Satisfiability Modulo Theories (SMT) solving

Amar Shah

Come to my Office Hours!! (CIC 2206, Wednesdays 11am – noon)

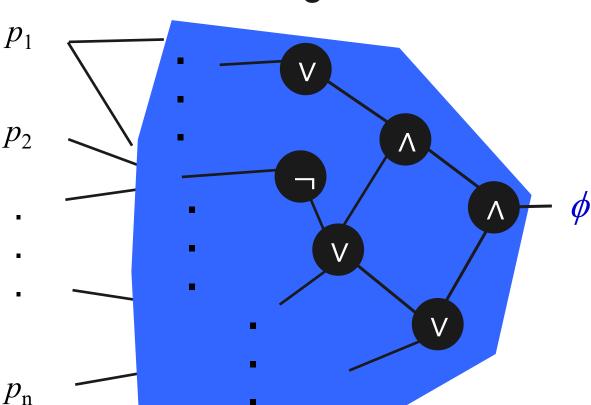
- Slides inspire by previous presentations by Sanjit Seshia,
 Clark Barrett, Andrew Reynolds, Leonardo de Moura, and
 Alberto Oliveras
- SMT solving is a pretty broad field, which is continuing to evolve. This presentation is only a taste

1. Introduction

- 2. Defining SMT
- 3. Eager Approach
- 4. Lazy Approach
- 5. Universal Quantifiers
- 6. Future of SMT solving

This class so far: Boolean SAT solving

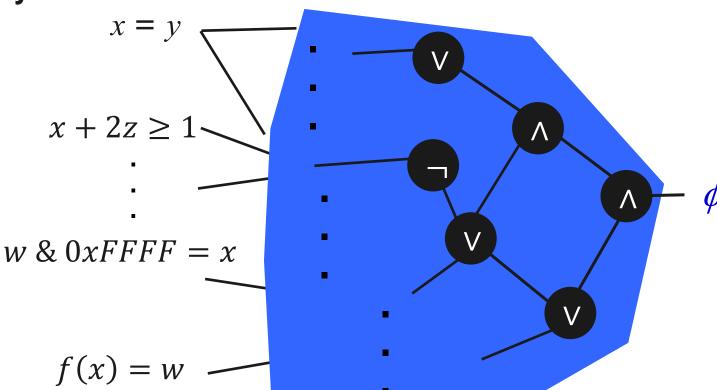
Is there an assignment to the $p_1, p_2, ..., p_n$ variables such that ϕ evaluates to true?



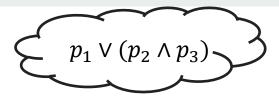
Satisfiability Modulo Theories

Is there an assignment to f, w, x, y, z such that ϕ evaluates to true?

i.e. is the formula satisfiable?



What is SMT?



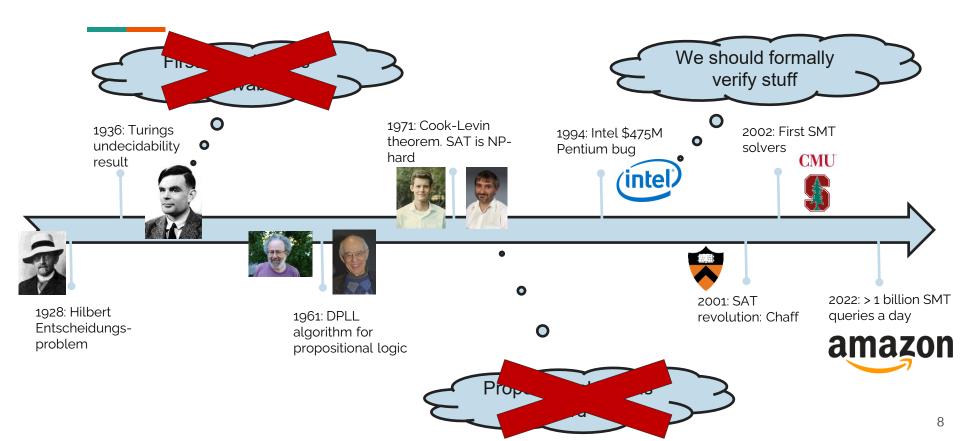
- SAT: use propositional logic as the formalization language
 - + high degree of efficiency
 - expressive (all NP-complete) but involved encodings

$$x = y \lor (x + 2z \ge 1 \land f(x) = w)$$

- SMT° propositional logic + domain-specific reasoning (multi-sorted first-order logic)
 - + improves the expressivity
 - certain (but acceptable) loss of efficiency

