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Certificates
What makes a problem hard?

Certificate angle: can one efficiently check an alleged solution?

é Consider chess: does white begin and win?
jg A winning strategy will be very costly to check.
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ﬁ Consider chess: does white begin and win?
/é A winning strategy will be very costly to check.

Consider the sudoku on the right:
Is searching for the solution harder
than verifying a given solution?
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Certificates
What makes a problem hard?

Certificate angle: can one efficiently check an alleged solution?

ﬁ Consider chess: does white begin and win?
Ig A winning strategy will be very costly to check.

Consider the sudoku on the right: 114]7131819]2]6]5
Is searching for the solution harder 518|6]12|114]7]19]|3
than verifying a given solution? 319121615 711184
8l7|3|1]4|6(5|2|9

Intuition: yes! 91614|7|2]|5]3|1]8
. 2111519131814/ 76

However, many problems for which 53 8l517 210411
we can efficiently check a solution 751914161 1181312
turn out to be easy in practice. 4121181913615 7
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Certificates and Complexity

Complexity classes of decision problems:
P : efficiently computable answers.

NP : efficiently checkable yes-answers.
co-NP : efficiently checkable no-answers.

Cook-Levin Theorem [1971]: SAT is NP-complete.

Solving the P Z NP question is worth $1,000,000 [Clay MI "00].
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Certificates and Complexity

Complexity classes of decision problems:
P : efficiently computable answers.

NP : efficiently checkable yes-answers. @
co-NP : efficiently checkable no-answers.

Cook-Levin Theorem [1971]: SAT is NP-complete. T

Solving the P Z NP question is worth $1,000,000 [Clay MI "00].

The beauty of NP: guaranteed short solutions.

The effectiveness of SAT solving: fast solutions in practice.
“NP is the new P!”

What about co-NP?

How to find short proofs for interesting problems efficiently?
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Proofs of Unsatisfiability
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Certifying Satisfiability and Unsatisfiability
m Certifying satisfiability of a formula is easy:

xVYyAFVYIN([GVZ)
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Certifying Satisfiability and Unsatisfiability

m Certifying satisfiability of a formula is easy:

® Just consider a satisfying assignment: xyz

xVYI ARV A ([GVE

® We can easily check that the assignment is satisfying:

Just check for every clause if it has a satisfied literal!
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Certifying Satisfiability and Unsatisfiability

m Certifying satisfiability of a formula is easy:

® Just consider a satisfying assignment: xyz

xVYI ARV A ([GVE

® We can easily check that the assignment is satisfying:

Just check for every clause if it has a satisfied literal!

m Certifying unsatisfiability is not so easy:
® |f a formula has n variables, there are 2™ possible assignments.

= Checking whether every assignment falsifies the formula is costly.
® More compact certificates of unsatisfiability are desirable.
> Proofs
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What Is a Proof in SAT?

m In general, a proof is a string that
certifies the unsatisfiability of a formula.

® Proofs are efficiently (usually polynomial-time) checkable...
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® Proofs are efficiently (usually polynomial-time) checkable...
... but can be of exponential size with respect to a formula.
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What Is a Proof in SAT?

m In general, a proof is a string that
certifies the unsatisfiability of a formula.

® Proofs are efficiently (usually polynomial-time) checkable...
... but can be of exponential size with respect to a formula.

m Example: Resolution proofs
® A resolution proof is a sequence Cy,...,Cy, of clauses.

® Every clause is either contained in the formula or derived from two
earlier clauses via the resolution rule:

CVx xV D
CVvD

® C,, is the empty clause (containing no literals), denoted by L.

® There exists a resolution proof for every unsatisfiable formula.
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Resolution Proofs

m Example: T=XVYyVz)AZ)AKXVY A @Vy) A

m Resolution proof:
xVyVz),(z), xVy), xVy),([y), ([aVy), (u),(u), L
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Resolution Proofs

m Example: T=(XVYyVz)AZ)AXVY)ATVy) A (u)
m Resolution proof:
xVyVz),(z), xVy), xVy),([y), ([aVy), (u),(u), L

xVGVz  zZ

xVy xVyY
uVy Yy

el
e

1
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Resolution Proofs

m Example: T=(XVYyVz)AZ)AXVY)ATVy) A (u)
m Resolution proof:
xVyVz),(z), xVy), xVy),([y), ([aVy), (u),(u), L

xVGVz  zZ

xVy xVYy
uVy ]

el
e

1

m Drawbacks of resolution:

® For many seemingly simple formulas, there are only resolution
proofs of exponential size.

