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Motivation for Validating Proofs of Unsatisfiability

SAT solvers may have errors and only return yes/no.

m Documented bugs in SAT, SMT, and QSAT solvers;
[Brummayer and Biere, 2009; Brummayer et al., 2010]

m Competition winners have contradictory results
(HWMCC winners from 2011 and 2012)

m Implementation errors often imply conceptual errors;
m Proofs now mandatory for the annual SAT Competitions;

m Mathematical results require a stronger justification than a
simple yes/no by a solver. UNSAT must be verifiable.
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“The Largest Math Proof Ever”
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Demo: Validating Results

git clone https://github.com/marijnheule/proof-demo
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Proof Checking
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Resolution Rule and Resolution Chains

Resolution Rule

CVx xVD
CVvD

m Or equivalently: CVD:=(CVx) < (xV D)
m Many SAT techniques can be simulated by resolution.
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Resolution Rule and Resolution Chains

Resolution Rule

CVx xVD
CVvD

m Or equivalently: CVD:=(CVx) < (xV D)
m Many SAT techniques can be simulated by resolution.

A resolution chain is a sequence of resolution steps.
The resolution steps are performed from left to right.

Example
m(c):=(@VbVe)x(aVb)x(aVe)
m(@aVe):=(@Vvb)x(aVe)x(@VvVbVe)
m The order of the clauses in the chain matter
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Resolution Proofs versus Clausal Proofs
Consider T := (bvc) A (ave) A (avb) A (avb) A (avb) A (bve)

(1)
A resolution graph of T is: {ﬁ
i%ﬁﬁﬁw

A resolution proof consists of all nodes and edges of the resolution graph
m Graphs from SAT solvers have ~ 400 incoming edges per node

m Resolution proof logging can heavily increase memory usage (x100)

A clausal proof is a list of all nodes sorted by topological order
m Clausal proofs are easy to emit and relatively small

m Clausal proof checking requires to reconstruct the edges (costly)
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Clausal Proof: Checker has to reconstruct resolution edges

o EXEEMNERE
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Clausal Proof: Checker has to reconstruct resolution edges
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Reconstruct Edges Efficiently: Reverse Unit Propagation

m Unit propagation (UP) satisfies unit clauses by assigning
their literal to true (until fixpoint or a conflict).

m Let F be a formula. A clause C is implied by F via UP
(denoted by FE C) if UP on F /A —C results in a conflict.

Example
= (avVbVe)A@VvobVe)A(dVevVd)A(bVvevd A
(aVeVd)A@VevVd)A(@VvbVd A(aVbVd)
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Forward vs Backward Proof Checking

backward checking

L
S

original formula

\
L4

forward checking

rubenm@cmu. edu 12 /39



Improvement |: Backwards Checking

Goldberg and Novikov proposed checking the
refutation backwards [DATE 2003]:

m start by validating the empty clause;
m mark all lemmas using conflict analysis;
m only validate marked lemmas.

Advantage: validate fewer lemmas.

Disadvantage: more complex.
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Improvement Il: Clause Deletion

O
We proposed to extend clausal proofs with

deletion information [STVR 2014]: —

m clause deletion is crucial for efficient solving;

m emit learning and deletion information;

m proof size might double; e

m checking speed can be reduced significantly. o

avb

Clause deletion can be combined with backwards

checking [FMCAD 2013]: e

m ignore deleted clauses earlier in the proof;

m optimize clause deletion for trimmed proofs. e

\/
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Improvement Ill: Core-first Unit Propagation

We propose a new unit propagation variant:
propagate using clauses already in the core; G
examine non-core clauses only at fixpoint;

if a non-core unit clause is found, goto 1);

B W

otherwise terminate.

The variant, called Core-first Unit Propagation,
can reduce checking costs considerably.

Fast propagation in a checker is different
than fast propagation in a SAT solver. avbfavb

Also, the resulting core and proof are smaller
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Checking: Backwards + Core-first + Deletion
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Checking: Backwards + Core-first + Deletion
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DRAT (Deletion Resolution Asymmetric Tautology)
Drawbacks of resolution:

m For many seemingly simple formulas, there are only resolution
proofs of exponential size.

m State-of-the-art solving techniques are not succinctly expressible.

A clause (CV x) is a resolution asymmetric tautology (RAT) on x
w.r.t. a CNF formula T if for every clause (D VVX) €T, the
resolvent CV D is implied by I" via unit-propagation, i.e., Tk CV D.

Popular example of a clausal proof system: DRAT
m DRAT allows the addition of RATs to a formula.
® RATSs are not necessarily implied by the formula.
® But RATs are redundant: their addition preserves satisfiability.

