
Verifying Automated Reasoning Results

Ruben Martins

http://www.cs.cmu.edu/~rubenm/15816-f25/
https://github.com/marijnheule/proof-demo

Automated Reasoning and Satisfiability, October 1, 2025

rubenm@cmu.edu 1 / 39

http://www.cs.cmu.edu/~rubenm/15816-f25/
https://github.com/marijnheule/proof-demo

Outline

Introduction

Proof Checking

Proof Systems and Formats

Certified Checking

Applications

Conclusions

rubenm@cmu.edu 2 / 39

Introduction

Proof Checking

Proof Systems and Formats

Certified Checking

Applications

Conclusions

rubenm@cmu.edu 3 / 39

Motivation for Validating Proofs of Unsatisfiability

SAT solvers may have errors and only return yes/no.
Documented bugs in SAT, SMT, and QSAT solvers;

[Brummayer and Biere, 2009; Brummayer et al., 2010]

Competition winners have contradictory results
(HWMCC winners from 2011 and 2012)

Implementation errors often imply conceptual errors;
Proofs now mandatory for the annual SAT Competitions;
Mathematical results require a stronger justification than a
simple yes/no by a solver. UNSAT must be verifiable.

rubenm@cmu.edu 4 / 39

“The Largest Math Proof Ever”

rubenm@cmu.edu 5 / 39

Demo: Validating Results
git clone https://github.com/marijnheule/proof-demo

rubenm@cmu.edu 6 / 39

Introduction

Proof Checking

Proof Systems and Formats

Certified Checking

Applications

Conclusions

rubenm@cmu.edu 7 / 39

Resolution Rule and Resolution Chains

Resolution Rule

C∨ x x∨D
C∨D

Or equivalently: C∨D := (C∨ x) ▷◁ (x∨D)

Many SAT techniques can be simulated by resolution.

A resolution chain is a sequence of resolution steps.
The resolution steps are performed from left to right.

Example
(c) := (a∨ b∨ c) ▷◁ (a∨ b) ▷◁ (a∨ c)

(a∨ c) := (a∨ b) ▷◁ (a∨ c) ▷◁ (a∨ b∨ c)

The order of the clauses in the chain matter

rubenm@cmu.edu 8 / 39

Resolution Rule and Resolution Chains

Resolution Rule

C∨ x x∨D
C∨D

Or equivalently: C∨D := (C∨ x) ▷◁ (x∨D)

Many SAT techniques can be simulated by resolution.

A resolution chain is a sequence of resolution steps.
The resolution steps are performed from left to right.

Example
(c) := (a∨ b∨ c) ▷◁ (a∨ b) ▷◁ (a∨ c)

(a∨ c) := (a∨ b) ▷◁ (a∨ c) ▷◁ (a∨ b∨ c)

The order of the clauses in the chain matter

rubenm@cmu.edu 8 / 39

Resolution Proofs versus Clausal Proofs
Consider Γ := (b∨c)∧ (a∨c)∧ (a∨b)∧ (a∨b)∧ (a∨b)∧ (b∨c)

A resolution graph of Γ is:

b∨c a∨c a∨b a∨b a∨b b∨c

c

b
a

⊥

A resolution proof consists of all nodes and edges of the resolution graph
Graphs from SAT solvers have ∼ 400 incoming edges per node
Resolution proof logging can heavily increase memory usage (×100)

A clausal proof is a list of all nodes sorted by topological order
Clausal proofs are easy to emit and relatively small
Clausal proof checking requires to reconstruct the edges (costly)