® State-of-the-art solving techniques are not succinctly expressible.
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Clausal Proofs

Reduce the size of the proof by only storing added clauses

Formula

Proof
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Clausal Proofs

Reduce the size of the proof by only storing added clauses

Proof

m Clauses whose addition preserves satisfiability are redundant.

m Checking redundancy should be efficient.
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Clausal Proofs

Reduce the size of the proof by only storing added clauses

Proof

m Clauses whose addition preserves satisfiability are redundant.
m Checking redundancy should be efficient.

w |dea: Only add clauses that fulfill an efficiently checkable

redundancy criterion.
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Reverse Unit Propagation
m Unit propagation (UP) satisfies unit clauses by assigning
their literal to true (until fixpoint or a conflict).

m Let I be a formula. A clause C is implied by I" via UP
(denoted by ' C) if UP on T'/A —C results in a conflict.

Example
= (aVbVe)A(@VbVe)AbVeVdAbVevd A
(aVeVdA@VeVdA@VbVAA(aVbVad)
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Reverse Unit Propagation
m Unit propagation (UP) satisfies unit clauses by assigning
their literal to true (until fixpoint or a conflict).

m Let I be a formula. A clause C is implied by I" via UP
(denoted by ' C) if UP on T'/A —C results in a conflict.

Example
= (aVbVe)A(@VbVe)AbVeVd)AbVevd A
(aVeVdA@VevVdA@vbVd A(aVbVad)

clause (aVVb)
units  aAb
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m Let I be a formula. A clause C is implied by I" via UP
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Example
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Reverse Unit Propagation
m Unit propagation (UP) satisfies unit clauses by assigning
their literal to true (until fixpoint or a conflict).

m Let I' be a formula. A clause C is implied by I" via UP
(denoted by ' C) if UP on T'/A —=C results in a conflict.

Example
= (aVbVe)A(@VbVe)A(bVeVd AbVevd A
(aVeVdA@VeVdA@VbVd A(aVbVd)

clause (aVb) (aVbVe) (bVeVd) (aVeVd)

units a/Ab ¢ d 1

(aVeVd) (bVeVd)
(aVbVe) (aVbVe)
(aVD)
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Beyond Resolution
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Traditional Proofs vs. Interference-Based Proofs

m In traditional proof systems, everything that is inferred, is
logically implied by the premises.

CVx xV D
CVvD

A A—B
(RES) =

(MP)
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Traditional Proofs vs. Interference-Based Proofs

m In traditional proof systems, everything that is inferred, is
logically implied by the premises.

CVx xV D
CVvD

(RES)

A A— B (MP)
B

= |nference rules reason about the presence of facts.

® |f certain premises are present, infer the conclusion.
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Traditional Proofs vs. Interference-Based Proofs

m In traditional proof systems, everything that is inferred, is

logically implied by the premises.

CVx xV D
CVvD

(RES)

A A—B (MP)
B
= |nference rules reason about the presence of facts.

® |f certain premises are present, infer the conclusion.

m Different approach: Allow not only implied conclusions.
® Require only that the addition of facts preserves satisfiability.
® Reason also about the absence of facts.

= This leads to interference-based proof systems.
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Early work on reasoning beyond resolution

The early SAT decision procedures used the Pure Literal rule
[Davis and Putnam 1960; Davis, Logemann and Loveland 1962]:

xé&rl
(pure)
(x)
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Early work on reasoning beyond resolution

The early SAT decision procedures used the Pure Literal rule
[Davis and Putnam 1960; Davis, Logemann and Loveland 1962]:

x¢rl
(pure)
(x)

Extended Resolution (ER) [Tseitin 1966]
m Combines resolution with the Extension rule:
X_¢ r xérl (ER)
(xVaVbAXVa)AKxVD)
m Equivalently, adds the definition x := AND(a, b)
m Can be considered the first interference-based proof system

m |s very powerful: No known lower bounds
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Short Proofs of Pigeon Hole Formulas [Cook 1967]

Can n+1 pigeons be in n. holes (at-most-one pigeon per hole)?

