->left;

c = right;

1 = left;

1->type = nt_plus;

1->1left = c;

r = a;

left = r;

right = 1;

// org -exp, left: -exp, right: -exp
b = left->right;

d = right->right;

1 = left;

1->type = nt_plus;

1->right = d;

r = right;

r->type = nt_plus;

r->right = b;

}

break;

/R KK KK KoK KKK KoK ok K K ok oK ok oK ok K oK oK sk K oK oK sk ok oK ok ok ok ok ok ok ok
* print functions *
Kok ok KKk kKo KK Ko K Ko Ko K ok Kok K KK Ko KKK kK oKk K kK Kk K kK koK

void numberexp::print () {

switch (type) {

case nt_number:
cout << number;
break;

case nt_plus:
cout << "(";
left->print();
cout << " + "
right->print ();
cout << ")";
break;

case nt_minus:
cout << "(";

178

left->print ();

cout << " - ",
right->print();
cout << ")";
break;

case nt_var:
cout << var;
break;
}
}

void numberprop::print () {
left->print();
switch (op) {
case ro_lt:
cout << " < "
break;
case ro_gt:
cout << " > ",
break;
case ro_eq:
cout << " =",
break;
case ro_ne:
cout << " <> "y
break;
¥
right->print ();

void atom::print() {
switch (type) {
case at_numprop:

cout << "[";
prop->print () ;
cout << "]";
break;

case at_boolvar:
cout << var;
break;

}
}

179

void formula::print() {

switch (type) {

case ft_atom:
atomic->print () ;
break;

case ft_neg:
cout << "~
cout << "{";
f1->print ();
cout << "}";
break;

case ft_and:
cout << "{";
f1->print ();
cout << " /\\ ";
£2->print ();
cout << "}";
break;

case ft_or:
cout << "{";
£f1->print ();
cout << " A\\/ ";
£2->print ();
cout << "}";
break;

case ft_impl:
cout << "{";
£f1->print ();
cout << " => n;
£2->print ();
cout << "}";
break;

case ft_biimpl:
cout << "{";
£f1->print ();
cout << " <=>";
£2->print ();
cout << n}n;
break;

case ft_ite:
cout << "{";
f1->print ();
cout << " =-> ",
£2->print ();
cout << " , n;
£3->print ();

180

cout << n}n ;
break;

case ft_true:
cout << '"true";
break;

case ft_false:
cout << "false";
break;

case ft_paren:
cout << "(";
£f1->print () ;

cout << ")'";
break;
¥
¥
void idlst::print() {
if (this)
{

cout << id;
if (next) cout << ", ";
next->print () ;

¥

void action::print() {

if (this)
{
cout << " " << name << "\n";
cout << " var: 5
var->print();
cout << "\n pre: ";
pre->print();
cout << "\n eff: ";
eff->print();
if (next)
{
cout << "\n\n";
next->print () ;

void agent::print () {

181

if (this)

{
cout << " agt: " << name << "\n\n";
actions->print();
if (next)

{
cout << "\n\n";
next->print();
¥
¥

void vartype::print () {
if (type == vt_bool)

cout << " bool ";
else
cout << " scalar(l.." << range << ") "

void varlst::print() {
if (this)
{
type->print () ;
ids->print) ;
cout << "\n";
next->print () ;

void mnpproblem: :print () {
cout << "\nvariables\n\n";
vars->print () ;
cout << "\nsystem\n\n'";
sys->print () ;
cout << "\n\nenvironment\n\n";
env->print () ;
cout << "\n\ninit\n";
init->print();
cout << "\n\ngoal\n";
goal->print();
cout << "\n";

182

183

D.5.5 Fsm.cc

/**

* File : fsm.cc

* Desc. : misc. functions for generating the OBDD FSM
* transition relation.

* Author: Rune M. Jensen

* Date : 3/4/99

**/

#tinclude <stream.h>
#include <string.h>
#include <math.h>
#tinclude <limits.h>
#include <bdd.h>
#include <fstream.h>
#include "common.hpp"
#include "fsm.hpp"
#include "bddprint.hpp"
#include "dissets.hpp"

/R A KKK KKK KR K KKK KK KK ok Kok kK ok ok Kok o kK ok ok Kok ok K Kok ok
* print functions *
kKK ok ok o ok ok sk ok Kok ok ok sk ok K Kok ok Kok sk ok K Kok ok ok sk ok K ok ok ok ok sk kKo ok ok sk ok Kk ok /

void agtdef::print() {

if (this)
{
cout << name << " (" << number << ",'";
if (sclass == sc_env)
cout << "env): ";
else

cout << '"sys): ";

acts->print () ;

cout << '"\n";

next->print () ;
}

// used by bddprint.cc
void agtdef::print (ofstream &out,int *actlen) {
if (this)
{

out << name << "(" << number << ",";

if (sclass == sc_env)
out << "env): ";

else

184

out << "sys): ";
actlen[number] = strlen(name) + 2;
acts->print (out,&actlen[number]) ;
out << "\n";
next->print (out,actlen);

}

void actdef::print() {
if (this)
{
cout << name << "(" << number << ") ";
next->print () ;
}

//used by bddprint.cc
void actdef::print(ofstream &out,int *actlen) {
if (this)
{
out << name << "(" << number << ") ";
if (strlen(name) + 2 > *actlen) *actlen = strlen(name) + 2;
next->print (out,actlen);

}
¥
void vardef::print() {
int i;
if (this)
{
cout << '"varname: " << name << "\n'";

cout << "type: ";
switch (type) {
case vt_bool:
cout << "bool\n";
break;
case vt_scalar:
cout << "scalar\n";
break;
}
cout << "length: " << length << "\nmapping: ";
for (i=0; i<length; i++)
cout << i+l << ":" << vyar[i] << " ";
cout << "\n\n";
next->print () ;
}

185

void domdef::print() {
if (this)
{
cout << "\n\nDomain Definition\n";
cout << "Agtdef\n\n";
agt->print ();
cout << "Vardef\n\n";
var->print ();
cout << "\n\nagtnum: " << agtnum << "\n\n";
cout << '"\n varnames : ";
varnames->print () ;
cout << "\n\n";

/**

* Access member functions *
3K K 3 oK K oK KK 3 oK ok K o ok ok KK ok ok ok K 3 3k ok K ok ok oK oK ok ok K ok ok K o ok ok KK ok ok /

vardef *vardef::lookup(char *nm) {
if (this)
{
if (!strcmp(name,nm))
return this;
else
return next->lookup (nm) ;
}
else
return NULL;

vardef *vardef::lookup(int i) {
char name [MAXNAMELENGTH];
sprintf (name,"%d",1i);
return this->lookup (name) ;

}

vardef *vardef::lookupnew(char *name) {
char namem[MAXNAMELENGTH] ;

sprintf (namem,"%s’" ,name) ;
return this->lookup (namem) ;

186

agtdef *agtdef::lookup(int i) {

/*
*
*

/!
/!
/!
/!
//
//
/!

