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Come to my Office Hours!!
(CIC 2206, Wednesdays 11am – noon)
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- Slides inspire by previous presentations by Sanjit Seshia, 
Clark Barrett, Andrew Reynolds, Leonardo de Moura, and 

Alberto Oliveras 
- SMT solving is a pretty broad field, which is continuing to 

evolve. This presentation is only a taste
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1. Introduction
2. Defining SMT
3. Eager Approach
4. Lazy Approach
5. Universal Quantifiers
6. Future of SMT solving



This class so far: Boolean SAT solving
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C. Barrett & S. A. Seshia ICCAD 2009 Tutorial 5
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Satisfiability Modulo Theories
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C. Barrett & S. A. Seshia ICCAD 2009 Tutorial 6
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What is SMT?
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● SAT: use propositional logic as the formalization language
+ high degree of efficiency
- expressive (all NP-complete) but involved encodings

● SMT: propositional logic + domain-specific reasoning (multi-sorted 
first-order logic)

+ improves the expressivity
- certain (but acceptable) loss of efficiency

Goal: Introduce SMT solving and its main techniques

𝑝1 ∨ (𝑝2 ∧ 𝑝3)

𝑥 = 𝑦 ∨ (𝑥 + 2𝑧 ≥ 1 ∧ 𝑓 𝑥 = 𝑤)



History Lesson: trying to solve first-order logic
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1936: Turings
undecidability 
result

2001: SAT 
revolution: Chaff

2002: First SMT 
solvers

1928: Hilbert 
Entscheidungs-
problem

1971: Cook-Levin 
theorem. SAT is NP-
hard

First order logic is 

unsolvable

Propositional logic is 

hard

2022: > 1 billion SMT 
queries a day 

1994: Intel $475M 
Pentium bug

We should formally 

verify stuff

1961: DPLL 
algorithm for 
propositional logic
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- How did we get here?
- “Just because a problem is undecidable, it doesn’t stop being important”
- Modelling solvers after the problems we want to solve
- Combination of multiple approaches: eager and lazy

- Where do we go next?
- Find the right problems
- A trillion SMT queries a day?

(roughly the same number as ChatGPT)



Many Applications
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Policy Access Analyzer

Program Verification

Model checking

Hardware Verification

…

SMT solvers
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Formally: multi-sorted first-order logic
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● Can define a set of sorts 𝑆 for example  𝑆 = {𝐵𝑜𝑜𝑙, 𝐼𝑛𝑡, 𝑅𝑒𝑎𝑙, 𝑆𝑡𝑟𝑖𝑛𝑔}

○ Can have user-defined (uninterpreted) sorts
● A signature Σ with:

○ Function symbols Σ𝐹 = {𝑓 ∶ 𝜎1 ×⋯× 𝜎𝑙→ 𝜎,… }

○ Predicate Symbols Σ𝑅 = {𝑃 ∶ 𝜎1 ×⋯ × 𝜎𝑘}

○ 𝜎𝑖 ∈ 𝑆

● Function symbols with arity 0 are called constants
● A set of variables 𝑉
● From these build up a set of terms, atomic formulas, and formulas
● A theory is a set of formulas closed under logical deduction
● 𝐵𝑜𝑜𝑙 and = are part of all theories



Example: Uninterpreted Functions (UF)

13

● Also called the “free theory”
● Because function symbols can take 

any meaning
● Only property required is 

congruence: that functions map 
identical arguments to identical 
values i.e.,  x = y => f(x) = f(y)

● 𝑆 = {𝐵𝑜𝑜𝑙, 𝑇, … } where T is a user 
defined sorts

● Σ𝐹 = {𝑓, 𝑔,… } where f, g are user 
defined functions

(declare-sort T 0)

(declare-fun x () T)

(declare-fun f (T) T)

(assert (= (f (f (f x))) x))

(assert (= (f (f (f (f (f x))))) x))

(assert (not (= (f x) x))

This is SMT syntax. Sorry!