PHP,:= N\ (xipVo V) A\ N Fnp V%)

1<p<ntl T<h<n,1<p<q<n+l

Resolution proofs of PHP,, are exponential [Haken 1985]

Cook constructed polynomial-sized ER proofs of PHP,,
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Short Proofs of Pigeon Hole Formulas [Cook 1967]

Can n+1 pigeons be in n. holes (at-most-one pigeon per hole)?

PHP,:= N\ (xipVo V) A\ N Fnp V%)

1<p<ntl T<h<n,1<p<q<n+l

Resolution proofs of PHP,, are exponential [Haken 1985]
Cook constructed polynomial-sized ER proofs of PHP,,

However, these proofs require introducing new variables:

m Hard to find such proofs automatically

m Existing ER approaches produce exponentially large proofs

m How to get rid of this hurdle? First approach: blocked
clauses...
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Blocked Clauses [Kullmann 1999]

Definition (Blocked Clause)

A clause (CV x) is a blocked on x w.r.t. a CNF formula T" if
for every clause (D V' x) € T, resolvent C V' D is a tautology.
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Blocked Clauses [Kullmann 1999]

Definition (Blocked Clause)

A clause (CV x) is a blocked on x w.r.t. a CNF formula T" if
for every clause (D V' x) € T, resolvent C V' D is a tautology.

Example
Consider the formula (a V' b) A (aV bV E) A (aVc).
First clause is not blocked.
Second clause is blocked by both a and C.
Third clause is blocked by c

Theorem
Adding or removing a blocked clause preserves (un)satisfiability.
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Blocked Clause Addition and Blocked Clause Elimination

The Blocked Clause proof system (BC) combines the
resolution rule with the addition of blocked clauses.

m BC generalizes ER [Kullmann 1999]
m Recall x¢T  X¢T

3 (ER)
(xVaVDh)AEVa)A(XVb)

m The ER clauses are blocked on the literals x and X w.r.t. T
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Blocked Clause Addition and Blocked Clause Elimination

The Blocked Clause proof system (BC) combines the
resolution rule with the addition of blocked clauses.

m BC generalizes ER [Kullmann 1999]

m Recall x¢T X¢T

3 (ER)
(xVaVDh)AEVa)A(XVb)

m The ER clauses are blocked on the literals x and X w.r.t. T

Blocked clause elimination used in preprocessing and inprocessing
m Simulates many circuit optimization techniques
m Removes redundant Pythagorean Triples
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DRAT: An Interference-Based Proof System

m DRAT is a popular interference-based proof system
m DRAT allows adding RATs (defined below) to a formula.
® |t can be efficiently checked if a clause is a RAT.
® RATSs are not necessarily implied by the formula.
® But RATSs are redundant: their addition preserves satisfiability.
m DRAT also allows clause deletion
® |[nitially introduced to check proofs more efficiently

® Clause deletion may introduce clause addition options (interference)
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DRAT: An Interference-Based Proof System

m DRAT is a popular interference-based proof system

m DRAT allows adding RATs (defined below) to a formula.
® |t can be efficiently checked if a clause is a RAT.
® RATSs are not necessarily implied by the formula.

® But RATSs are redundant: their addition preserves satisfiability.
m DRAT also allows clause deletion

® |[nitially introduced to check proofs more efficiently

® Clause deletion may introduce clause addition options (interference)

Definition (Resolution Asymmetric Tautology)

A clause (CV x) is a resolution asymmetric tautology (RAT)
on x w.r.t. a CNF formula T if for every clause (D V) €T,
CV D is implied by I" via unit-propagation, i.e., ' = CV D.
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Propagation Redundancy
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Redundant Clauses

m Strong proof systems allow adding many redundant clauses.

All Redundant Clauses
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Redundant Clauses

m Strong proof systems allow adding many redundant clauses.