Vo

if (this) {
if (number == i)
return this;
else
return next->lookup (i) ;
}
else
return NULL;

% 3k 3k 3k 3k 3k 3k 3k 3k ok 3k 3K 3K 3K %k %k 3k 3k 3k 3k 3k 3k ok %k 3K 3K 3K ok Kk 3k 3K 3 3k 3k 3k ok Kk 5K 3K Kk %k kK kK 3k %k %k Kk Kk kK %k k

Dynamic BDD var autoreorder definition *
HK oK KKK K K K K K KKK KK Ko KKK K KKKk K kKK K ok K K koK ok K K ok
IN

def : domain definition

0UT (side effect)
A BDD block definition for each action and variable.
action varibles and current and next state varibles
are assumed to be defined on a continuous block of
variables

id mkbddblocks(domdef *def) {

vardef *vard,*act,*s,*sm;

int i,j,start,end;

idlst *id;

vard = def->var;

// clear some old block definition
bdd_clrvarblocks() ;

// add blocks for action variables
for (i=0; i<def->agtnum; i++)
{
act = vard->lookup(i);

// find the start and end of the action block
start = def->bddvarnum;

end = 0;

for (j=0; j<act->length; j++)

if (act->var[j] < start) start = act->var[j];

187

if (act->var[j] > end) end = act->varl[jl;

// add variable block for dynamic bdd var reordering
if (bdd_intaddvarblock(start,end,BDD_REORDER_FIXED) !'= 0)

cout << "fsm.cc mkbddblocks : cannot make var. block ";
cout << start << "-" << end << "\nexiting\n\n";
exit(1);

}

// add blocks for variables
id = def->varnames;
while (id)
{
s = vard->lookup (id->id) ;
sm = vard->lookupnew(id->id);

// find the start and end of the variable block
start = def->bddvarnum;

end = 0;

for (j=0; j<s->length; j++)

if (s->var[j] < start) start = s->var[j];
if (s->var[j] > end) end = s->var[j];
for (j=0; j<s->length; j++)
if (sm->var[j] < start) start = sm->var[j];
if (sm->var[j] > end) end = sm->var[j];
// add variable block for dynamic bdd var reordering
if (bdd_intaddvarblock(start,end,BDD_REORDER_FIXED) !'= 0)
cout << '"fsm.cc mkbddblocks : cannot make var. block ";

cout << start << "-" << end << "\nexiting\n\n";
exit(1);

id = id->next;

}

188

[k skokskok ks ko ko skokok ok sk ok skok sk ook ok ok skl sk ok skok sk sk sk ok skok sk ok sk ko ok skok sk ok
* Function building a domain definition *
sekokok sk ok ok ok sk ok ook ok skok sk ok sk ko ok skok sk skokskok sk ok ok skok sk ok sk ok sk ok ok sk sk ko ok ok /

domdef *mkdomdef (mnpproblem *mnp) {

agtdef *nextagt, *agtd;
agent *agt;

int agtnum,maxacts,actnum,length,bvcount;
int i,j,envnum;

int *var;

action *act, ***xacttbl;
actdef *nextact, *actd;
int *actnumtbl;

vardef *nextvar;

varlst *vlp;

idlst *¥ilp, *nextvarname;
char *str;

// clustering variables
disset *dset;
disnode *setl,*set?2;

[/ xkxkxkxxkkxkkx build the agtdef skxkxkrkkkkrkk

agtnum = 0;
envnum = 0;
maxacts = 0;

agt = mnp->env;
nextagt = NULL;

// add environment agents
while (agt)
{
nextact = NULL;
actnum =0;
act = agt->actions;
while (act)

nextact = new actdef (act->name,actnumt++,act,nextact);
act = act->next;

189

// post: nextact is a pointer to all the actions of agt
nextagt = new agtdef(agt—>name,agtnum++,actnum,sc_env,nextact,nextagt);
if (actnum > maxacts) maxacts = actnum;

agt = agt->next;

envnum = agtnum;
agt = mnp->sys;

// add system agents
while (agt)
{
nextact = NULL;
actnum = 0;
act = agt->actions;
while (act)

nextact = new actdef (act->name,actnum++,act,nextact);
act = act->next;

// post: nextact is a pointer to all the actions of agt
nextagt = new agtdef(agt—>name,agtnum++,actnum,sc_sys,nextact,nextagt);
if (actnum > maxacts) maxacts = actnum;

agt = agt->next;

// post: nextagt is a pointer to the agt definition
// agtnum: the total number of agents
// maxacts: the maximal number of actions

//***x* build the act table and action number tabel *¥x*
acttbl = new action¥*[agtnum];
for (i=0; i<agtnum; i++)
acttbl[i] = new action*[maxacts];
actnumtbl = new int[agtnum];
agtd = nextagt;
while (agtd)
{
actd = agtd->acts;
actnumtbl[agtd->number] = agtd->actnum;
while (actd)

acttbl[agtd->number] [actd->number] = actd->act;

190

actd = actd->next;

agtd = agtd->next;
}

//xxkxkxkkkkkkkk build the vardef skskskskskskskkkkkkkokkkk

// Interleaved Ordering of S E and S’ E’:

//

// A1,A2,...,Am,S11,811’,...,81nS8’1n, $21,821°,... ,S2m,S2m’
//

//**

bvcount = 0; // first bdd variable number
NULL;

nextvar

// start with the action identifier variables
for (i=0;i < agtnum;i++)
{
if (actnumtbl[i] == 1)
length = 1; // redundant, but we want to keep all information in the BDD
else
length = int(ceil(log(actnumtbl[i])/log(2)));

// make mapping

var = new int[length];

for (j=0;j<length; j++)
var[j] = bvcount + j;

// save description

str = new char[MAXNAMELENGTH] ;

sprintf (str,"%d",1i);

nextvar = new vardef (str,vt_scalar,length,
var,nextvar) ;

bvcount += length;

}

// continue with the variables S11,811’,...,S1nS8’1n, $21,821’,... ,S2m,S2m’
// (and save the var names in a list)
nextvarname = NULL;
vlp = mnp->vars;
while (vlp)
{
// find the bdd variable length of variable type
if (vlp->type->type == vt_bool)

191

length = 1;
else
length = vlp->type->range;

// assign bdd variable space for each variable
ilp = vlp->ids;
while (ilp)

// S

// make mapping to bddvars

var = new int[lengthl];

for (i=0; i<length; i++)
var[i] = bvcount + 2%i;

// save desription
nextvar = new vardef (ilp->id,vlp->type->type,length,
var,nextvar) ;
// add variable to variable list
nextvarname = new idlst(ilp->id,nextvarname);

/78’

// make mapping to bddvars

var = new int[length];

for (i=0; i<length; i++)

var[i] = bvcount + 2%i + 1;

// save desription

str = new char[MAXNAMELENGTH];

sprintf (str,"%s’",ilp->id);

nextvar = new vardef (str,vlp->type->type,length,
var,nextvar) ;

bvcount += 2%length;

ilp = ilp->next;
// look at next variable type

vlp = vlp->next;
}

//*xxxkkkkxxkkkkx find clusters ok ok ok K K ok ok ok ok ok Kok Kok K K

// make initial disjoint set

192

// (a singleton set for each variable)

dset = new disset();
ilp = nextvarname;
while (ilp)
{
dset->makeset (ilp->id) ;
ilp = ilp->next;
}

// Gripper2 Experiment compressing the init se
ilp = nextvarname;
i=0;
while (ilp)
{
if (i == 0)
setl = dset->find(ilp->id);
else
{
set2 = dset->find(ilp->id);
dset->setunion(setil,set2);
}
i++;
if (i == 5) i=0; // compress rate
ilp = ilp->next;
}

// gripper2 Experiment Monolithic transition relation
/*
dset = new disset();
ilp = nextvarname;
dset->makeset (ilp->id);
setl = dset->find(ilp->id);
ilp = ilp->next;
while (ilp)
{
dset->makeset (ilp->id) ;
set2 = dset->find(ilp->id);
dset->setunion(setl,set2);
ilp = ilp->next;

*/

193

// find disjoint set for variable clusters
for (i=0; i < agtnum; i++)
for (j=0; j < actnumtbl[i]; j++)
{
ilp = acttbl[i][j]l->var;

// initial setl
if (ilp)
{
setl = dset->find(ilp->id);
ilp = ilp->next;
}

// union subsets of each variable in the variable list
while (ilp)
{
set2 = dset->find(ilp->id);
if (setl '= set2)
setl = dset->setunion(setl,set2);
ilp = ilp->next;
}

// enumerate clusters
dset->enumerate() ;

// make partition table
dset->mkpartvars() ;

cout << "\nNumber of clusters " << dset->subsetnum << "\n'";
// build output

return new domdef (nextagt,envnum,agtnum,actnumtbl,
acttbl,nextvar,nextvarname,bvcount ,dset);

/**

* Function defining bdd variable loactions *
sk ok sk ok okok skok sk ok sk ok sk ok skok sk ok skok sk ks ks ok skok skok sk ok sk sk sk ok skok skok sk ok ko ok skok /

// IN

// def : domain definition. (includes description

194

// of bdd variable locations.