rubenm@cmu.edu 9 / 39

Clausal Proof: Checker has to reconstruct resolution edges

c

b

a

⊥ b∨c a∨c a∨b a∨b a∨b b∨c

c

b
a

⊥

rubenm@cmu.edu 10 / 39

Clausal Proof: Checker has to reconstruct resolution edges

c

b

a

⊥ b∨c a∨c a∨b a∨b a∨b b∨c

c

b
a

⊥

rubenm@cmu.edu 10 / 39

Clausal Proof: Checker has to reconstruct resolution edges

c

b

a

⊥ b∨c a∨c a∨b a∨b a∨b b∨c

c

b
a

⊥

rubenm@cmu.edu 10 / 39

Clausal Proof: Checker has to reconstruct resolution edges

c

b

a

⊥ b∨c a∨c a∨b a∨b a∨b b∨c

c

b
a

⊥

rubenm@cmu.edu 10 / 39

Clausal Proof: Checker has to reconstruct resolution edges

c

b

a

⊥ b∨c a∨c a∨b a∨b a∨b b∨c

c

b
a

⊥

rubenm@cmu.edu 10 / 39

Reconstruct Edges Efficiently: Reverse Unit Propagation

Unit propagation (UP) satisfies unit clauses by assigning
their literal to true (until fixpoint or a conflict).
Let F be a formula. A clause C is implied by F via UP
(denoted by F ⊢

1
C) if UP on F∧ ¬C results in a conflict.

Example

Γ = (a∨ b∨ c)∧ (a∨ b∨ c)∧ (b∨ c∨ d)∧ (b∨ c∨ d) ∧

(a∨ c∨ d)∧ (a∨ c∨ d)∧ (a∨ b∨ d)∧ (a∨ b∨ d)

clause (a∨ b)

units a∧ b

(a∨ c∨ d) (b∨ c∨ d)

(a∨ b∨ c) (a∨ b∨ c)

(a∨ b)

rubenm@cmu.edu 11 / 39

Reconstruct Edges Efficiently: Reverse Unit Propagation

Unit propagation (UP) satisfies unit clauses by assigning
their literal to true (until fixpoint or a conflict).
Let F be a formula. A clause C is implied by F via UP
(denoted by F ⊢

1
C) if UP on F∧ ¬C results in a conflict.

Example

Γ = (a∨ b∨ c)∧ (a∨ b∨ c)∧ (b∨ c∨ d)∧ (b∨ c∨ d) ∧

(a∨ c∨ d)∧ (a∨ c∨ d)∧ (a∨ b∨ d)∧ (a∨ b∨ d)

clause (a∨ b)

units a∧ b

(a∨ c∨ d) (b∨ c∨ d)

(a∨ b∨ c) (a∨ b∨ c)

(a∨ b)

rubenm@cmu.edu 11 / 39

Reconstruct Edges Efficiently: Reverse Unit Propagation

Unit propagation (UP) satisfies unit clauses by assigning
their literal to true (until fixpoint or a conflict).
Let F be a formula. A clause C is implied by F via UP
(denoted by F ⊢

1
C) if UP on F∧ ¬C results in a conflict.

Example

Γ = (a∨ b∨ c)∧ (a∨ b∨ c)∧ (b∨ c∨ d)∧ (b∨ c∨ d) ∧

(a∨ c∨ d)∧ (a∨ c∨ d)∧ (a∨ b∨ d)∧ (a∨ b∨ d)

clause (a∨ b) (a∨ b∨ c)

units a∧ b c

(a∨ c∨ d) (b∨ c∨ d)

(a∨ b∨ c) (a∨ b∨ c)

(a∨ b)

rubenm@cmu.edu 11 / 39

Reconstruct Edges Efficiently: Reverse Unit Propagation

Unit propagation (UP) satisfies unit clauses by assigning
their literal to true (until fixpoint or a conflict).
Let F be a formula. A clause C is implied by F via UP
(denoted by F ⊢

1
C) if UP on F∧ ¬C results in a conflict.

Example

Γ = (a∨ b∨ c)∧ (a∨ b∨ c)∧ (b∨ c∨ d)∧ (b∨ c∨ d) ∧

(a∨ c∨ d)∧ (a∨ c∨ d)∧ (a∨ b∨ d)∧ (a∨ b∨ d)

clause (a∨ b) (a∨ b∨ c) (b∨ c∨ d)

units a∧ b c d

(a∨ c∨ d) (b∨ c∨ d)

(a∨ b∨ c) (a∨ b∨ c)

(a∨ b)

rubenm@cmu.edu 11 / 39

Reconstruct Edges Efficiently: Reverse Unit Propagation

Unit propagation (UP) satisfies unit clauses by assigning
their literal to true (until fixpoint or a conflict).
Let F be a formula. A clause C is implied by F via UP
(denoted by F ⊢