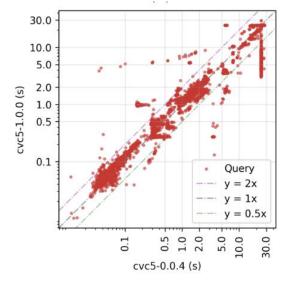
Goal: Introduce SMT solving and its main techniques

History Lesson: trying to solve first-order logic



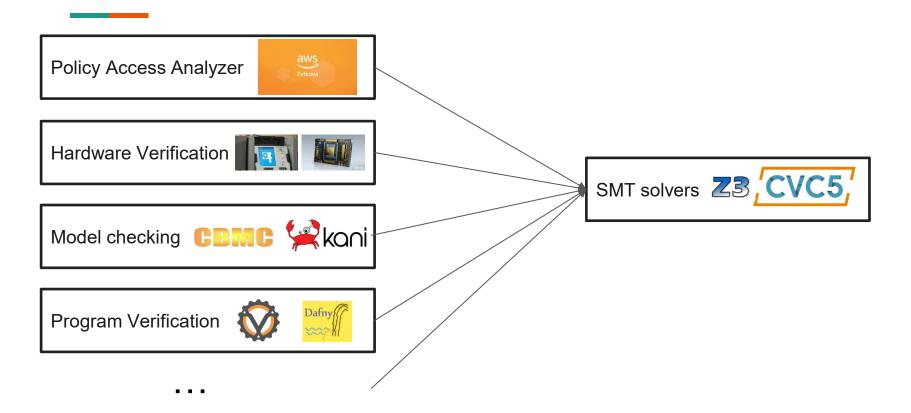
A Billion SMT Queries a Day (Invited Paper)

(roughly the same number as ChatGPT)



- How did we get here?
 - "Just because a problem is undecidable, it doesn't stop being important"
 - Modelling solvers after the problems we want to solve
 - Combination of multiple approaches: eager and lazy
- Where do we go next?
 - Find the right problems
 - A trillion SMT queries a day?

Many Applications



1. Introduction

2. Defining SMT

- 3. Eager Approach
- 4. Lazy Approach
- 5. Universal Quantifiers
- 6. Future of SMT solving

Formally: multi-sorted first-order logic

- Can define a set of sorts S for example $S = \{Bool, Int, Real, String\}$
 - Can have user-defined (uninterpreted) sorts
- A signature Σ with:
 - Function symbols $\Sigma_F = \{f : \sigma_1 \times \cdots \times \sigma_l \rightarrow \sigma, \dots\}$
 - Predicate Symbols $\Sigma_R = \{P : \sigma_1 \times \cdots \times \sigma_k\}$
 - \circ $\sigma_i \in S$
- Function symbols with arity 0 are called constants
- A set of variables V
- From these build up a set of terms, atomic formulas, and formulas
- A theory is a set of formulas closed under logical deduction
- Bool and = are part of all theories

Example: Uninterpreted Functions (UF)

```
(declare-sort T 0)

(declare-fun x () T)

(declare-fun f (T) T)

(assert (= (f (f (f x))) x))

(assert (= (f (f (f (f x))))) x))

(assert (not (= (f x) x))
```


This is SMT syntax. Sorry!