// oOUT

// instantiation of BuDDy variable location desriptions
// and variable relations.

varrels *mkvarrels(domdef *def) {

int i,j,k,p,*varset;
idlst *vars;
char *id;

vardef *oldv, *newv, *actv, *vard;
varrels *rels;

rels = new varrels;

rels->0ld2new = bdd_newpair();
rels->new20ld = bdd_newpair();

vard = def->var;

// relate new/old and old/new state variables
vars = def->varnames;
while (vars)
{
oldv = vard->lookup(vars->id);
newv = vard->lookupnew (vars->id) ;
for (i=0; i < newv->length; i++)

bdd_setpair(rels->0ld2new,o0ldv->var[i] ,newv->var[i]);
bdd_setpair(rels->new20ld,newv->var[i],oldv->var[i]);

vars = vars->next;

varset = new int[def->bddvarnum];
// define old state variables
vars = def->varnames;
j=0;
while (vars)
{
oldv = vard->lookup(vars->id);
for (i=0; i < oldv->length; i++)
varset [j++] = oldv->var[i];
vars = vars->next;
¥
rels->oldstate = bdd_makeset (varset,j);

rels->newstate = new bdd[def->dset->subsetnum] ;
// define new state variables

195

// split up on partitions
for (p=0; p < def->dset->subsetnum; p++)
{
vars = def->dset->partvars[p];

j=0;
while (vars)
{
newv = vard->lookupnew (vars->id) ;
for (i=0 ; i < newv->length; i++)
varset [j++] = newv->var[i];
vars = vars->next;
}

rels->newstate[p] = bdd_makeset (varset,j);
¥

// define environment action variables
j=0;
for (i=0; i<def->envnum; i++)
{
actv = vard->lookup(i);
for (k=0; k < actv->length; k++)
varset [j++] = actv->var[k];
¥

rels->envactions = bdd_makeset (varset, j);

// define system action variables
j=0;
for (i=def->envnum; i<def->agtnum; i++)
{
actv = vard->lookup(i);
for (k=0; k < actv->length; k++)
varset [j++] = actv->var[k];
¥

rels->sysactions = bdd_makeset (varset,j);

return rels;

}

/**

* Function adjusting domdef to a variable ordering *
sk ok sk ok ok ok skok sk ok sk ok sk ok sk sk ok skok sk ks ks ok skok sk ok sk ok sk sk ok sk ok skok skok sk ok ko ok skok /

// IN

196

// order : Array of variable levels in ordering
// def : domain definition
// OUT
// sideeffect: adjusted domdef
void adjust2order(int *ordering, domdef *def) {
vardef *vard;
int i;

vard = def->var;

// go through all domain variables and map the
// variable locations to the new ordering
while (vard)
{
for (i=0; i<vard->length; i++)
vard->var[i] = ordering[vard->var[il];
vard = vard->next;

}

/s sk ok ok ok ook sk ok sk ook sk ok ok ok sk ok ook ok sk sk ook ok sk ook ok ok ok ok ok ook ok ok o ok ok ok
* Functions for generating 0BDD’s from formulas *
okokok ok ok ok okokok ko ok ok skok sk ok ok sk ko ok ok sk sk ok ok sk sk ok ook sk ok ok ok sk ok ok ok sk ok ok ok ok ok /

bdd formula2bdd(formula *f, domdef *def) {
bdd b,1,r,e;

switch (f->type) {

case ft_atom:
b = atom2bdd(f->atomic, def);
break;

case ft_neg:
b = formula2bdd(f->f1, def);
b = !'b;
break;

case ft_and:

1 = formula2bdd (f->f1,def);
r = formula2bdd (f->£2,def) ;

197

b=1%&r;
break;

case ft_or:
1 = formula2bdd (f->f1,def);

r = formula2bdd (f->£2,def) ;
b=1] r;
break;

case ft_impl:
1 = formula2bdd (f->f1,def);

r = formula2bdd (f->f2,def) ;
b=15>>r;
break;

case ft_biimpl:
1 = formula2bdd (f->f1,def);

r = formula2bdd (f->f2,def) ;
b=(1>>r1) & (1 << 1);
break;

case ft_ite:
e = formula2bdd (f->f1,def);

1 = formula2bdd (f->f2,def);
r = formula2bdd (f->£3,def) ;
b=1(e&1) | (e &1);
break;

case ft_true:
b = bddtrue;
break;

case ft_false:
b = bddfalse;
break;

case ft_paren:
b = formula2bdd(f->f1,def);
break;
}
return b;

}

bdd atom2bdd(atom *a, domdef *def) {

198

bdd b;
vardef *vd;

switch (a->type) {
case at_numprop:
a->prop->minus2plus () ;
b = numprop2bdd(a->prop,def);
break;
case at_boolvar:
vd = def->var->lookup(a->var);

if (vd)
b = bdd_ithvar(vd->var[0]);
else
{
cout << "\nfsm.hpp, atom2bdd: variable " << a->var;
cout << " is not defined\nexiting\n";
exit(1);
}
break;
}
return b;
}

//#* Functions for generating BDD’s from numprops

bdd numprop2bdd (numberprop *prop,domdef *def) {
bdd b,e,1d,rd;
binary *1, *r;
numberexp *c;
int i,j,digitnum;

switch (prop->op) {
case ro_1lt:
c = prop—>left;
prop->left = prop->right;
prop->right = c;
prop->op = ro_gt;
b = numprop2bdd (prop,def);
break;
case ro_ne:
prop->op = ro_eq;
b = !numprop2bdd (prop,def) ;
break;
case ro_eq:
1 = numexp2binary(prop->left,def);
r = numexp2binary(prop->right,def);

199

%k %k

b = bddtrue;

// test if 1 =7r

i=0;
while (i < 1->digitnum || i < r->digitnum)
{
if (i < 1->digitnum && i < r->digitnum)

{
b &= 1->digit[i] >> r->digit[il;
b &= 1->digit[i] << r->digit[i];
}
else
if (i < 1->digitnum)
{
// r->digit[i] = bddfalse
b &= !'1->digit[i];
}
else
{
// 1->digit[i] = bddfalse
b &= !'r->digit[il;
}
i++;
}

break;

case ro_gt:
1 = numexp2binary(prop->left,def);
r = numexp2binary(prop->right,def);

digitnum = 1->digitnum > r->digitnum ? 1->digitnum : r->digitnum;

b = bddfalse;
for (i=0; i<digitnum; i++)

{
// all digits before digit_i must be equal
e = bddtrue;
for (j = i+1; j<digitnum; j++)

{
1d = j >= 1->digitnum ? bddfalse : 1->digit[j];
rd = j >= r->digitnum ? bddfalse : r->digit[jl;
e &= 1d >> rd;
e &= 1d << rd;

1d = i >= 1->digitnum ? bddfalse : 1->digit[i];

200

rd = i >= r->digitnum ? bddfalse : r->digit[il;

// if e is true then if 1d > rd: 1 > r
bl=e & 1d & 'rd;
¥
break;
¥
return b;

