
Lookahead Techniques

Ruben Martins

http://www.cs.cmu.edu/~rubenm/15816-f25/

Automated Reasoning and Satisfiability
September 22, 2024

rubenm@cmu.edu 1 / 25

http://www.cs.cmu.edu/~rubenm/15816-f25/

DPLL Procedure

Look-ahead Architecture

Look-ahead Learning

Autarky Reasoning

rubenm@cmu.edu 2 / 25

DPLL Procedure

Look-ahead Architecture

Look-ahead Learning

Autarky Reasoning

rubenm@cmu.edu 3 / 25

SAT Solving: DPLL

Davis Putnam Logemann Loveland [DP60,DLL62]

Recursive procedure that in each recursive call:
Simplifies the formula (using unit propagation)

Splits the formula into two subformulas
• Variable selection heuristics (which variable to split on)
• Direction heuristics (which subformula to explore first)

rubenm@cmu.edu 4 / 25

DPLL: Example

ΓDPLL := (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨ x3)∧

(x1 ∨ x2 ∨ x3)∧ (x1 ∨ x3)∧ (x1 ∨ x3)

rubenm@cmu.edu 5 / 25

DPLL: Example

ΓDPLL := (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨ x3)∧

(x1 ∨ x2 ∨ x3)∧ (x1 ∨ x3)∧ (x1 ∨ x3)

x3

0 1

rubenm@cmu.edu 5 / 25

DPLL: Example

ΓDPLL := (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨ x3)∧

(x1 ∨ x2 ∨ x3)∧ (x1 ∨ x3)∧ (x1 ∨ x3)

x3

0 1

x2

x1 x3

0 1

0 1 1 0

rubenm@cmu.edu 5 / 25

Look-ahead: Definition

DPLL with selection of (effective) decision variables
by look-aheads on variables

Look-ahead:

Assign a variable to a truth value

Simplify the formula

Measure the reduction

Learn if possible

Backtrack

rubenm@cmu.edu 6 / 25

Look-ahead: Definition

DPLL with selection of (effective) decision variables
by look-aheads on variables

Look-ahead:

Assign a variable to a truth value

Simplify the formula

Measure the reduction

Learn if possible

Backtrack

rubenm@cmu.edu 6 / 25

Look-ahead: Definition

DPLL with selection of (effective) decision variables
by look-aheads on variables

Look-ahead:

Assign a variable to a truth value

Simplify the formula

Measure the reduction

Learn if possible

Backtrack

rubenm@cmu.edu 6 / 25

Look-ahead: Definition

DPLL with selection of (effective) decision variables
by look-aheads on variables

Look-ahead:

Assign a variable to a truth value

Simplify the formula

Measure the reduction

Learn if possible

Backtrack

rubenm@cmu.edu 6 / 25

Look-ahead: Definition

DPLL with selection of (effective) decision variables
by look-aheads on variables

Look-ahead:

Assign a variable to a truth value

Simplify the formula

Measure the reduction

Learn if possible

Backtrack

rubenm@cmu.edu 6 / 25

Look-ahead: Definition

DPLL with selection of (effective) decision variables
by look-aheads on variables

Look-ahead:

Assign a variable to a truth value

Simplify the formula

Measure the reduction

Learn if possible

Backtrack

rubenm@cmu.edu 6 / 25

DPLL Procedure

Look-ahead Architecture

Look-ahead Learning

Autarky Reasoning

rubenm@cmu.edu 7 / 25

Look-ahead: Example

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x2 = 0}

rubenm@cmu.edu 8 / 25

Look-ahead: Example

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x2 = 0}

rubenm@cmu.edu 8 / 25

Look-ahead: Example

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x2 = 0, x1 = 0}

rubenm@cmu.edu 8 / 25

Look-ahead: Example

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x2 = 0, x1 = 0, x6 = 0}

rubenm@cmu.edu 8 / 25

Look-ahead: Example

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x2 = 0, x1 = 0, x6 = 0, x3 = 1}

rubenm@cmu.edu 8 / 25

Look-ahead: Properties

Very expensive

Effective compared to cheap heuristics

Detection of failed literals (and more)

Strong on random k-SAT formulae

Examples: march, OKsolver, kcnfs

rubenm@cmu.edu 9 / 25

DEMO

rubenm@cmu.edu 10 / 25

Look-ahead: Reduction heuristics

Number of satisfied clauses

Number of implied variables

New (reduced, not satisfied) clauses

• Smaller clauses more important

• Weights based on occurrences

rubenm@cmu.edu 11 / 25

Look-ahead: Reduction heuristics

Number of satisfied clauses

Number of implied variables

New (reduced, not satisfied) clauses

• Smaller clauses more important

• Weights based on occurrences

rubenm@cmu.edu 11 / 25

Look-ahead: Reduction heuristics

Number of satisfied clauses

Number of implied variables

New (reduced, not satisfied) clauses

• Smaller clauses more important

• Weights based on occurrences

rubenm@cmu.edu 11 / 25

Look-ahead: Architecture

xa

xb xc

0 1

?