® Clause deletion may introduce clause addition options (interference)
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DRAT Example

A clause (CV x) is a resolution asymmetric tautology (RAT) on x
w.r.t. a CNF formula T if for every clause (D V X) €T, the
resolvent CV D is implied by I" via unit-propagation, i.e., ' CV D.
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DRAT Example

A clause (CV x) is a resolution asymmetric tautology (RAT) on x
w.r.t. a CNF formula T if for every clause (D V X) €T, the
resolvent CV D is implied by I" via unit-propagation, i.e., ' CV D.

Bvc avB
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Demo: DRAT step

git clone https://github.com/marijnheule/proof-demo
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Proof Systems and Formats
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Clausal Proof System [Jarvisalo, Heule, and Biere 2012]
S < Learn: add a clause
-, ~ ¥ Preserve satisfiability
x Unsatisfiable
* Learn empty clause
Satisfiable
* Forget last clause
@, Forget: remove a clause
.’ * Preserve unsatisfiablity
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|deal Properties of a Proof System for SAT Solvers

1
mll

il
=
ii;

Expressive II I
[ |
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Resolution Proofs
Zhang and Malik, 2003
Van Gelder, 2008; Biere, 2008

Clausal Proofs
Goldberg and Novikov, 2003
Van Gelder, 2008

Clausal proofs + deletion
Heule, Hunt, Jr., Wetzler [STVR'14]

Optimized clausal proof checker
Heule, Hunt, Jr., and Wetzler [FMCAD'13]

Clausal RAT proofs
Heule, Hunt, Jr., Wetzler [CADE'13]

DRAT proofs (RAT + deletion)
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|deal Properties of a Proof System for SAT Solvers

Easy to Emit --I.

-
|

Expressive II I

Venﬂed IIII
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Proof Formats: The Input Format DIMACS

E:=(bVc)A(aVe)A(@Vb)A@Vvb)AlaVb)A(b\VE)

The input format of SAT solvers is known as DIMACS

m header starts vyith p cnf followed by the p cnf 3 6
number of variables (n) and the number 2 30
of clauses (m) 1 30

m the next m lines represent the clauses -1 20

m positive literals are positive numbers -1-20

m negative literals are negative numbers ; ‘g g

m clauses are terminated with a 0 _

Most proof formats use a similar syntax.
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Proof Formats: TraceCheck Overview

TraceCheck is the most popular resolution-style format.

=(bVc)A(aVe)A(@aVb)A(@Vvb)AlaVb)A(bVe)

TraceCheck is readable and resolution chains make it relatively

compact

(trace

(clause

(literals

)
)
)
(clsidx)
)
)
)

(lit
(pos
(neg

rubenm@cmu. edu

{(clause)}
(pos)((literals) (clsidx)
] {lit)} 0"

{(pos)} 0"

(pos) | (neg)
"
"~ (pos)

| (maxidx)

© 00 NO O WN -

O = O O O O O O
AN 01O O O O O O

O W o
o
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Proof Formats: TraceCheck Examples
TraceCheck is the most popular resolution-style format.
E=(bVc)A(aVc)A@VD)A(@Vb)A(aVb)A(bVi)

TraceCheck is readable and resolution chains make it relatively
compact

The clauses 1 to 6 are input clauses

|
N

Clause 7 is the resolvent of 4 and 5:

m (b):=(@Vvb)x(aVb)

Clause 8 is the resolvent of 1, 2 and 3:
m(c)=(bVe)x(aVvb)x(aVe)

m NB: the antecedents are swapped!

[
N = = = =
[

~NO O WNNNWW

0 = b O O O O O O

DN 01O OO O OO

|

N

O w o
o

Clause 9 is the resolvent of 6, 7 and 8:

Bl =(b)x(c)x(bVeE)

© 00 NO O W N -

o W
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Proof Formats: TraceCheck Don't Cares

Support for unsorted clauses, unsorted antecedents and omitted literals.

m Clauses are not required to be sorted based on the clause index

3 01230 7-2 0450
-2 0450 8 3 012360

m The antecedents of a clause can be in arbitrary order

7-2 0540 7-2 0450
8 3 03120 8 3 01230

m For learned clauses, the literals can be omitted using *

7*540 7-2 0450
83120 8 3 012360
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Proof Formats: Clausal Proofs

RUP and extensions is the most popular clausal-style format.