}

binary *numexp2binary(numberexp *num,domdef *def) {
binary *b,*1,*r;
bdd *digit,c;
int digitnum, i,number;
vardef *vard;

switch (num->type) {

case nt_minus:
cout << "\n\nfsm.cc numexp2binary: error type of numexp cannot be nt_minus\nexiting\n";
exit (1) ;
break;

case nt_number:
number = num->number;
// the digitnum of 0 is 0, of 1 is 1, of 2,3 is 2, of 4,5,6,7 is 3 etc.
digitnum = int(ceil(log(number+1)/log(2)));

if (digitnum > 0)

digit = new bdd[digitnum];
else

digit = NULL;

// initialize digit array
for (i=0; i<digitnum; i++)

{
if (number % 2)
digit[i] = bddtrue;
else
digit[i] = bddfalse;
number /= 2;
¥

b = new binary(digitnum,digit);
break;

case nt_var:

201

vard = def->var->lookup (num->var) ;
if (vard == NULL)
{
cout << "\nfsm.hpp numexp2binary: variable " << num->var;
cout << " is not defined\nexiting\n";
exit (1) ;
}
else
{
digitnum = vard->length;

digit = new bdd[digitnum];

//intialize the digit array
for (i=0; i < digitnum; i++)
digit[i] = bdd_ithvar(vard->var[digitnum - 1 - i]);

b = new binary(digitnum,digit);
}

break;

case nt_plus:
1 = numexp2binary(numn->left,def);
r = numexp2binary (num->right,def) ;

// define result binary
digitnum = 1->digitnum > r->digitnum ? 1->digitnum + 1 : r->digitnum + 1;
digit = new bdd[digitnum];

// set initial carry
bddfalse;
i=0;

C

// add the binaries
while (i < 1->digitnum || i < r->digitnum)
{
if (i < 1->digitnum &% i < r->digitnum)
{
digit[i] = 1->digit[i] ~ r->digit[i] ~ c;
¢ = 1->digit[i] & r->digit[i]
1->digit[i] & c |
r->digit[i] & c;
}
else
if (i < 1->digitnum)
{
//r->digit[i] = bddfalse

202

digit[i] = 1->digit[i] " c;
c = 1->digit[i] & c;

}

else

{
//1->digit[i] = bddfalse
digit[i] = r->digit[i] ~ c;
c = r=>digit[i] & c;

i++

// post: i = last digit in result (corresponds to carry)
digit[il = c;

b = new binary(digitnum,digit);
break;

}

return b;

}

/**

* Functions for generating the transition relation *
stk ok sk ok ok ok sk ok ook ok skok sk ok sk sk ok ok sk ok ok skok sk ok sk ok sk ok sk ok sk ok o skok sk ok sk ok ok skok sk ok sk ok /

// IN

// vl: first variable in the binary encoding (most sig).
// v2: last variable in the binary encoding.

// n : integer to encode.

// OUT
// bdd : BDD with the binary encoding of n
// starting with the most significant bit.
bdd int2bdd(int #var,int length,int n) {
bdd res;
int j;

res = bddtrue;
for (j=length-1; j >= 0; j--)
{
if (n % 2)
res &= bdd_ithvar(var[j]);
else
res &= bdd_nithvar(var[j]l);
n /= 2;

203

return res;

}

// I(i,j,def)

// IN

// i,j : Action j of agent i.

// def : domain definition.

//

// ouT

// the bdd identifier expression

// for action(i,j).

bdd I(int i, int j, domdef *def) {
vardef *vd;

vd = def->var->lookup(i);
return int2bdd(vd->var,vd->length,j);
¥

// F(v,i,j,def)
// IN
/! v : variable to check
// i,j : Action j of agent i.
// def : Domain definition
//
// OUT
// bddtrue : var is unconstrained by action(i,j).
// bddfalse: var is constrained by action(i,j)
// (var is in the action’s varlist.)
bdd F(char *v, int i, int j, domdef *def) {
if (def->act[il[jl->var->lookup(v))
return I(i,j,def) >> bddfalse;
else
return I(i,j,def) >> bddtrue;
¥

//#x*x* Functions for constraining the action tuple *¥kk¥kkx*

// ADEF (def)
// IN

204

// def : domain definition.
// OUT
// bdd constraining possible actions to only defined actions
bdd ADEF (domdef #def) {

bdd res;

int i;

formula *f;

atom *a;

numberprop *p;

numberexp *1,%r;

char str[MAXNAMELENGTH] ;

= new formula;

= new atom;

new numberprop;
= new numberexp;

H D e H
[

= new numberexp;

// define formula : "actid" < max_val+1
f->type = ft_atom;

f->atomic = a;

a->type = at_numprop;

a=>prop = p;
p->op = ro_1t;
p->left = 1;

p->right = r;
1->type = nt_var;
r->type = nt_number;

// constrain action tuple to only defined actions
res = bddtrue;
for (i=0; i<def->agtnum; i++)
{

sprintf (str,"%d",1i);

1->var = str;

r->number = def->actnum[i];

res &= formula2bdd(f,def);

return res;

}

// IND(i1,j1,i2,j2,def)
// IN

205

// i1,j1 : action identifier 1

// 12,32 : action identifier 2

// def : domain definition.

// OUT

// bdd expressing that Al

// 1is consistent with A2

// (no overlap of constained variables)

bdd IND(int il, int jl, int i2, int j2, domdef *def) {

idlst *varl,*var2;
varl = def->act[i1][j1]->var;

while (varl)
{
var2 = def->act[i2] [j2]->var;
while (var2)

if (!strcmp(varil->id,var2->id))
return bddfalse;
var2 = var2->next;

}
varl = varl->next;
¥
return bddtrue;
}
// AC(def)
// IN
// def : domain definition.
// OUT

// 1bdd expressing the total independency and definition constraint
// on action tuples
bdd AC(domdef #*def) {

bdd res,l,r;

int i1, i2, j1, j2;

res = ADEF (def);

// concurrent independency constraints

// add internal independency condition

// environment agents

// go through all possible non-symmetric action pairs

for (i1=0; il < def->envnum - 1; il++)
for (i2=i1+1; i2 < def->envnum; i2++)

206

/!
/!
/!
/!
/!
/!
/!
/!

for (j1=0; j1 < def->actnum[il]; ji++)
for (j2=0; j2 < def->actnum[i2]; j2++)
res &= (I(il,j1,def) & I(i2,j2,def)) >>
IND(i1,j1,i2,j2,def);

// system agents
// go through all possible non-symmetric action pairs
for (il=def->envnum; il < def->agtnum - 1; il++)
for (i2=il+1; i2 < def->agtnum; i2++)
for (j1=0; j1 < def->actnum[il]; ji++)
for (j2=0; j2 < def->actnum[i2]; j2++)
res &= (I(il,j1,def) & I(i2,j2,def)) >>
IND(il,j1,i2,j2,def);

return res;

P(i,j,def)

IN

i,j : Action j of agent i.

def : domain definition.
ouT

bdd expression for the precondition
of action(i,j).

bdd P(int i, int j, domdef *def) {

}

/!
/!
/!
/!
/!
/!
/!
/!

return formula2bdd(def->act[i] [j]1->pre,def);

E(i,j,def)

IN

i,j : Action j of agent i.
def : domain definition.
ouT

bdd expression for the effect
of action(i,j).

bdd E(int i, int j, domdef *def) {

}

/!
/!

return formula2bdd(def->act[i] [j]1->eff,def);