Resolvents
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m The new proof systems can give short proofs of formulas
that are considered hard.
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Redundant Clauses

m Strong proof systems allow adding many redundant clauses.

m The new proof systems can give short proofs of formulas
that are considered hard.

m Are stronger redundancy notions still efficiently checkable?
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Mutilated Chessboards: “A Tough Nut to Crack” [McCarthy]

Can a chessboard be fully covered with dominos after
removing two diagonally opposite corner squares?
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Mutilated Chessboards: “A Tough Nut to Crack” [McCarthy]

Can a chessboard be fully covered with dominos after
removing two diagonally opposite corner squares?

Easy to refute based on the following two observations:
m There are more white squares than black squares; and
m A domino covers exactly one white and one black square.
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Without Loss of Satisfaction

One of the crucial techniques in SAT solvers is to generalize a
conflicting state and use it to constrain the problem.

L

L

L L

2.

B

The used proof system can have a big impact on the size:

1. Resolution can only reduce the 30 dominos to 14 (left); and
2. "Without loss of satisfaction” can reduce them to 2 (right).

rubenm@cmu. edu
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Mutilated Chessboards: An alternative proof

Satisfaction-Driven Clause Learning (SDCL) is a new solving
paradigm that finds proofs in the PR proof system [HKB '17]

SDCL can detect that the above two patterns can be blocked
m This reduces the number of explored states exponentially
m We produced SPR proofs that are linear in the formula size
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Redundancy as an Implication
A formula A is at least as satisfiable as a formula " if ' E A.

Given a formula T" and assignment «, we denote with I'| x the
reduced formula after removing from I' all clauses satisfied by
« and all literals falsified by c.

Theorem
A clause C is redundant w.r.t. a formula T iff there exists an
assignment « such that

FTA=CE(TANC)|x

This is the strongest notion of redundancy. However,

entailment (F) cannot be checked in polynomial time
(assuming P # NP), unless bounded.
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Checking Redundancy Using Unit Propagation

m Unit propagation (UP) satisfies unit clauses by assigning
their literal to true (until fixpoint or a conflict).

m Let " be a formula, C a clause, and o the smallest
assignment that falsifies C. C is implied by I via UP
(denoted by I' i C) if UP on T'| results in a conflict.

m Implied by UP is used in SAT solvers to determine
redundancy of learned clauses and therefore I is a natural
restriction of .

m We bound TA—CE (TAC)|aby TA=CE (TAC) |

m Example:
Nr=xVyVz)AXVyYyVvVz) AxVYyVz)AKXVYVz)
and A = (z). Observe that I' E A, but that T ¥ A.
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Hand-crafted PR Proofs of Pigeon Hole Formulas

We manually constructed PR proofs of the famous pigeon hole
formulas and the two-pigeons-per-hole family.

m The proofs consist only of binary and unit clauses.
m Only original variables appear in the proof.

m All proofs are linear in the size of the formula.

= The PR proofs are smaller than Cook’s ER proofs.

m All resolution proofs of these formulas are exponential in size.
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Satisfaction-Driven Clause Learning
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Autarkies
A non-empty assignment « is an autarky for formula I" if every
clause C € T that is touched by « is also satisfied by «.

A pure literal and a satisfying assignment are autarkies.

Example

Consider the formula T':= (x Vy) A (X VYy) N (y V z).
Assignment «; = Z is an autarky:

xVy)ANxVy A((yVz). Assignment x; =xyzis an
autarky: (x VyY)AXVYy)A([yVz).
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Autarkies
A non-empty assignment « is an autarky for formula I" if every
clause C € T that is touched by « is also satisfied by «.

A pure literal and a satisfying assignment are autarkies.

Example

Consider the formula T':= (x Vy) A (X VYy) N (y V z).
Assignment «; = Z is an autarky:

xVy)ANxVy A((yVz). Assignment x; =xyzis an
autarky: (x VyY)AXVYy)A([yVz).

Given an assignment «, I'| ¢ denotes a formula " without the
clauses satisfied by « and without the literals falsified by «.