Example: Linear Integer Arithmetic
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● 𝑆 = {𝐵𝑜𝑜𝑙, 𝐼𝑛𝑡}

● Σ𝐹 = {0, 1, +, −}

● Σ𝑃 = {≤,=}

● Can express larger integers 
and ≥,< ,>

● Boolean combination of 
linear constraints of the form

(a1 x1 + a2 x2 + … + an xn ~ b)
● There are also nonlinear and 

real arithmetic theories

(declare-fun x () Int)

(declare-fun y () Int)

(declare-fun z () Int)

(assert (or (<= (+ x y) 10) 

(= x z))

(assert (<= (- (+ x x) y) 5))



Example: (Real) Integer Difference Logic
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● 𝑆 = {𝐵𝑜𝑜𝑙, 𝐼𝑛𝑡}

● Σ𝐹 = {0, 1, −}

● Σ𝑃 = {≤,=}
● Boolean combination of 

linear constraints of the form
xi - xj ~ cij or      xi ~ ci

● Applications
○ Processor datapath

verification
○ Job shop scheduling / 

real-time systems
○ Timing verification for 

circuits

(declare-fun x () Int)

(declare-fun y () Int)

(declare-fun z () Int)

(assert (or (>= (- x y) 10) 

(= x 2))

(assert (<= (- x z) 5))



Example: Bitvectors
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● 𝑆 = 𝐵𝑜𝑜𝑙, 𝐵𝑉1, 𝐵𝑉2, 𝐵𝑉3…

● Fixed width data words
○ Can model int, short, long, .

● Arithmetic operations
○ add/subtract/multiply/divi

de & comparisons
○ Two’s complement and 

unsigned operations
● Bit-wise logical operations

○ E.g., and/or/xor, 
shift/extract and equality

● Boolean connectives

(declare-fun x () (_ BitVec 8))

(declare-fun y () (_ BitVec 8))

(declare-fun z () (_ BitVec 8))

(assert (= x #b10101010))

(assert (= z (bvand x y))

(assert (= (bvadd x y) #xff))



Example: Arrays
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● Two interpreted functions: select 
and store

select(A,i) ->Read from A at index i
store(A,i,d)-> Write d to A at index i

● Two main axioms:

○ for i  j
● One other axiom: 

(∀𝑖. 𝑠𝑒𝑙𝑒𝑐𝑡 𝐴, 𝑖 = 𝑠𝑒𝑙𝑒𝑐𝑡(𝐵, 𝑖)) →

𝐴 = 𝐵

(declare-fun arr () (Array Int Int))

(declare-fun i () Int

(declare-fun j () Int)

(assert (= (select arr i) 42))

(assert (= (select (store arr j 10) i) 10))

(assert (not (= i j)))
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Others

- Strings
- Floating Points
- Algebraic Datatypes
- Higher Order Functions 
- Finite Fields
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2. Defining SMT
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4. Lazy Approach
5. Universal Quantifiers
6. Future of SMT solving
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Have to combine theory reasoning with SAT solving

Two main approaches:

1. “Eager” 
- translate into an equisatisfiable propositional formula
- feed it to any SAT solver

2. “Lazy” 
- abstract the input formula to a propositional one
- feed it to a (DPLL-based) SAT solver
- use a theory decision procedure to refine the formula and guide the SAT solver



Eager Approach to SMT
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C. Barrett & S. A. Seshia ICCAD 2009 Tutorial 21

Key Ideas:
Small-domain encoding
Constrain model search
Rewrite rules
Abstraction-based methods (eager + lazy)

Example Solvers:
NFA2SAT, Bitwuzla, Algaroba, UCLID, STP 
…

Input Formula

Boolean  Formula

satisfiable unsatisfiable

Satisfiability-preserving 
Boolean Encoder

SAT Solver

EAGER ENCODING

SAT Solver involved in 
Theory Reasoning



Ackerman’s Encoding: UF to SAT
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f(x) fx

f(y) fy

x = y fx = fy

(declare-sort T 0)

(declare-fun x () T)

(declare-fun f (T) T)

(assert (= (f (f (f x))) x))

(assert (= (f (f (f (f (f x))))) x))

(assert (not (= (f x) x))

What is the Ackerman encoding of this?