IV(partno,def)
IN

207

// def : domain definition.
// partno: partition no of IV
/!
// OUT
// bdd expression for the invariable expression
// constraining only new vars in the partition
// V() = /\v in part (i) ((/\i,j F(i,§,v)) => v’ = v)
bdd IV(int partno,domdef *def) {

int i,j;

idlst *var;

bdd 1l,r,res;

vardef *s,*sm;

res = bddtrue;
var = def->dset->partvars[partno];
while (var)
{

// make left side

1 = bddtrue;

for (i=0; i < def->agtnum; i++)

for (j=0; j < def->actnum[i]; j++)

1 &= F(var->id,i,j,def);

// make right side

s = def->var->lookup(var->id) ;

sm = def->var->lookupnew(var->id) ;
r = bddtrue;

for (i=0; i < s->length; i++)

r &= bdd_ithvar(s->var[i]) >> bdd_ithvar(sm->var[i]);
r &= bdd_ithvar(s->var[i]) << bdd_ithvar(sm->var[i]);

// add to result
res &= 1 >> r;

if (DEBUG)
cout << "Finished var: " << var->id << '"\n";

var = var->next;
return res;

}

// IN

// 1 : agentt number

208

// j : action number
// def : domain definition
// OUT
// bdd representing the action
// A= T(i,j) => "It /\ ... "In /\ P(i,j) /\ E(i,])
bdd A(int i,int j,domdef *def) {
bdd 1,r;

bddtrue;
bddtrue;

H o
I

// make left side of impl.
1 &= I(i,j,def);

// add relation constraint
r &= P(i,j,def) & E(i,j,def);

return 1 >> r;

// T(def)
// IN
// def : domain definition.
// oUT
// bdd transition relation comprised of T*IV pairs
// for each partition.
bddtrel *T(domdef *def) {
int i,j,partno,subsetnum;
bddtrel *tr;
bdd env_vars;
vardef *var;

// init partition structure
subsetnum = def->dset->subsetnum;
tr = new bddtrel (subsetnum);
for (i=0; i<subsetnum; i++)
{
tr->T[i] = bddtrue;
tr->IV[i] = bddtrue;
}

// instantiate T part of partition structure
for (i=0; i < def->agtnum; i++)
for (j=0; j< def->actnum[i]; j++)
{

209

// find the partition number of the action
// lookup the first variable or else set partition number to 0
if (def->act[i][jl->var)

partno = def->dset->find(def->act[i] [j]1->var->id)->setnum;
else

partno = 0;

// add the action to the partition
tr->T[partno] &= A(i,j,def);

if (DEBUG)

cout << "Finished action(" << i << "," << j << ")\n";

}
// instantiate IV part of partition structure
for (i=0; i<subsetnum; i++)

tr->IV[i] = IV(i,def);

// add action value condition
tr->A = AC(def);

return tr;

210

D.5.6 Main.cc

/e kskok sk ok ok ok skok kok ok sk ok sk sk ok ki ok skok sk sk ok ke sk ok sk sk sk ok sk sk ok sk sk ok ok sk sk sk ok ok sk ok ok ok ok
¥ File : main.cc
* Desc. : main file for the MNP planner
* Author: Rune M. Jensen
* Date : 4/4/99
skeok ok sk ok ok sk ok ok sk ook sk skok ok sk ok ok sk skok ok sk ki skok sk sk sk oksk skok sk ks sk ok sk sk sk sk sk sk ok sk ok /
#include <stream.h>
#include <string.h>
#include <stdio.h>
#tinclude <stdlib.h>
#include <bdd.h>
#include "common.hpp"
#include "domain.hpp"
#include "fsm.hpp"
#include "bddprint.hpp"
#include "plan.hpp"
#include "analyse.hpp"
#include "reorder.hpp"
#include "time.hpp"
#include "main.hpp"

int main(int argc,char **argv) {
extern FILE *yyin;
domdef *def;
int wellformed;

// planning variables

bddtrel *t;

bdd tout;

bdd sa,init,goal;

int i;

bddprintabs *tb;

char buf[16];

char orderoutfile[MAXNAMELENGTH];
char orderinfile[MAXNAMELENGTH] ;
int *ordering;

// check input format
wellformed = 1;
if (!'strcmp(argv[i],"-plani") ||

211

!'strcemp (argv[1],"-plan2") ||
'strcemp (argv[1],"-plan3") ||

'stremp (argv[1],"-pland"))

{

if (argc !'= 5) wellformed = 0;

}

else

if (!strcmp(argv[i],'"-analyse") ||
'strcemp (argv[1],"-planb"))

{

if (argc !'= 6) wellformed

}

else

wellformed = 0;

if ('wellformed)

{
cout
cout
cout
cout
cout
cout
cout

cout
cout
cout
cout
cout

exit (1) ;

<<
<<
<<
<<
<<
<<
<<

<<
<<
<<
<<
<<

"Usage:

// parse mnp domain
yyin = fopen(argv[3],"r");
if (yyin == NULL)

{

nnp
nnp
nnp
nnp
nnp
nnp

= 0;

-planil
-plan2
-plan3
-plan4
-planb

<initnodenum>
<initnodenum>
<initnodenum>
<initnodenum>
<initnodenum>

-analyse <initnodenum>

<domain>.
<domain>.
<domain>.
<domain>.
<domain>.
<domain>.

mnp
mnp
mnp
mnp
mnp
mnp

[<plan>.sat <SA.bdd>] \n";
<SA>.bdd\n";

<SA>.bdd\n";

<SA>.bdd\n";

<SA>.bdd <plan>.sat\n";
<SA>.bdd <result>.sat\n\n";

Deterministic algorithm, writes resulting plan to \
sat or SA to <SA>.bdd\n";

: Nondeterministic algorithm:
: Nondeterministic algorithm:
: Nondeterministic algorithm:
: find one plan for problem in <domain>.mnp but based\n";
on <SA>.bdd write to <plan>.sat.\n";

IRST StrongPlan\n";
IRST StrongCyclicPlan\n";
Optimistic Plan\n";

cout << "mnp: Cannot open \"" << argv[3] << "\"\n";

exit (1) ;

}

if (yyparse()) exit(1); // exit on syntax error

212

// make domain info. struct
def = mkdomdef (mnpprob) ;

// Select mnp activity
if (!strcmp(argv[1],"-analyse"))
// analyse existing SA
bddanalyse (argv[4] ,argv[5] ,atoi(argv[2]) ,def);
else
if (!strcmp(argv[1],"-planl") ||
'strcmp (argv[1],"-plan2") ||
'stremp (argv[1],"-plan3d") ||
'stremp (argv[1],"-pland") |
'strcmp (argv[1],"-planb"))
{
// Some planning activity

// initialize bdd package
bdd_init (atoi(argv[2]),10000);
bdd_setvarnum(def->bddvarnum) ;

// add bdd structures defining bdd variable locations
def->rels = mkvarrels(def);

// enable automatic bdd variable reordering
mkbddblocks (def) ;
bdd_autoreorder (BDD_REORDER_WIN2ITE) ;

// make partitioned transition relation
t = T(def);

// This part is used to force a monolithic transistion relation
//t->T[0] &= t->A;
//for (i=1; i<def->dset->subsetnum; i++)
/7 A
// t->T[0] &= t->T[il;
// T[i] = bddtrue;
// t=>IVL0] &= t->IV[il;
// IV[i] = bddtrue;
// 0}
//tout = bdd_exist(tout,def->rels->envactions);
//tb = new bddprintabs("t.sat",def);
//tb->bddprint (tout) ;

// debug info
if (DEBUG)

213

cout << "\nfinished FSM\n";

// assign planning parameters

sa = bddfalse;

init = formula2bdd(mnpprob->init,def);
goal = formula2bdd(mnpprob->goal,def);

// *¥x¥x* select planning algorithm *xkk*x%
if (!strcmp(argv[1],"-plani"))
{

// start timing
startwatch() ;