Theorem ([Monien and Speckenmeyer 1985])

Let o be an autarky for formula T.
Then, T and T'| . are satistfiability equivalent.
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Conditional Autarkies

An assignment & = Xcon U Xayt 1S @ conditional autarky for
formula T if &,y is an autarky for I'| .,

Example

Consider the formula T':= (x Vy) A (X VYy) A (y V z).
Let Xeon =Y and oxaye = X, then o = oteon U oyt = XY is a
conditional autarky for T':

Oant = X is an autarky for ' .., = (X) A\ (Z).
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Conditional Autarkies
An assignment & = Xcon U Xayt 1S @ conditional autarky for
formula T if &,y is an autarky for I'| .,

Example

Consider the formula T':= (x Vy) A (X VY A (y V z).
Let Xeon =Y and oxaye = X, then o = oteon U oyt = XY is a
conditional autarky for T':

Oant = X is an autarky for ' .., = (X) A\ (Z).

Let & = Keon U Xauy be a conditional autarky for formula T
Then T and T'/A\ (Xeon — Xaut) are satisfiability-equivalent.

In the above example, we could therefore learn (§ V X).
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Finding Redundant Clauses: The Positive Reduct

Determining whether a clause C is PR w.r.t. a formula T is an
NP-complete problem.

How to find PR clauses? Encode it in SAT!
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Theorem
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Finding Redundant Clauses: The Positive Reduct

Determining whether a clause C is PR w.r.t. a formula T is an
NP-complete problem.

How to find PR clauses? Encode it in SAT!

Theorem
Given formula T and assignment «. A satisfying assignment w
of positive reduct p(T; &) is a conditional autarky of T'.

Positive reducts are typically very easy to solve!
Key ldea: While solving a formula I', check whether the
positive reduct of I" and the current assignment « is satisfiable.

In that case, prune the branch «.
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The Positive Reduct: An Example

Given a formula " and a clause C. Let o denote the smallest
assignment that falsifies C. The positive reduct of I" and «,
denoted by p(T; «), is the formula that contains C and all
assigned(D, o) with D € T" and D is satisfied by «.

Example

Consider the formula I':= (x Vy) A (X V1Y) A (y V z).

Let C; = (X), so o = x.

The positive reduct p(T; ;) = (X) /\ (x) is unsatisfiable.

Let C; = (x VU), so o =XVY.

The positive reduct p(l; o) = (x VY) A (x Vy) A (X V1Y) is
satisfiable.
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Pseudo-Code of CDCL (formula T)

1 =10

2 forever do

s o := Simplify (T} «)

4 if I'| ¢ contains a falsified clause then

5 C := AnalyzeConflict ()

6 if C is the empty clause then return unsatisfiable
7 r=Tru{C}

5 o := BackJump (C, )

13 else

1 1 := Decide ()

15 if 1is undefined then return satisfiable
16 o :=o0U {1}

rubenm@cmu . edu 31/33



Pseudo-Code of SDCL (formula T")

1 =10

2 forever do

3 o := Simplify (I} «)

. if I'| ¢ contains a falsified clause then

5 C := AnalyzeConflict ()

6 if C is the empty clause then return unsatisfiable
7 M:=Tu{C}

8 o := BackJump (C, «)

0 else if p(T; «) is satisfiable then

10 C := AnalyzeWitness ()

1 r=Tu{C}

12 o ;= BackJump (C, «)

13 else

1 1 := Decide ()

15 if 1is undefined then return satisfiable
16 o= o U{l}
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Conclusions
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Conclusions

We introduced new redundancy notions for SAT.

Proof systems based on these redundancy notions are strong.
m They allow for short proofs without new variables; and
m They are more suitable for mechanized proof search.
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Conclusions

We introduced new redundancy notions for SAT.

Proof systems based on these redundancy notions are strong.
m They allow for short proofs without new variables; and

m They are more suitable for mechanized proof search.

SDCL generalizes the well-known CDCL paradigm by allowing
to prune branches that are potentially satisfiable:

m Such branches can be found using the positive reduct;
m Pruning can be expressed in the PR proof system;
m Runtime and proofs can be exponentially smaller.

rubenm@cmu. edu 33/33



	Proofs of Unsatisfiability
	Beyond Resolution
	Propagation Redundancy
	Satisfaction-Driven Clause Learning