1 0 0

DPLL

x1 x2 x3 x4

ΓLA

0

9

1

9

0

13

1

6

0 1

7

0

10

1

8

LookAhead

H(xi)

rubenm@cmu.edu 12 / 25

Look-ahead: Pseudo-code of DPLL with lookahead

1: Γ := Simplify (Γ)

2: if Γ is empty then return satisfiable

3: if ⊥ ∈ Γ then return unsatisfiable

4: ⟨Γ ; ldecision⟩ := LookAhead (Γ)

5: if (DPLL(Γ |ldecision) = satisfiable) then

6: return satisfiable

7: return DPLL (Γ |ldecision)

rubenm@cmu.edu 13 / 25

DPLL Procedure

Look-ahead Architecture

Look-ahead Learning

Autarky Reasoning

rubenm@cmu.edu 14 / 25

Local Learning

Look-ahead solvers do not perform global learning,
in contrast to contrast to conflict-driven clause
learning (CDCL) solvers

Instead, look-ahead solvers learn locally:
Learn small (typically unit or binary) clauses that are valid
for the current node and lower in the DPLL tree

Locally learnt clauses have to be removed during
backtracking

rubenm@cmu.edu 15 / 25

Failed Literals and Double Look-aheads

A literal l is called a failed literal if the look-ahead on l = 1
results in a conflict:

failed literal l is forced to false followed by unit propagation
if both x and x are failed literals, then backtrack

Failed literals can be generalized by double lookahead: assign
two literals and learn a binary clause in case of a conflict.

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x4 = 0, x6 = 1}

rubenm@cmu.edu 16 / 25

Failed Literals and Double Look-aheads

A literal l is called a failed literal if the look-ahead on l = 1
results in a conflict:

failed literal l is forced to false followed by unit propagation
if both x and x are failed literals, then backtrack

Failed literals can be generalized by double lookahead: assign
two literals and learn a binary clause in case of a conflict.

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x4 = 0, x6 = 1}

rubenm@cmu.edu 16 / 25

Failed Literals and Double Look-aheads

A literal l is called a failed literal if the look-ahead on l = 1
results in a conflict:

failed literal l is forced to false followed by unit propagation
if both x and x are failed literals, then backtrack

Failed literals can be generalized by double lookahead: assign
two literals and learn a binary clause in case of a conflict.

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x4 = 0, x6 = 1}

rubenm@cmu.edu 16 / 25

Failed Literals and Double Look-aheads

A literal l is called a failed literal if the look-ahead on l = 1
results in a conflict:

failed literal l is forced to false followed by unit propagation
if both x and x are failed literals, then backtrack

Failed literals can be generalized by double lookahead: assign
two literals and learn a binary clause in case of a conflict.

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x4 = 0, x6 = 1, x1 = 1}

rubenm@cmu.edu 16 / 25

Failed Literals and Double Look-aheads

A literal l is called a failed literal if the look-ahead on l = 1
results in a conflict:

failed literal l is forced to false followed by unit propagation
if both x and x are failed literals, then backtrack

Failed literals can be generalized by double lookahead: assign
two literals and learn a binary clause in case of a conflict.

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x4 = 0, x6 = 1, x1 = 1, x2 = 1}

rubenm@cmu.edu 16 / 25

Failed Literals and Double Look-aheads

A literal l is called a failed literal if the look-ahead on l = 1
results in a conflict:

failed literal l is forced to false followed by unit propagation
if both x and x are failed literals, then backtrack

Failed literals can be generalized by double lookahead: assign
two literals and learn a binary clause in case of a conflict.