- Also called the "free theory"
- Because function symbols can take any meaning
- Only property required is congruence: that functions map identical arguments to identical values i.e., x = y => f(x) = f(y)
- S = {Bool, T,...} where T is a user defined sorts
- $\Sigma_F = \{f, g, ...\}$ where f, g are user defined functions

Example: Linear Integer Arithmetic

- $S = \{Bool, Int\}$
- $\Sigma_F = \{0, 1, +, -\}$
- $\Sigma_P = \{\leq, =\}$
- Can express larger integers and ≥, <,>
- Boolean combination of linear constraints of the form (a₁ x₁ + a₂ x₂ + ... + a_n x_n ~ b)
- There are also nonlinear and real arithmetic theories

Example: (Real) Integer Difference Logic

- $S = \{Bool, Int\}$
- $\Sigma_F = \{0, 1, -\}$
- $\Sigma_P = \{\leq, =\}$
- Boolean combination of linear constraints of the form

$$x_i - x_j \sim c_{ij}$$
 or $x_i \sim c_i$

- Applications
 - Processor datapath verification
 - Job shop scheduling / real-time systems
 - Timing verification for circuits

Example: Bitvectors

```
(declare-fun x () (_ BitVec 8))
(declare-fun y () (_ BitVec 8))
(declare-fun z () (_ BitVec 8))
(assert (= x #b10101010))
(assert (= z (bvand x y))
(assert (= (bvadd x y) #xff))
```

- $S = \{Bool, BV1, BV2, BV3 ...\}$
- Fixed width data words
 - Can model int, short, long, .
- Arithmetic operations
 - add/subtract/multiply/divi de & comparisons
 - Two's complement and unsigned operations
- Bit-wise logical operations
 - E.g., and/or/xor,shift/extract and equality
- Boolean connectives

Example: Arrays

```
(declare-fun arr () (Array Int Int))
(declare-fun i () Int
(declare-fun j () Int)
(assert (= (select arr i) 42))
(assert (= (select (store arr j 10) i) 10))
(assert (not (= i j)))
```

- Two interpreted functions: select and store
 - select(A,i) ->Read from A at index i store(A,i,d)-> Write d to A at index i
- Two main axioms:
 - o fori≠j
- One other axiom:

$$(\forall i. select(A, i) = select(B, i)) \rightarrow A = B$$

Others

- Strings
- Floating Points
- Algebraic Datatypes
- Higher Order Functions
- Finite Fields

- 1. Introduction
- 2. Defining SMT

3. Eager Approach

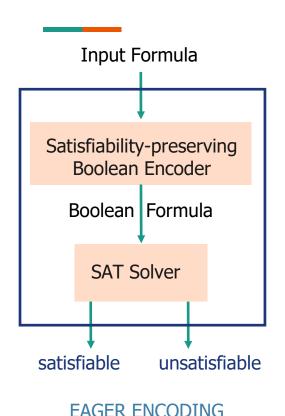
- 4. Lazy Approach
- 5. Universal Quantifiers
- 6. Future of SMT solving

Have to combine theory reasoning with SAT solving

Two main approaches:

- 1. "Eager"
 - translate into an equisatisfiable propositional formula
 - feed it to any SAT solver
- 2. "Lazy"
 - abstract the input formula to a propositional one
 - feed it to a (DPLL-based) SAT solver
 - use a theory decision procedure to refine the formula and guide the SAT solver

Eager Approach to SMT



SAT Solver involved in Theory Reasoning

Key Ideas:

Small-domain encoding Constrain model search Rewrite rules Abstraction-based methods (eager + lazy)

Example Solvers:

NFA2SAT, Bitwuzla, Algaroba, UCLID, STP

...

Ackerman's Encoding: UF to SAT

$$f(x) \longrightarrow fx$$

$$f(y) \longrightarrow f(y)$$

For each pair of function applications add:

$$x = y \Rightarrow fx = fy$$

```
(declare-sort T 0)

(declare-fun x () T)

(declare-fun f (T) T)

(assert (= (f (f (f x))) x))

(assert (= (f (f (f (f x))))) x))

(assert (not (= (f x) x))
```

What is the Ackerman encoding of this?