1
C) if UP on F∧ ¬C results in a conflict.

Example

Γ = (a∨ b∨ c)∧ (a∨ b∨ c)∧ (b∨ c∨ d)∧ (b∨ c∨ d) ∧

(a∨ c∨ d)∧ (a∨ c∨ d)∧ (a∨ b∨ d)∧ (a∨ b∨ d)

clause (a∨ b) (a∨ b∨ c) (b∨ c∨ d) (a∨ c∨ d)

units a∧ b c d ⊥

(a∨ c∨ d) (b∨ c∨ d)

(a∨ b∨ c) (a∨ b∨ c)

(a∨ b)

rubenm@cmu.edu 11 / 39

Reconstruct Edges Efficiently: Reverse Unit Propagation

Unit propagation (UP) satisfies unit clauses by assigning
their literal to true (until fixpoint or a conflict).
Let F be a formula. A clause C is implied by F via UP
(denoted by F ⊢

1
C) if UP on F∧ ¬C results in a conflict.

Example

Γ = (a∨ b∨ c)∧ (a∨ b∨ c)∧ (b∨ c∨ d)∧ (b∨ c∨ d) ∧

(a∨ c∨ d)∧ (a∨ c∨ d)∧ (a∨ b∨ d)∧ (a∨ b∨ d)

clause (a∨ b) (a∨ b∨ c) (b∨ c∨ d) (a∨ c∨ d)

units a∧ b c d ⊥

(a∨ c∨ d) (b∨ c∨ d)

(a∨ b∨ c) (a∨ b∨ c)

(a∨ b)
rubenm@cmu.edu 11 / 39

Forward vs Backward Proof Checking

original formula

core

backward checking

forward checking

⊥

rubenm@cmu.edu 12 / 39

Improvement I: Backwards Checking

Goldberg and Novikov proposed checking the
refutation backwards [DATE 2003]:

start by validating the empty clause;
mark all lemmas using conflict analysis;
only validate marked lemmas.

Advantage: validate fewer lemmas.

Disadvantage: more complex.

c

b

a

⊥

rubenm@cmu.edu 13 / 39

Improvement II: Clause Deletion

We proposed to extend clausal proofs with
deletion information [STVR 2014]:

clause deletion is crucial for efficient solving;
emit learning and deletion information;
proof size might double;
checking speed can be reduced significantly.

Clause deletion can be combined with backwards
checking [FMCAD 2013]:

ignore deleted clauses earlier in the proof;
optimize clause deletion for trimmed proofs.

b

b∨c

a

a∨b

c

⊥

rubenm@cmu.edu 14 / 39

Improvement III: Core-first Unit Propagation

We propose a new unit propagation variant:
1. propagate using clauses already in the core;
2. examine non-core clauses only at fixpoint;
3. if a non-core unit clause is found, goto 1);
4. otherwise terminate.

The variant, called Core-first Unit Propagation,
can reduce checking costs considerably.

Fast propagation in a checker is different
than fast propagation in a SAT solver. a∨b a∨b b∨c