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x4 = 0, x6 = 1, x1 = 1, x2 = 1, x3 = 1}

rubenm@cmu.edu 16 / 25

Hyper Binary Resolution [Bacchus 2002]

Definition (Hyper Binary Resolution Rule)

(x∨ x1 ∨ x2 ∨ · · ·∨ xn) (x1 ∨ x ′) (x2 ∨ x ′) . . . (xn ∨ x ′)

(x∨ x ′)

binary edge
hyper edge
hyper binary edge

x ′

x

x1

. . .x2
xn

x ′

x
Hyper Binary Resolution Rule:

combines multiple resolution steps into one

uses one n-ary clauses and multiple binary clauses

special case hyper unary resolution where x = x ′

rubenm@cmu.edu 17 / 25

Look-ahead: Hyper Binary Resolvents

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x2 = 0}

hyper binary resolvents:

(x2 ∨ x6) and (x2 ∨ x3)

Which one is more useful?

rubenm@cmu.edu 18 / 25

Look-ahead: Hyper Binary Resolvents

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x2 = 0}

hyper binary resolvents:

(x2 ∨ x6) and (x2 ∨ x3)

Which one is more useful?

rubenm@cmu.edu 18 / 25

Look-ahead: Hyper Binary Resolvents

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x2 = 0, x1 = 0}

hyper binary resolvents:

(x2 ∨ x6) and (x2 ∨ x3)

Which one is more useful?

rubenm@cmu.edu 18 / 25

Look-ahead: Hyper Binary Resolvents

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x2 = 0, x1 = 0, x6 = 0}

hyper binary resolvents:

(x2 ∨ x6) and (x2 ∨ x3)

Which one is more useful?

rubenm@cmu.edu 18 / 25

Look-ahead: Hyper Binary Resolvents

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x2 = 0, x1 = 0, x6 = 0, x3 = 1}

hyper binary resolvents:

(x2 ∨ x6) and (x2 ∨ x3)

Which one is more useful?

rubenm@cmu.edu 18 / 25

Look-ahead: Hyper Binary Resolvents

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x2 = 0, x1 = 0, x6 = 0, x3 = 1}

hyper binary resolvents:

(x2 ∨ x6) and (x2 ∨ x3)

Which one is more useful?

rubenm@cmu.edu 18 / 25

Look-ahead: Hyper Binary Resolvents

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x2 = 0, x1 = 0, x6 = 0, x3 = 1}

hyper binary resolvents:

(x2 ∨ x6) and (x2 ∨ x3)

Which one is more useful?

rubenm@cmu.edu 18 / 25

Look-ahead: Necessary assignments

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x1 = 1}

rubenm@cmu.edu 19 / 25

Look-ahead: Necessary assignments

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x1 = 1}

rubenm@cmu.edu 19 / 25

Look-ahead: Necessary assignments

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x1 = 1, x2 = 1}

rubenm@cmu.edu 19 / 25

Look-ahead: Necessary assignments

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x1 = 1, x2 = 1, x3 = 1}

rubenm@cmu.edu 19 / 25

Look-ahead: Necessary assignments

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x1 = 1, x2 = 1, x3 = 1, x4 = 1}

rubenm@cmu.edu 19 / 25

Look-ahead: Necessary assignments

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x1 = 1, x2 = 1, x3 = 1, x4 = 1}

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x1 = 0

rubenm@cmu.edu 19 / 25

Look-ahead: Necessary assignments

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x1 = 1, x2 = 1, x3 = 1, x4 = 1}

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x1 = 0}

rubenm@cmu.edu 19 / 25

Look-ahead: Necessary assignments

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x1 = 1, x2 = 1, x3 = 1, x4 = 1}

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x1 = 0, x6 = 0}

rubenm@cmu.edu 19 / 25

Look-ahead: Necessary assignments

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x1 = 1, x2 = 1, x3 = 1, x4 = 1}

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x1 = 0, x6 = 0, x3 = 1}

rubenm@cmu.edu 19 / 25

St̊almarck’s Method

In short, St̊almarck’s Method is a procedure that generalizes
the concept of necessary assignments.

For each variable x, (Simplify(Γ |x) ∩ Simplify(Γ |x)) \ Γ is
added to Γ .

The above is repeated until fixpoint, i.e., until
∀x : (Simplify(Γ |x) ∩ Simplify(Γ |x)) \ F = ∅

Afterwards the procedure is repeated using all pairs for
variables x and y: Add (Simplify(Γ |xy) ∩ Simplify(Γ |xy) ∩
Simplify(Γ |xy ∩ Simplify(Γ |xy)) \ Γ to Γ .