// make nondeterministic plan
if (plani(t,init,goal,&sa,def))
cout << "SA covers Init\n";
else
cout << "SA do not cover Init\n";

// stop timing
stopwatch();

// write bdd output
cout << "Final node count of SA: " << bdd_nodecount(sa) << "\n";
cout << "Write SA or one plan to output file \"" << argv[4]
<< "\" or nothing (s/p/n): ";
gets (buf);
//buf[0] = ’p’;

if (buf[0] == ’s?)
{
if (bdd_fnsave(argv[4],sa))
{
cout << "mnp: Cannot save bdd in file \"" << argv[4] << "\"\nexiting\n";
exit(1);
}

// write order output
sprintf (orderoutfile,"%so",argv[4]);
writeorder (orderoutfile,def);

}

else

214

if (buf[0] == ’p’)
// write one plan to file
printplan(t,init,goal,sa,argv[4],def);

// close bdd package
bdd_done();
¥
else
if (!strcmp(argv[1],'"-plan2"))
{
if (strongplan(t,init,goal,&sa,def))
cout << "SA covers Init\n";
else
cout << "SA do not cover Init\n";

// write bdd output

cout << "Final node count of SA: " << bdd_nodecount(sa) << "\n";
cout << "Write SA to output file \"" << argv[4] << "\" (y/n): ";
gets (buf) ;
if (buf[0] == ’y’)
if (bdd_fnsave(argv[4],sa))
{
cout << "mnp: Cannot save bdd in file \"" << argv[4] << "\'"\nexiting\n";

exit (1) ;

}

// write order output
sprintf (orderoutfile,"%so",argv[4]);
writeorder(orderoutfile,def);

// close bdd package
bdd_done () ;
}
else
if (!strcmp(argv[i],"-plan3"))
{
if (strongcyclicplan(t,init,goal,&sa,def))
cout << "SA covers Init\n";
else
cout << "SA do not cover Init\n";

// write bdd output

cout << "Final node count of SA: " << bdd_nodecount(sa) << "\n";
cout << "Write SA to output file \"" << argv[4] << "\" (y/n): ";
gets (buf) ;

215

if (buf[0] == ’y’)
if (bdd_fnsave(argv[4],sa))
{

cout << "mnp: Cannot save bdd in file \"" << argv[4] << "\"\nexiting\n";
exit (1) ;
}

// write order output
sprintf (orderoutfile,"%so",argv[4]);
writeorder (orderoutfile,def);

// close bdd package
bdd_done();
}
else
if (!strcmp(argv[i],"-pland"))

if (plan4(t,init,goal,&sa,def))
cout << "SA covers Init\n";

else
cout << "SA do not cover Init\n";

// write bdd output

cout << "Final node count of SA: " << bdd_nodecount(sa) << "\n";
cout << "Write SA to output file \"" << argv[4] << "\" (y/n): ";
gets (buf) ;
if (buf[0] == ’y’)
if (bdd_fnsave(argv[4],sa))
{

cout << "mnp: Cannot save bdd in file \"" << argv[4] << "\"\nexiting\n";
exit (1) ;
}

// write order output
sprintf (orderoutfile,"%so",argv[4]);
writeorder (orderoutfile,def) ;

// close bdd package

bdd_done () ;
}
else
if (!strcmp(argv[1],"-plan5"))
{

// read reordering information and adjust domdef
sprintf (orderinfile,"%so" ,argv[4]);

ordering = readorder(orderinfile,def);
adjust2order (ordering,def) ;

216

// read SA from bdd infile
if (bdd_fnload(argv[4],sa))
{
cout << "mnp: Cannot load SA from file \"" << argv[4] << "\"\nexiting\n";
exit(1);
}

// start timing
startwatch();

// write one plan to file
printplan(t,init,goal,sa,argv[5],def);

// stop timing
stopwatch() ;

// close bdd package

bdd_done();
¥
}
return 1;
¥

217

D.5.7 Plan.cc

[ks ok skok sk kok ok skokskok sk ok sk ok ok sk ok skok skok sk ko ok ok skok sk sk ok sk ok sk sk ook ok skok sk ok sk ok ok
¥ File : plan.cc

* Desc. : Contains misc. planning algorithms

% Author: Rune M. Jensen CS, CMU, (IAU, DTU)

* Date : 4/4/99

sokok ok sk ok okok skok sk ok sk ok ok skok sk ok skok sk ksk ko ok skok skok sk ok sk sk ok sk ok skok skok sk ok ko ok skok /

#include <bdd.h>
#include '"common.hpp"
#include "domain.hpp"
#include "fsm.hpp"
#include "plan.hpp"
#include "bddprint.hpp"

£k o kKK KKK oK oK KoK K K KoK oK oK o oK K KoK oK o o KK K KK K oK oK ok o o K K KoK ok o o ok K
* Aux. functions

*

ok o o o o o KK KKK KoK 3K KoK KK K KoK oK oK o oK K KoK oK o o oK K KK KoK ok ok ok K K Kok ok o ok kK /

bdd prunestates(bdd preimage, bdd acc)
{
return preimage & 'acc;

}

bdd projact(bdd stateact_rules,domdef *def)
{
return bdd_exist(stateact_rules, def—>rels—>sysactions);

}

bdd image(bddtrel *tr, bdd s,domdef *def) {
bdd res;
int i,partnum;

partnum = def->dset->subsetnum;

// inner part of exist composition
res = s & tr->A & tr->T[0] & tr->IV[0];
// outer parts of exist composition
for (i=1; i<partnum; i++)

res &= tr->T[i] & tr->IV[il;

218

return res;

}

bdd successor(bdd action,domdef *def) {
bdd c;
varrels *rels;
rels = def->rels;
¢ = bdd_exist (action, rels->sysactions);

c = bdd_exist(c, rels->oldstate);
return bdd_replace(c,rels->new20ld);

void printplan(bddtrel *tr,bdd init,bdd goal,bdd sa,char *planfile,domdef *def) {

bddprintabs *pb;

int i;
bdd s; // state in planstep encoded in current state variables
bdd a; // planstep action encoded in actions and old/new state vars

pb = new bddprintabs(planfile,def);

//forward chain

i =0; // action count

pb->bddprinthead () ;

s = bdd_satone(init) ;

while ((s >> goal) != bddtrue)
{

a

image(tr,s,def);

a = bdd_satone(a & sa);

pb->bddprintline(a);

s = bdd_satone (successor(a,def));

i++;
if (DEBUG)

cout << "Adding action " << ++i << "\n";

}

cout << "steps in plan: " << i << "\n'";

}

// IN

// tr : Partitioned transition relation

// acc : currently visited states (encoded in current state variables)
// rels : bdd variable info structure

219

// OUT
// strongpreimage of acc encoded in act # current state vars
// the calculation combines a partitioned representation
bdd strongpreimage(bddtrel *tr, bdd acc,domdef *def)
{

bdd pl,p2,c;

int i,partnum;

varrels *rels;

partnum = def->dset->subsetnum;
rels = def->rels;

¢ = bdd_replace(acc,rels->0ld2new);

// pl part
// inner part of exist composition
pl = ¢ & tr->A & tr->T[0] & tr->IV[O];
pl = bdd_exist(pl, rels->newstate[0]);
if (DEBUG)
cout << "Strong Finished partition AO\n";

// outer parts of exist composition
for (i=1; i < partnum; i++)
{
pl &= tr->T[i] & tr->IV[i];
pl = bdd_exist(pl, rels->newstate[i]);
if (DEBUG)
cout << "Strong Finished partition A" << i << " node count: "
<< bdd_nodecount (pl) << "\n";
¥
// project env. actions
pl = bdd_exist(pl,rels->envactions);