b

⊥

Also, the resulting core and proof are smaller

rubenm@cmu.edu 15 / 39

Checking: Backwards + Core-first + Deletion

b

b∨c

a

a∨b

c

⊥ b∨c a∨c a∨b a∨b a∨b b∨c

c

b

a

⊥

Core-first unit propagation results in smaller cores and proofs

rubenm@cmu.edu 16 / 39

Checking: Backwards + Core-first + Deletion

b

b∨c

a

a∨b

c

⊥ a∨c a∨b a∨b b∨c

c

b

a

⊥

Core-first unit propagation results in smaller cores and proofs

rubenm@cmu.edu 16 / 39

Checking: Backwards + Core-first + Deletion

b

b∨c

a

a∨b

c

⊥ a∨c a∨b a∨b b∨c

c

b

a

⊥

Core-first unit propagation results in smaller cores and proofs

rubenm@cmu.edu 16 / 39

Checking: Backwards + Core-first + Deletion

b

b∨c

a

a∨b

c

⊥ a∨c a∨b a∨b b∨c

c

b

a

⊥

Core-first unit propagation results in smaller cores and proofs

rubenm@cmu.edu 16 / 39

Checking: Backwards + Core-first + Deletion

b

b∨c

a

a∨b

c

⊥ a∨c a∨b a∨b a∨b b∨c

c

b

a

⊥

Core-first unit propagation results in smaller cores and proofs

rubenm@cmu.edu 16 / 39

Checking: Backwards + Core-first + Deletion

b

b∨c

a

a∨b

c

⊥ a∨c a∨b a∨b a∨b b∨c

c

b

a

⊥

Core-first unit propagation results in smaller cores and proofs

rubenm@cmu.edu 16 / 39

Checking: Backwards + Core-first + Deletion

b

b∨c

a

a∨b

c

⊥ b∨c a∨c a∨b a∨b a∨b b∨c

c

b

a

⊥

Core-first unit propagation results in smaller cores and proofs

rubenm@cmu.edu 16 / 39

Checking: Backwards + Core-first + Deletion

b

b∨c

a

a∨b

c

⊥ b∨c a∨c a∨b a∨b a∨b b∨c

c

b

a

⊥

Core-first unit propagation results in smaller cores and proofs

rubenm@cmu.edu 16 / 39

DRAT (Deletion Resolution Asymmetric Tautology)
Drawbacks of resolution:

For many seemingly simple formulas, there are only resolution
proofs of exponential size.

State-of-the-art solving techniques are not succinctly expressible.

A clause (C∨ x) is a resolution asymmetric tautology (RAT) on x

w.r.t. a CNF formula Γ if for every clause (D∨ x) ∈ Γ , the
resolvent C∨D is implied by Γ via unit-propagation, i.e., Γ ⊢

1
C∨D.

Popular example of a clausal proof system: DRAT

DRAT allows the addition of RATs to a formula.
• RATs are not necessarily implied by the formula.

• But RATs are redundant: their addition preserves satisfiability.

• Clause deletion may introduce clause addition options (interference)

rubenm@cmu.edu 17 / 39

DRAT Example

A clause (C∨ x) is a resolution asymmetric tautology (RAT) on x

w.r.t. a CNF formula Γ if for every clause (D∨ x) ∈ Γ , the
resolvent C∨D is implied by Γ via unit-propagation, i.e., Γ ⊢

1
C∨D.

b∨c a∨b a∨b

c
b

rubenm@cmu.edu 18 / 39

DRAT Example

A clause (C∨ x) is a resolution asymmetric tautology (RAT) on x

w.r.t. a CNF formula Γ if for every clause (D∨ x) ∈ Γ , the
resolvent C∨D is implied by Γ via unit-propagation, i.e., Γ ⊢

1
C∨D.

b∨c a∨b a∨b

c
b

rubenm@cmu.edu 18 / 39

DRAT Example

A clause (C∨ x) is a resolution asymmetric tautology (RAT) on x

w.r.t. a CNF formula Γ if for every clause (D∨ x) ∈ Γ , the
resolvent C∨D is implied by Γ via unit-propagation, i.e., Γ ⊢

1
C∨D.

b∨c a∨b a∨b

c
b

rubenm@cmu.edu 18 / 39

Demo: DRAT step
git clone https://github.com/marijnheule/proof-demo

rubenm@cmu.edu 19 / 39

Introduction

Proof Checking

Proof Systems and Formats

Certified Checking

Applications

Conclusions

rubenm@cmu.edu 20 / 39

Clausal Proof System [Järvisalo, Heule, and Biere 2012]

Γ

Learn: add a clause
* Preserve satisfiability

Forget: remove a clause
* Preserve unsatisfiablity

Satisfiable
* Forget last clause

Unsatisfiable
* Learn empty clause

init

rubenm@cmu.edu 21 / 39

Ideal Properties of a Proof System for SAT Solvers

Easy to Emit

Compact

Checked Efficiently

Expressive

Resolution Proofs
Zhang and Malik, 2003
Van Gelder, 2008; Biere, 2008

Clausal Proofs
Goldberg and Novikov, 2003
Van Gelder, 2008

Clausal proofs + deletion
Heule, Hunt, Jr., Wetzler [STVR’14]

Optimized clausal proof checker
Heule, Hunt, Jr., and Wetzler [FMCAD’13]

Clausal RAT proofs
Heule, Hunt, Jr., Wetzler [CADE’13]

