Local Search Techniques

Ruben Martins

Carnegie Mellon University

http://www.cs.cmu.edu/~rubenm/15816-f25/ Automated Reasoning and Satisfiability September 22, 2025

rubenm@cmu.edu 1 / 17

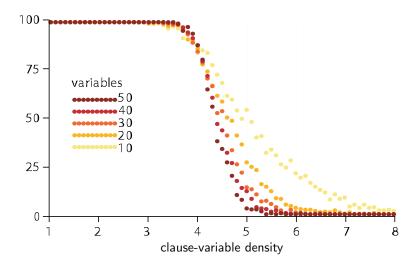
Stochastic Local Search

WalkSAT and ProbSAT

Weight Transfer

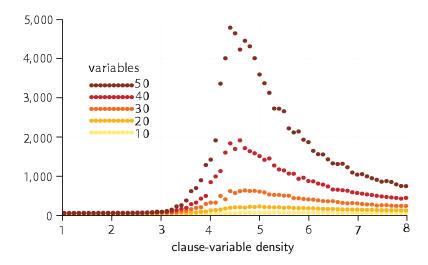
Stochastic Local Search

WalkSAT and ProbSAT


Weight Transfer

Local search solvers are particularly effective (and optimized) on hard uniform random (satisfiable) k-SAT problems

- All clauses have length k
- Variables have the same probability to occur
- Each literal is negated with probability of 50%
- Density is ratio Clauses to Variables


rubenm@cmu.edu 4 / 17

Random 3-SAT: % satisfiable, the phase transition

rubenm@cmu.edu 5 / 17

Random 3-SAT: exponential runtime, the threshold

rubenm@cmu.edu 6 / 17

Stochastic Local Search

WalkSAT and ProbSAT

Weight Transfer

rubenm@cmu.edu 7 / 17

Local Search: Generic structure

Generic structure of local search SAT solvers

```
1: for i in 1 to MAX_TRIES do

2: \alpha := random initial assignment

3: for j in 1 to MAX_STEPS do

4: if \alpha satisfies \Gamma then

5: return satisfiable

6: \alpha := Flip (\alpha)

7: return unknown
```

rubenm@cmu.edu 8 / 17

Local Search: Global vs Local flips

Global flips

■ Pro: Big improvements

■ Neg: Probabilistic incomplete

Local flips

■ Neg: Small improvements

■ Pos: Probabilistic complete

rubenm@cmu.edu 9 / 17

Stochastic Local Search

WalkSAT and ProbSAT

Weight Transfer

rubenm@cmu.edu 10 / 17

Local Search: Types of Flips

Select a random unsatisfied clause C

- Free flip
- Random flip
- Heuristic flip

rubenm@cmu.edu 11 / 17

Local Search: WalkSAT Code [Selman, Kautz, and Cohen '93]

FLIP_WALKSAT (α)

- 1: C := random clause in Γ that is falsified by α
- 2: **if** a variable in C can be flipped for free **then**
- 3: flip in α that variable
- 4: else
- 5: flip in α with p a random $x_i \in C$
- 6: flip in α with 1-p the optimal $x_i \in C$
- 7: **return** α

rubenm@cmu.edu 12 / 17

Local Search: ProbSAT [Balint and Schöning '12]

ProbSAT generalizes the WalkSAT code.

Let $break(x, \alpha)$ denote the number of clauses that are only satisfied by x or \overline{x} under the assignment α

- lacksquare C:= random clause in Γ that is falsified by α
- randomly pick a variable x in C using weights $c^{-break(x,\alpha)}$
- an effective constant for random 3-SAT: c = 2.5
- \blacksquare update α by flipping x

rubenm@cmu.edu 13 / 17

Stochastic Local Search

WalkSAT and ProbSAT

Weight Transfer

rubenm@cmu.edu 14 / 17

Local Search: Weight Transfer

- All clauses have a weight
- Only do global flips
- Pick the variable that reduces the falsified weight the most
- If there is no weight-reducing variable, modify the weights

rubenm@cmu.edu 15 / 17

Local Search: Weight Transfer Pseudo-code

```
1. for i in 1 to MAX TRIES do
       \alpha := random initial assignment
2:
       for j in 1 to MAX_STEPS do
3.
         if \alpha satisfies \Gamma then
4.
5:
            return satisfiable
         else if there exists a weight-reducing variable then
6.
            flip the most weight-reducing variable in \alpha
7.
         else
8.
            increase the weight of clauses falsified by \alpha
g.
10: return unknown
```

rubenm@cmu.edu 16 / 17

Weight Transfer Heuristics

Key heuristic: transfer weight from neighboring clauses

- Clauses are neighboring if they share a literal
- Transfer weight from satisfied to falsified clauses
- Transfer from highest weight satisfied neighboring clause

rubenm@cmu.edu 17 / 1

Weight Transfer Heuristics

Key heuristic: transfer weight from neighboring clauses

- Clauses are neighboring if they share a literal
- Transfer weight from satisfied to falsified clauses
- Transfer from highest weight satisfied neighboring clause

Divide and Distribute Fixed Weights (DDFW) heuristics

- Weight initialization $W(C) = w_0 = 8$
- Transfer weights if no weight-reducing variable to flip
- lacksquare Transfer a weight of 1 if $W(C_{
 m satisfied})=w_0$
- Transfer a weight of 2 if $W(C_{\text{satisfied}}) > w_0$

rubenm@cmu.edu 17 / 17