// p2 part
// inner part of exist composition
P2 = 'c & tr->A & tr->T[0] & tr->IV[0];
p2 = bdd_exist(p2, rels->newstate[0]);
if (DEBUG)
cout << "Strong Finished partition BO\n";

// outer parts of exist composition
for (i=1; i<partnum; i++)
{
p2 &= tr->T[i] & tr->IV[i];
p2 = bdd_exist(p2, rels->newstate[i]);
if (DEBUG)
cout << "Strong Finished partition B" << i << " node count: "

220

<< bdd_nodecount (p2) << "\n'";
}
// project env. actions
p2 = bdd_exist(p2,rels->envactions);

return pl & !p2;

}

// IN

// tr : Partitioned transition relation

// acc : currently visited states (encoded in current state variables)
// rels : bdd variable info structure

// OUT

// strongpreimage of acc encoded in act * current state vars
// the calculation combines a partitioned representation
bdd weakpreimage(bddtrel *tr, bdd acc,domdef *def)
{

bdd res,c;

int i,partnum;

varrels *rels;

partnum = def->dset->subsetnum;
rels = def->rels;

¢ = bdd_replace(acc,rels->o0ld2new) ;
if (DEBUG)
cout << "replaced old2new\n";

// pl part

// inner part of exist composition

res = c & tr->A & tr->T[0] & tr->IV[0];

res = bdd_exist(res, rels—>newstate[0]);

if (DEBUG)

cout << "Weak Finished partition O node count: "
<< bdd_nodecount (res) << "\n";

// outer parts of exist composition
for (i=1; i<partnum; i++)
{
res &= tr->T[i] & tr->IV[i];
res = bdd_exist(res, rels->newstatel[i]);
if (DEBUG)
cout << "Weak Finished partition " << i << " node count: "
<< bdd_nodecount (res) << "\n";

}

221

// project env. actions
res = bdd_exist(res,rels->envactions);

return res;

}

/KA KA KK AR AR KK KA KK A KA KKK KA KK A KKK KK KA KK A KK
* Deterministic planning (Planl)

* simple backward chaining algorithm
stk ok sk ok ok ok skok sk ko ook ok sk sk ok skok sk ko ko ok sk sk ok sk ok ok sk ok ok skok sk ok ok ok sk ok ok sk ok /

// IN

// T : Partitioned transition relation

// acc : currently visited states (encoded in current state variables)
// rels : bdd variable info structure

// OuT

// simple preimage of acc encoded in act * current state vars
// that is all S->A pairs leading into acc are included
bdd preimagef (bddtrel #tr, bdd acc,domdef *def)
{
bdd t,res,c;
int i,partnum;
varrels *rels;

partnum = def->dset->subsetnum;
rels = def->rels;

¢ = bdd_replace(acc,rels->0ld2new);

// inner part of exist composition
res = c & tr->A & tr->T[0] & tr->IV[0];
res = bdd_exist(res, rels->newstate[0]);

// outer parts of exist composition
for (i=1; i<partnum; i++)
{
res &= tr->T[i] & tr->IV[il;
res = bdd_exist(res, rels->newstate[i]);
if (DEBUG)
cout << "Finished partition " << i << " node count " << bdd_nodecount (res) << "\n";
"\n'";

}

222

return res;

}

// IN

// T : Partitioned transition relation

// init : Initial state (encoded in current state vars)

// goal : Goal state (encoded in current state vars)

// def : Domain definition (containing a description of the
// location of variables in bdds.

// outfile: Name of output file

// OUT

// 1: plan in outfile (plan found)
// 0: no plan found
int planl(bddtrel *tr, bdd init, bdd goal, bdd *sa,domdef *def)

{
bdd acc = goal; // acc encoded using new state vars (visited states)
bdd preimage, prunedpreimage;
int i;
// make universal plan by backward chaining from goal
i = 0; // preimage count
while ((acc & init) != init)
{
preimage = preimagef (tr,acc,def); // act*current bdd
prunedpreimage = prunestates(preimage,acc); // act*current bdd
if (prunedpreimage '= bddfalse)
{
*sa |= prunedpreimage;
acc |= projact (prunedpreimage,def) ;
}
else
return 0;
}
return 1;
}

/3K Kk o o ok ok KoK KoK K KoK K K K o ok ok o ko ok sk ok 3k ok Kok Kok ok ok K ok K K K K K ok ok
* Plan?2

* IRST Strong Planning

ok ok K K ok o ok ok Kok KoK K KoK K K K 3 ook ok o ko ok sk ok ok ok ok Kok K KoK KoK K K o ok ok sk k ok ok /

223

// IN

// T : Partitioned transition relation

// init : Initial state (encoded in current state vars)

// goal : Goal state (encoded in current state vars)

// sa : plan output handle

// def : Domain definition (containing a description of the
// location of variables in bdds.

// outfile: Name of output file

// OUT

// 1: some plan found

// 0: fix point found, but Init is not a subset

int strongplan(bddtrel #tr, bdd init, bdd goal, bdd *sa,domdef *def)
{

bdd acc = goal; // acc encoded using new state vars (visited states)
bdd preimage, prunedpreimage;
int i;

// make universal plan by backward chaining from goal
i = 0; // preimage count

//main loop
while ((acc & init) !'= init)
{
preimage = strongpreimage(tr,acc,def); // act*current bdd
prunedpreimage = prunestates(preimage,acc); // act*current bdd

if (prunedpreimage !'= bddfalse)

*#sa |= prunedpreimage;
acc |= projact(prunedpreimage,def);
if (DEBUG)

cout << "Added preimage " << i << "\n";
i++;
else
// fix point found, but init not included
return 0;

¥
// init is included
return 1;

}

[ki skok sk kok ok skokskok sk ook sk ok sk sk ok skok skok sk ko ok sk ok skok sk sk ok skok sk sk ok ok skok sk ok sk ok ok
* Plan3
* IRST Strong Cyclic Planning

224

**/

// 1IN

// T : Partitioned transition relation

// init : Initial state (encoded in current state vars)

// goal : Goal state (encoded in current state vars)

// sa : plan output handle

// def : Domain definition (containing a description of the
// location of variables in bdds.

// outfile: Name of output file

// OUT

// 1: some plan found

// 0: no plan found

int strongcyclicplan(bddtrel #tr, bdd init, bdd goal, bdd *sa,domdef *def)
{

bdd acc = goal; // acc encoded using new state vars (visited states)
bdd oldacc = bddfalse; // old acc

bdd preimage, prunedpreimage;

int i,nc;

// make universal plan by backward chaining from goal
i = 0; // preimage count

//main loop

while (acc != oldacc)
{
if ((acc & init) == init)
return 1;

preimage = strongpreimage(tr,acc,def); // act*current bdd
prunedpreimage = prunestates(preimage,acc); // act*current bdd

if (prunedpreimage '= bddfalse)

{
*sa |= prunedpreimage;
if (DEBUG)
{
cout << "SA node count: " << bdd_nodecount (¥sa) << "\n'";
cout << "updating acc/oldacc\n";
}
oldacc = acc;
acc |= projact (prunedpreimage,def) ;
if (DEBUG)
{
cout << "ACC node count: " << bdd_nodecount (acc) << "\n";
cout << "Added preimage " << i << "\n";
}
i++;

225

else

cout << "going into faircycles\n";
faircycles(tr,&acc,sa,&oldacc,def);
i++;
¥

return 0;

bdd 0SA(bddtrel *tr,bdd CSA,bdd s,domdef *def) {
bdd res,c;
int i,partnum;
varrels *rels;

partnum = def->dset->subsetnum;
rels = def->rels;

¢ = bdd_replace(s,rels->0ld2new) ;

if (DEBUG)
cout << "replaced old2new\n";

// pl part
// inner part of exist composition
res = !'c & tr->A & tr->T[0] & tr->IV[0];
res = bdd_exist(res, rels->newstate[0]);
if (DEBUG)

cout << "0OSA Finished partition O\n";

// outer parts of exist composition
for (i=1; i<partnum; i++)
{
res &= tr->T[i] & tr->IV[il;
res = bdd_exist (res, rels->newstate[i]);
if (DEBUG)
cout << "0SA Finished partition " << i << " node count: "
<< bdd_nodecount (res) << "\n'";
¥
// project env. actions
res = bdd_exist(res,rels->envactions);

226

return res & CSA;

}

// IN

// T : Transition relation (partitioned)

// acc : Visited states from goal

// sa : current s—>a table

// def : Domain definition (containing a description of the
// location of variables in bdds.)