DRAT proofs (RAT + deletion)
Wetzler, Heule, Hunt, Jr. [SAT’14]

rubenm@cmu.edu 22 / 39

Ideal Properties of a Proof System for SAT Solvers

Easy to Emit

Compact

Checked Efficiently

Expressive

Verified

Resolution Proofs
Zhang and Malik, 2003
Van Gelder, 2008; Biere, 2008

Clausal Proofs
Goldberg and Novikov, 2003
Van Gelder, 2008

Clausal proofs + deletion
Heule, Hunt, Jr., Wetzler [STVR’14]

Optimized clausal proof checker
Heule, Hunt, Jr., and Wetzler [FMCAD’13]

Clausal RAT proofs
Heule, Hunt, Jr., Wetzler [CADE’13]

DRAT proofs (RAT + deletion)
Wetzler, Heule, Hunt, Jr. [SAT’14]

rubenm@cmu.edu 22 / 39

Proof Formats: The Input Format DIMACS

E := (b∨ c)∧ (a∨ c)∧ (a∨b)∧ (a∨b)∧ (a∨b)∧ (b∨ c)

The input format of SAT solvers is known as DIMACS

header starts with p cnf followed by the
number of variables (n) and the number
of clauses (m)
the next m lines represent the clauses
positive literals are positive numbers
negative literals are negative numbers
clauses are terminated with a 0

p cnf 3 6
-2 3 0
1 3 0

-1 2 0
-1 -2 0
1 -2 0
2 -3 0

Most proof formats use a similar syntax.

rubenm@cmu.edu 23 / 39

Proof Formats: TraceCheck Overview
TraceCheck is the most popular resolution-style format.

E := (b∨ c)∧ (a∨ c)∧ (a∨ b)∧ (a∨ b)∧ (a∨ b)∧ (b∨ c)

TraceCheck is readable and resolution chains make it relatively
compact

⟨trace⟩ = {⟨clause⟩}
⟨clause⟩ = ⟨pos⟩⟨literals⟩⟨clsidx⟩
⟨literals⟩ = "∗" | {⟨lit⟩} "0"
⟨clsidx⟩ = {⟨pos⟩} "0"

⟨lit⟩ = ⟨pos⟩ | ⟨neg⟩
⟨pos⟩ = "1" | "2" | · · · | ⟨maxidx⟩
⟨neg⟩ = "−"⟨pos⟩

1 -2 3 0 0
2 1 3 0 0
3 -1 2 0 0
4 -1 -2 0 0
5 1 -2 0 0
6 2 -3 0 0
7 -2 0 4 5 0
8 3 0 1 2 3 0
9 0 7 8 6 0

rubenm@cmu.edu 24 / 39

Proof Formats: TraceCheck Examples

TraceCheck is the most popular resolution-style format.

E := (b∨ c)∧ (a∨ c)∧ (a∨ b)∧ (a∨ b)∧ (a∨ b)∧ (b∨ c)

TraceCheck is readable and resolution chains make it relatively
compact

The clauses 1 to 6 are input clauses
Clause 7 is the resolvent of 4 and 5:
(b) := (a∨ b) ▷◁ (a∨ b)

Clause 8 is the resolvent of 1, 2 and 3:
(c) := (b∨ c) ▷◁ (a∨ b) ▷◁ (a∨ c)

NB: the antecedents are swapped!
Clause 9 is the resolvent of 6, 7 and 8:
⊥ := (b) ▷◁ (c) ▷◁ (b∨ c)

1 -2 3 0 0
2 1 3 0 0
3 -1 2 0 0
4 -1 -2 0 0
5 1 -2 0 0
6 2 -3 0 0
7 -2 0 4 5 0
8 3 0 1 2 3 0
9 0 7 8 6 0

rubenm@cmu.edu 25 / 39

Proof Formats: TraceCheck Don’t Cares

Support for unsorted clauses, unsorted antecedents and omitted literals.
Clauses are not required to be sorted based on the clause index

8 3 0 1 2 3 0
7 -2 0 4 5 0

≡ 7 -2 0 4 5 0
8 3 0 1 2 3 0

The antecedents of a clause can be in arbitrary order

7 -2 0 5 4 0
8 3 0 3 1 2 0

≡ 7 -2 0 4 5 0
8 3 0 1 2 3 0

For learned clauses, the literals can be omitted using *

7 * 5 4 0
8 * 3 1 2 0

≡ 7 -2 0 4 5 0
8 3 0 1 2 3 0

rubenm@cmu.edu 26 / 39

Proof Formats: Clausal Proofs

RUP and extensions is the most popular clausal-style format.