For each pair of function 
applications add:



Another example: bitvectors
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Can we bit-blast this to SAT?

(declare-fun x () (_ BitVec 8))

(declare-fun y () (_ BitVec 8))

(declare-fun z () (_ BitVec 8))

(assert (= x #b10101010))

(assert (= z (bvand x y))
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Lazy SMT solving: often called CDCL(T)
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SAT 
solver

UF

Arrays
Arithmetic

Bitvectors

assertions

Conflicts

Lemmas

Propagations

Explanations



Lazy SMT solving: often called CDCL(T)
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SAT 
solver

UF

Arrays
Arithmetic

Bitvectors

assertions

Explanations

Conflicts

Lemmas

Propagations

SAT Solver
• Only sees Boolean skeleton
of problem
• Builds partial model by
assigning truth values to
literals
• Sends these literals to the
theory solver as assertions

Theory Solvers
• Decide T -satisfiability of a 
conjunction of theory literals
• Incremental
• Backtrackable
• Conflict Generation
• Theory Propagation



Congruence Closure Algorithm (for UF)
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𝑥

𝑓(𝑥)

𝑓2(𝑥)

𝑓3(𝑥)

𝑓4(𝑥)

𝑓5(𝑥)

Notice 𝑥 =
𝑓2(𝑥)

Hence 𝑓(𝑥) =
𝑓3(𝑥)

We learn a conflict clause and backtrack!

Conflict

𝑥 = 𝑓(𝑓(𝑓 𝑥)) ∧
𝑥 = 𝑓(𝑓(𝑓(𝑓(𝑓 𝑥)))) ∧

𝑥 ≠ 𝑓(𝑥)



More examples
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1. 𝑓 𝑓 𝑎, 𝑏 , 𝑏 ≠ 𝑎 ∧ 𝑓 𝑎, 𝑏 = 𝑎

2. 𝑓 𝑎, 𝑎 = 𝑏 ∧ 𝑔 𝑐, 𝑎 = 𝑐 ∧ 𝑔 𝑐, 𝑓 𝑎, 𝑎 =

𝑓(𝑔 𝑐, 𝑎 , 𝑔 𝑐, 𝑎 ) ∧ 𝑓 𝑐, 𝑐 ≠ 𝑔(𝑐, 𝑏)

3. 𝑓 𝑎, 𝑎 = 𝑏 ∧ 𝑔 𝑐, 𝑎 = 𝑐 ∧ 𝑔 𝑐, 𝑓 𝑎, 𝑎 =

𝑓 𝑔 𝑐, 𝑎 , 𝑔 𝑐, 𝑎 ∧ 𝑓 ℎ 𝑑 , 𝑑 =

𝑓 𝑔 𝑎, 𝑐 , 𝑔 𝑐, 𝑎 ∧ ℎ 𝑎 = ℎ(𝑐)



Putting it all together: lazy SMT solving
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SAT 
solverUF

[(𝑥 = 𝑓(𝑓(𝑓 𝑥)) ∧ 𝑥 = 𝑓(𝑓(𝑓(𝑓 𝑓 𝑥)))) ∧ 𝑥 ≠ 𝑓 𝑥

∨ (𝑓 𝑓 𝑎, 𝑏 , 𝑏 ≠ 𝑎 ∧ 𝑓 𝑎, 𝑏 = 𝑎)]

∧ [(𝑥 ≠ 𝑓(𝑓(𝑓 𝑥)) ∨ 𝑥 ≠ 𝑓(𝑓(𝑓(𝑓 𝑓 𝑥)))) ∨ 𝑥 = 𝑓 𝑥 ]

(𝑥 = 𝑓(𝑓(𝑓 𝑥)) ∧ 𝑥 = 𝑓(𝑓(𝑓(𝑓 𝑓 𝑥)))) ∧ 𝑥 ≠ 𝑓 𝑥

Conflict!