// OUT

// update of SA and acc

void faircycles(bddtrel *T, bdd *acc, bdd *sa,bdd *oldacc, domdef *def) {
varrels *rels;
bdd IWpi, Outgoing;

bdd WpiAcc = bddfalse;
bdd 0ldWpiAcc = bddtrue;
bdd CSA = bddfalse;

rels = def->rels;

while (CSA == bddfalse && 0ldWpiAcc != WpiAcc)
{
IWpi = weakpreimage (T,projact(WpiAcc,def) | *acc,def);
CSA = prunestates (IWpi,*acc);
Outgoing = CSA;
while (CSA !'= bddfalse && Outgoing != bddfalse)

Outgoing = 0SA(T,CSA,projact (CSA,def) | *acc,def);
CSA &= !'Outgoing;

if (CSA !'= bddfalse)
*sa |= CSA;
*oldacc = *acc;
*acc |= projact (CSA,def);
return;

else

0ldWpiAcc = Wpilcc;
Wpilcc |= IWpi;

}

227

*oldacc = *acc;

}

/3o sk sk ok ok skok sk sk ok ok ok sk sk ok ok ok sk sk ok ok ook sk ok ok ook sk ok ok ook sk ok ook sk ok ook ok ok ook ok ok
* Plan4

* Optimistic planning algorithm

ookok ok ok ok kok kR Kok ko ok ko sk ok ksl ok ok ko koK sk ok sk sk ok ok ok kR ok K ok sk ok /

// IN

// T : Partitioned transition relation

// acc : currently visited states (encoded in current state variables)
// rels : bdd variable info structure

// ouT

// simple preimage of acc encoded in act * current state vars
// that is all S->A pairs leading into acc are included
// (similar to preimagef, but in addition projects env. actions
bdd preimagef2(bddtrel *tr, bdd acc,domdef *def)
{

bdd t,res,c;

int i,partnum;

varrels *rels;

partnum = def->dset->subsetnum;
rels = def->rels;

¢ = bdd_replace(acc,rels->0ld2new);
cout << "replaced old2new\n";

// inner part of exist composition

res = c & tr->A & tr->T[0] & tr->IV[0];

res = bdd_exist(res, rels->newstate[0]);

cout << "Finished partition O node count " << bdd_nodecount(res) << "\n";;

// outer parts of exist composition
for (i=1; i<partnum; i++)
{
res &= tr->T[i] & tr->IV[il;
res = bdd_exist (res, rels->newstate[i]);
if (DEBUG)
cout << "Finished partition " << i << " node count " << bdd_nodecount (res) << "\n";
"\n'";

}

// project envactions
res = bdd_exist(res,rels->envactions);

228

return res;

}

// 1IN

// T : Partitioned transition relation

// init : Initial state (encoded in current state vars)

// goal : Goal state (encoded in current state vars)

// def : Domain definition (containing a description of the
// location of variables in bdds.

// outfile: Name of output file

// OUT

// plan ignoring nondeterminism (uses the real preimage in back chaining)

// 1: 1init subset of SA (plan found)

// 0: 1init not subset of SA (no plan found)

int plan4(bddtrel *tr, bdd init, bdd goal, bdd *sa,domdef *def)

{
bdd acc = goal; // acc encoded using new state vars (visited states)
bdd preimage, prunedpreimage;
int i;

// make universal plan by backward chaining from goal

i = 0; // preimage count

while ((acc & init) != init)

{

cout << "going into preimagef\n";
preimage = preimagef2(tr,acc,def); // act*current bdd
cout << "going into prunedpreimage\n'";
prunedpreimage = prunestates(preimage,acc); // act*current bdd
if (prunedpreimage !'= bddfalse)

{
cout << "updating sa\n";
*sa |= prunedpreimage;
cout << "SA node count: " << bdd_nodecount (*sa) << "\n'";
cout << "updating acc\n";
acc |= projact (prunedpreimage,def) ;
cout << "ACC node count: " << bdd_nodecount (acc) << "\n";
cout << "Added preimage " << ++i << "\n'";
}
else
// fix point found, but init not subset of acc
return 0;
}
// init subset of acc
return 1;
}

229

D

/*

*
*
*
*
*
*

#i

#i

#i

Vo

.5.8 Reorder.cc

stk ok sk ok ok ook ok skok sk ok sk ok skok sk sk ok skok sk sk ok ok sk sk sk ok skok sk sk ook ok skok sk ok sk ok ok
File : reorder.cc

Desc. : functions for reading reorder information

when loading a bdd from file.
Author: Rune M. Jensen CS, CMU, (IAU, DTU)
Date : 4/4/99
ok K KKK Kok ok ko K KKk ok ok K K Kok ok ok ok ok K Kok Kok ok ok K K Kok ok ok ok ok /

nclude <stdio.h>
nclude <bdd.h>
nclude "fsm.hpp"

id writeorder (char *filename,domdef *def) {
FILE *orderf;
int i,out;

// open outputfile for wrtiting
if ((orderf = fopen(filename,'"w'")) == NULL)

{
cout << "reorder.cc writeorder : ";
cout << "cannot open \"" << filename << "\"\nexiting\n\n";
exit (1) ;

}

// write order
for (i=0; i<def->bddvarnum; i++)
{
out = bdd_varlevel(i);
fwrite(&out, sizeof (int), 1, orderf);

}

int *readorder (char *filename,domdef *def) {

FILE *orderf;
int *ordering;

// open inputfile for reading
if ((orderf = fopen(filename,'"r")) == NULL)

{
cout << "reorder.cc readorder: ";
cout << "cannot open \"" << filename << "\"\nexiting\n\n";
exit (1) ;

¥

230

// read order
ordering = new int[def->bddvarnum];
fread(ordering, sizeof (int), def->bddvarnum, orderf);

return ordering;

231

D.5.9 Time.cc

/3 ks ok skokok sk ki ok ok sk ko ok ok sk skokok ok sk ok ok sk ok sk ok ok sk ok ok sk ok ok ok ok
* File : time.cc

* Desc. : Simple functions for measuring run times

* Author: Rune M. Jensen

* Date : 4/8/99

okokok ok ok ok okok s okok ok ko ik sk sk ok ok ko sk ok ok ko sk ok ok sk sk ok ok ok sk sk ok ok sk kR ok ok ok sk ok

#include <sys/time.h>
#tinclude <stream.h>

struct timeval tpl,tp2;

struct timezone tzp; // dummy

void startwatch() {
gettimeofday (&tpl, &tzp);

void stopwatch() {
gettimeofday (&tp2, &tzp);
if (tp2.tv_usec < tpl.tv_usec)
{
tp2.tv_usec += 1000000;
tp2.tv_sec—-;

}

cout << "Time elapsed: " << (tp2.tv_sec - tpl.tv_sec)*1000 +
(tp2.tv_usec - tpl.tv_usec) / 1000 << " msec \n";

232