E := (b∨ c)∧ (a∨ c)∧ (a∨ b)∧ (a∨ b)∧ (a∨ b)∧ (b∨ c)

RUP is much more compact than LRAT because it lacks hints
formula not included as well

⟨proof⟩ = {⟨lemma⟩}
⟨lemma⟩ = ⟨delete⟩{⟨lit⟩} "0"
⟨delete⟩ = " " | "d"

⟨lit⟩ = ⟨pos⟩ | ⟨neg⟩
⟨pos⟩ = "1" | "2" | · · · | ⟨maxidx⟩
⟨neg⟩ = "−"⟨pos⟩

-2 0
3 0
0

E∧ (b) ⊢
1
⊥

E∧ (b)∧ (c) ⊢
1
⊥

E∧ (b)∧ (c) ⊢
1
⊥

rubenm@cmu.edu 27 / 39

Proof Formats: Binary Formats

There are various cheap compression techniques to shrink proofs:
Use 4 bytes per literal instead storing the ascii characters
Sort literals in clauses and store the delta between literals
Use a variable byte encoding for literals

encoding example (prefix pivot lit1...litk−1 end) #bytes

ascii d 6278 -3425 -42311 9173 22754 0\n 33
sascii d 6278 -3425 9173 22754 -42311 0\n 33
4byte 64 0c310000 c31a0000 8f4a0100 aa470000 c4b10000 00000000 25

s4byte 64 0c310000 c31a0000 aa470000 c4b10000 8f4a0100 00000000 25
ds4byte 64 0c310000 c31a0000 e82c0000 1a6a0000 cb980000 00000000 25

vbyte 64 8c62c335 8f9505aa 8f01c4e3 0200 15
svbyte 64 8c62c335 aa8f01c4 e3028f95 0500 15

dsvbyte 64 8c62c335 e8599ad4 01cbb102 00 14

rubenm@cmu.edu 28 / 39

Proof Formats: Beyond Checking

Clausal Proof checkers can produce many additional results:

Clausal core, e.g. useful for MUS computation, MaxSAT
DRAT-trim option: -c CORE

Extract a resolution proof, e.g. useful for interpolation
DRAT-trim option: -r RESPROOF

Proof minimization: removing redundant lemmas and literals
DRAT-trim option: -l OPTPROOF

rubenm@cmu.edu 29 / 39

Demo: Proof Mining
git clone https://github.com/marijnheule/proof-demo

rubenm@cmu.edu 30 / 39

Introduction

Proof Checking

Proof Systems and Formats

Certified Checking

Applications

Conclusions

rubenm@cmu.edu 31 / 39

Certified Checking: Tool Chain

1: SAT solver 2: DRAT-trim 3: certified checker

formula

original proof optimized proof

The proof of the Pythagorean Triples problem is almost 200
terabytes (DRAT) and has been validated in 16,000 CPU hours.

This proof has been certified using formally-verified checkers.

rubenm@cmu.edu 32 / 39

Certified Checking: LRAT format
The LRAT format is syntactically similar to TraceCheck, however:

The formula in not included in the proof
Clause deletion support: ⟨pos⟩‘‘ d "⟨clsidx⟩
Can express a RAT step: use negative cls to denote resolvent

DIMACS:
p cnf 3 3
-2 3 0
-1 -2 0
1 -2 0

DRAT:
-3 0

LRAT:
4 -3 0 -1 2 3 0

b∨c a∨b a∨b

c
b

rubenm@cmu.edu 33 / 39

Certified Checking: LRAT format
The LRAT format is syntactically similar to TraceCheck, however:

The formula in not included in the proof
Clause deletion support: ⟨pos⟩‘‘ d "⟨clsidx⟩
Can express a RAT step: use negative cls to denote resolvent