(𝑓 𝑓 𝑎, 𝑏 , 𝑏 ≠ 𝑎 ∧ 𝑓 𝑎, 𝑏 = 𝑎)

∧ [(𝑓 𝑓 𝑎, 𝑏 , 𝑏 = 𝑎 ∨ 𝑓 𝑎, 𝑏 ≠ 𝑎]

UNSAT!
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FOL is undecidable: because of quantifiers
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○ How do we reason about”forall” statements?
○ Could enumerate all cases?
○ Two smarter approaches?

■ Model-based quantifier instantiation
■ Trigger/Pattern based quantifier instantiation

QF Solver

SAT 
solver

UF
∀ Solver

UNSAT

SAT



Model-based quantifier instantiation
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○ Idea: Instantiate quantifiers based on (complete) QF models 
○ Complete for certain fragments, e.g. EPR, essentially uninterpreted
○ Can be useful for answering “sat”

SAT 
solver

UF
𝑀𝐵𝑄𝐼

Finite Model

Instantiations

QF Solver

Example: 𝑓 𝑡 ∧ 𝑔 𝑠 ∧ [∀𝑥. ¬𝑓 𝑥 ∨ ¬𝑔 𝑥 ]



Pattern/Trigger based quantifier instantiation
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○ Idea: Instantiations found by pattern matching 
○ Implemented in early SMT solvers (e.g. simplify) as well as z3, cvc5
○ Key applications: Software verification (dafny, Verus)

SAT 
solver

UF
𝑀𝐵𝑄𝐼

Egraph

(datastructure of terms)

Instantiations

QF Solver

Example: 𝑓 𝑡 ∧ 𝑔 𝑠 ∧ [∀𝑥. 𝑓 𝑔 𝑥 ∶ 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑔(𝑥)] Instantiation: 𝑓(𝑔 𝑠 )



Pattern-based Instantiations Example (from Verus)
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(assert

(not (=> (and (is_member x (set_union s1 s2))

(not (is_member x s1)))

(is_member x s2))))

We have the assertion

Trying to instantiate quantifier

Adding the instantiations:

(= (is_member x (set_union s1 s2))

(Set.contains (set_union s1 s2) x)

(= (is_member x s1) (Set.contains s1 x))

(= (is_member x s2) (Set.contains s2 x))

(forall ((y Poly) (set Poly)) (!

(= (is_member y set) (Set.contains set y))

:pattern ((is_member y set)))))



Other quantifier instantiation techniques
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○ Enumerative instantiation
○ Counter-example guided instantiation
○ Syntax Guided instantiation
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Where else are SMT solvers useful?

- Disclaimer: SMT landscape is vast and I only gave you 
a brief taste of it

- Recent Applications in cryptography, programming 
languages, systems, and machine learning
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Programming Languages: A Hammer for Lean

- Lean is a programming 
language/interactive 
theorem prover

- Calls tactics
- Two new tactics, lean-auto 

and lean-smt call SMT 
solvers to prove Lean goals

lean-smt: An SMT tactic for discharging proof goals in Lean (2025)
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Systems: Reliability/Instability of SMT solvers

- SMT solvers used by systems with O(1 billion) queries
- They need to be robust/reliable

Mariposa: Measuring SMT Instability in Automated Program Verification (2023)
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Mathematics: Enumerating matrices

- Combining a SAT 
solver with a 
computer algebra 
system

- Very good with 
enumerating 
matrices of certain 
properties

A SAT+CAS Method for Enumerating Williamson Matrices of Even Order
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Machine Learning: Verifying Neural Networks

- Verifying Neural Networks—can mostly be modeled as a 
linear function

- Special decision procedure to deal with ReLU

Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks (2017)
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Cryptography: Satisfiability modulo Finite Fields

Used to prove the correctness of a Zero Knowledge Proof compiler!

Satisfiability modulo Finite Fields (2023)
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How can SMT solvers be applied to work that you do?
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Come to my Office Hours!!
(CIC 2206, Wednesdays 11am – noon)
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