=(bVc)A(aVe)A(@aVb)A(@Vvb)AlaVb)A(bVe)

RUP is much more compact than LRAT because it lacks hints

m formula not included as well

(proof)
(lemma)
(delete)
(lit) =
(pos)
(neg)

rubenm@cmu. edu

{(lemma)}
(delete){(lit)} "0"
nn | “d“

(pos) | (neg)
T
~*(pos)

| (maxidx)
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Proof Formats: Binary Formats

There are various cheap compression techniques to shrink proofs:
m Use 4 bytes per literal instead storing the ascii characters

m Sort literals in clauses and store the delta between literals

m Use a variable byte encoding for literals

encoding example (prefix pivot lity...litx_1 end) #bytes
asCil d 6278 -3425 -42311 9173 22754 O\n 33
SasCil d 6278 -3425 9173 22754 -42311 O\n 33

4dbyte 64 0c310000 c31a0000 8£4a0100 aad70000 c4b10000 00000000 25
sdbyte 64 0c310000 3120000 22470000 c4b10000 8£420100 00000000 25
ds4byte 64 0c310000 3120000 €82c0000 12620000 cb980000 00000000 25

vbyte 64 8c62¢335 8£9505aa 8£01c4e3 0200 15
svbyte 64 8c62c335 aasfoica €3028£95 0500 15
dsvbyte 64 8c62c335 e8599ad4 01cbb102 00 14
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Proof Formats: Beyond Checking

Clausal Proof checkers can produce many additional results:

m Clausal core, e.g. useful for MUS computation, MaxSAT
DRAT-trim option: -c CORE

m Extract a resolution proof, e.g. useful for interpolation
DRAT-trim option: -r RESPROOF

m Proof minimization: removing redundant lemmas and literals
DRAT-trim option: -1 OPTPROOF
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Demo: Proof Mining

git clone https://github.com/marijnheule/proof-demo
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Certified Checking
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Certified Checking: Tool Chain

1: SAT solver 2: DRAT-trim 3: certified checker

original proof optimized proof

The proof of the Pythagorean Triples problem is almost 200
terabytes (DRAT) and has been validated in 16,000 CPU hours.

This proof has been certified using formally-verified checkers.

,~J X

\%7“00 2
ACL2
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Certified Checking: LRAT format
The LRAT format is syntactically similar to TraceCheck, however:
m The formula in not included in the proof
m Clause deletion support: (pos)“ d "(clsidx)
m Can express a RAT step: use negative cls to denote resolvent

DIMACS:
p cnf 3 3

-2 30
-1 -20
o

DRAT:
-3 0 — R -
b.c
LRAT:

4 -30-1230
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Applications
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Applications: Erdés Discrepancy Conjecture

THEVERGE &

.LDBINISMMUP LONGFORM . REVIEWS . VIDEO. TECH. SCIENCE. ENTERTAINMENT. CARS. DESIGN. US&WORLD. FORUMS Q

COMMENTS l

TRENDING NOW 15v
Two dead after passenger self-immolates on Japanese bullet train NEW ARTICLES

A computer made a math proof the size
of Wikipedia, and humans can't check it

By valentina.palladino on February 19, 2014 02:56 pm

Erdds Discrepancy Conjecture was recently solved using SAT.

The conjecture states that there exists no infinite sequence of
-1, +1 such that for all d, k holds that (x; € {—1,+1}):

k
E Xid
i=1
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The DRAT proof was 13Gb and checked
<2 with the tool DRAT-trim [SAT14]




Applications: SAT Competitions

DRAT proof logging supported by all the top-tier solvers:
m e.g. Lingeling, MiniSAT, Glucose, and CryptoMiniSAT
m Proof logging is mandatory since SAT Competition 2013
m Formally-verified checking since SAT Competition 2017

Example run of DRAT-trim on Erd&s Discrepancy Proof

fud$ ./DRAT-trim EDP2_1161.cnf EDP2_1161.drat

finished parsing

detected empty clause; start verification via backward checking
23090 of 25142 clauses in core

5757105 of 6812396 lemmas in core using 469808891 resolution steps
16023 RAT lemmas in core; 5267754 redundant literals in core lemmas
VERIFIED

n oo o0o0o0
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Conclusions
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Many options in DRAT-trim

-h
-c

CORE

-a ACTIVE

DRAT
LRAT
TRACE
<lim>

usage: drat-trim [INPUT] [<PROOF>] [<option> ...]

print this command line option summary
prints the unsatisfiable core to CORE
prints the active clauses to ACTIVE
prints the core lemmas to DRAT

prints the core lemmas to LRAT

prints resolution graph to TRACE

time limit in seconds (default 20000)
default unit propagation (no core)
forward mode for UNSAT

more verbose output

show progress bar

optimize proof till fixpoint

compress core lemmas (emit binary proof)
force binary proof parse mode

suppress warning messages

exit after first warning

run in plain mode (no deletion)

rubenm@cmu. edu
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Conclusions

Verification of proofs of unsatisfiability is now mature:

m Practically all state-of-the-art SAT solvers support it;

m There exist formally-verified checkers in ACL2, Coq, Isabelle;
m Proofs exist of recently solved long-standing open problems;
m The SAT Competitions now require proof emission;

m The overhead of certification is reasonable.

Challenges:
m How to reduce the size of proofs on disk and in memory?
m What information can be mined from proofs?

m How to effectively deal with Gaussian elimination, cardinality
resolution, and pseudo-Boolean reasoning?
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