DIMACS:
p cnf 3 3
-2 3 0
-1 -2 0
1 -2 0

DRAT:
-3 0

LRAT:
4 -3 0 -1 2 3 0

b∨c a∨b a∨b

c
b

rubenm@cmu.edu 33 / 39

Certified Checking: LRAT format
The LRAT format is syntactically similar to TraceCheck, however:

The formula in not included in the proof
Clause deletion support: ⟨pos⟩‘‘ d "⟨clsidx⟩
Can express a RAT step: use negative cls to denote resolvent

DIMACS:
p cnf 3 3
-2 3 0
-1 -2 0
1 -2 0

DRAT:
-3 0

LRAT:
4 -3 0 -1 2 3 0

b∨c a∨b a∨b

c
b

rubenm@cmu.edu 33 / 39

Introduction

Proof Checking

Proof Systems and Formats

Certified Checking

Applications

Conclusions

rubenm@cmu.edu 34 / 39

Applications: Erdős Discrepancy Conjecture

Erdős Discrepancy Conjecture was recently solved using SAT.

The conjecture states that there exists no infinite sequence of
-1, +1 such that for all d, k holds that (xi ∈ {−1,+1}):∣∣∣∣∣

k∑
i=1

xid

∣∣∣∣∣ ≤ 2

The DRAT proof was 13Gb and checked
with the tool DRAT-trim [SAT14]

rubenm@cmu.edu 35 / 39

Applications: Erdős Discrepancy Conjecture

Erdős Discrepancy Conjecture was recently solved using SAT.

The conjecture states that there exists no infinite sequence of
-1, +1 such that for all d, k holds that (xi ∈ {−1,+1}):∣∣∣∣∣

k∑
i=1

xid

∣∣∣∣∣ ≤ 2
The DRAT proof was 13Gb and checked

with the tool DRAT-trim [SAT14]

rubenm@cmu.edu 35 / 39

Applications: SAT Competitions

DRAT proof logging supported by all the top-tier solvers:
e.g. Lingeling, MiniSAT, Glucose, and CryptoMiniSAT
Proof logging is mandatory since SAT Competition 2013
Formally-verified checking since SAT Competition 2017

Example run of DRAT-trim on Erdős Discrepancy Proof
fud$./DRAT-trim EDP2_1161.cnf EDP2_1161.drat
c finished parsing
c detected empty clause; start verification via backward checking
c 23090 of 25142 clauses in core
c 5757105 of 6812396 lemmas in core using 469808891 resolution steps
c 16023 RAT lemmas in core; 5267754 redundant literals in core lemmas
s VERIFIED

rubenm@cmu.edu 36 / 39

Introduction

Proof Checking

Proof Systems and Formats

Certified Checking

Applications

Conclusions

rubenm@cmu.edu 37 / 39

Many options in DRAT-trim

usage: drat-trim [INPUT] [<PROOF>] [<option> ...]
-h print this command line option summary
-c CORE prints the unsatisfiable core to CORE
-a ACTIVE prints the active clauses to ACTIVE
-l DRAT prints the core lemmas to DRAT
-L LRAT prints the core lemmas to LRAT
-r TRACE prints resolution graph to TRACE
-t <lim> time limit in seconds (default 20000)
-u default unit propagation (no core)
-f forward mode for UNSAT
-v more verbose output
-b show progress bar
-O optimize proof till fixpoint
-C compress core lemmas (emit binary proof)
-i force binary proof parse mode
-w suppress warning messages
-W exit after first warning
-p run in plain mode (no deletion)

rubenm@cmu.edu 38 / 39

Conclusions

Verification of proofs of unsatisfiability is now mature:
Practically all state-of-the-art SAT solvers support it;
There exist formally-verified checkers in ACL2, Coq, Isabelle;
Proofs exist of recently solved long-standing open problems;
The SAT Competitions now require proof emission;
The overhead of certification is reasonable.

Challenges:
How to reduce the size of proofs on disk and in memory?
What information can be mined from proofs?
How to effectively deal with Gaussian elimination, cardinality
resolution, and pseudo-Boolean reasoning?

rubenm@cmu.edu 39 / 39

	Introduction
	Proof Checking
	Proof Systems and Formats
	Certified Checking
	Applications
	Conclusions