The second round is very expensive and can typically not be
finished in reasonable time.

rubenm@cmu.edu 20 / 25

DPLL Procedure

Look-ahead Architecture

Look-ahead Learning

Autarky Reasoning

rubenm@cmu.edu 21 / 25

Look-ahead: Autarky definition

An autarky is a partial assignment that satisfies all
clauses that are “touched” by the assignment

a pure literal is an autarky

each satisfying assignment is an autarky

the remaining formula is satisfiability equivalent
to the original formula

An 1-autarky is a partial assignment that
satisfies all touched clauses except one

rubenm@cmu.edu 22 / 25

Look-ahead: Autarky definition

An autarky is a partial assignment that satisfies all
clauses that are “touched” by the assignment

a pure literal is an autarky

each satisfying assignment is an autarky

the remaining formula is satisfiability equivalent
to the original formula

An 1-autarky is a partial assignment that
satisfies all touched clauses except one

rubenm@cmu.edu 22 / 25

Look-ahead: Autarky definition

An autarky is a partial assignment that satisfies all
clauses that are “touched” by the assignment

a pure literal is an autarky

each satisfying assignment is an autarky

the remaining formula is satisfiability equivalent
to the original formula

An 1-autarky is a partial assignment that
satisfies all touched clauses except one

rubenm@cmu.edu 22 / 25

Look-ahead: Autarky definition

An autarky is a partial assignment that satisfies all
clauses that are “touched” by the assignment

a pure literal is an autarky

each satisfying assignment is an autarky

the remaining formula is satisfiability equivalent
to the original formula

An 1-autarky is a partial assignment that
satisfies all touched clauses except one

rubenm@cmu.edu 22 / 25

Look-ahead: Autarky definition

An autarky is a partial assignment that satisfies all
clauses that are “touched” by the assignment

a pure literal is an autarky

each satisfying assignment is an autarky

the remaining formula is satisfiability equivalent
to the original formula

An 1-autarky is a partial assignment that
satisfies all touched clauses except one

rubenm@cmu.edu 22 / 25

Look-ahead: Autarky detection

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x1 = 1}

rubenm@cmu.edu 23 / 25

Look-ahead: Autarky detection

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x1 = 1}

rubenm@cmu.edu 23 / 25

Look-ahead: Autarky detection

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x1 = 1, x2 = 1}

rubenm@cmu.edu 23 / 25

Look-ahead: Autarky detection

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x1 = 1, x2 = 1, x3 = 1}

rubenm@cmu.edu 23 / 25

Look-ahead: Autarky detection

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x1 = 1, x2 = 1, x3 = 1, x4 = 1}

rubenm@cmu.edu 23 / 25

Look-ahead: Autarky detection

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x1 = 1, x2 = 1, x3 = 1, x4 = 1}

Γlearning satisfiability equivalent to (x5 ∨ x6)

rubenm@cmu.edu 23 / 25

Look-ahead: Autarky detection

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x1 = 1, x2 = 1, x3 = 1, x4 = 1}

Γlearning satisfiability equivalent to (x5 ∨ x6)

Could reduce computational cost on UNSAT

rubenm@cmu.edu 23 / 25

Look-ahead: 1-Autarky learning

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x2 = 0}

rubenm@cmu.edu 24 / 25

Look-ahead: 1-Autarky learning

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x2 = 0}

rubenm@cmu.edu 24 / 25

Look-ahead: 1-Autarky learning

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x2 = 0, x1 = 0}

rubenm@cmu.edu 24 / 25

Look-ahead: 1-Autarky learning

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x2 = 0, x1 = 0, x6 = 0}

rubenm@cmu.edu 24 / 25

Look-ahead: 1-Autarky learning

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x2 = 0, x1 = 0, x6 = 0, x3 = 1}

rubenm@cmu.edu 24 / 25

Look-ahead: 1-Autarky learning

Γlearning := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5) ∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x2 = 0, x1 = 0, x6 = 0, x3 = 1}

(local) 1-autarky resolvents:
(x2 ∨ x4) and (x2 ∨ x5)

rubenm@cmu.edu 24 / 25

Look-ahead: Autarky or Conflict on 2-SAT Formulae

Lookahead techniques can solve 2-SAT formulae in
polynomial time. Each lookahead on l results:

1. in an autarky: forcing l to be true

2. in a conflict: forcing l to be false

SAT Game
by Olivier Roussel

http://www.cs.utexas.edu/~marijn/game/2SAT

rubenm@cmu.edu 25 / 25

http://www.cs.utexas.edu/~marijn/game/2SAT

Look-ahead: Autarky or Conflict on 2-SAT Formulae

Lookahead techniques can solve 2-SAT formulae in
polynomial time. Each lookahead on l results:

1. in an autarky: forcing l to be true

2. in a conflict: forcing l to be false

SAT Game
by Olivier Roussel

http://www.cs.utexas.edu/~marijn/game/2SAT

rubenm@cmu.edu 25 / 25

http://www.cs.utexas.edu/~marijn/game/2SAT

	DPLL Procedure
	Look-ahead Architecture
	Look-ahead Learning
	Autarky Reasoning