Another example: bitvectors

```
(declare-fun x () (_ BitVec 8))
(declare-fun y () (_ BitVec 8))
(declare-fun z () (_ BitVec 8))
(assert (= x #b10101010))
(assert (= z (bvand x y))
```

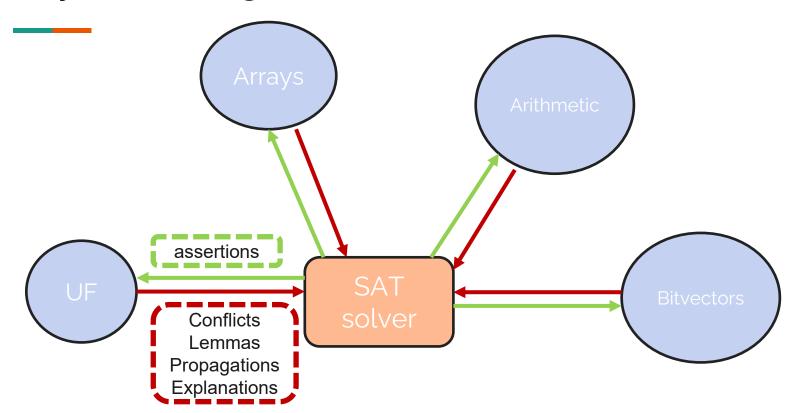
Can we bit-blast this to SAT?

- 1. Introduction
- 2. Defining SMT
- 3. Eager Approach

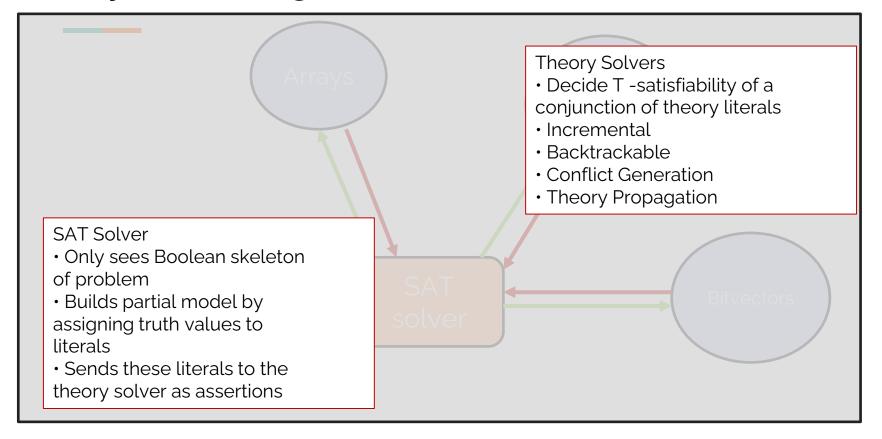
4. Lazy Approach

- 5. Universal Quantifiers
- 6. Future of SMT solving

Lazy SMT solving: often called CDCL(T)

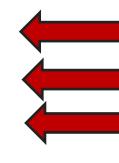


Lazy SMT solving: often called CDCL(T)



Congruence Closure Algorithm (for UF)

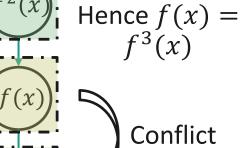
$$x = f(f(f(x))) \land x = f(f(f(f(x))))) \land x \neq f(x)$$



We learn a conflict clause and backtrack!



Notice x = $f^2(x)$



More examples

1. $f(f(a,b),b) \neq a \land f(a,b) = a$ 2. $f(a,a) = b \land g(c,a) = c \land g(c,f(a,a)) = f(g(c,a),g(c,a)) \land f(c,c) \neq g(c,b)$ 3. $f(a,a) = b \land g(c,a) = c \land g(c,f(a,a)) = f(g(c,a),g(c,a)) \land f(h(d),d) = f(g(a,c),g(c,a)) \land h(a) = h(c)$

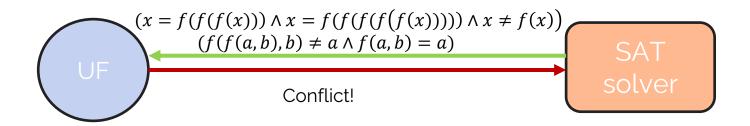
Putting it all together: lazy SMT solving

$$[(x = f(f(f(x))) \land x = f(f(f(f(f(x))))) \land x \neq f(x))$$

$$\lor (f(f(a,b),b) \neq a \land f(a,b) = a)]$$

$$\land [(x \neq f(f(f(x))) \lor x \neq f(f(f(f(f(x)))))) \lor x = f(x))]$$

$$\land [(f(f(a,b),b) = a \lor f(a,b) \neq a]$$

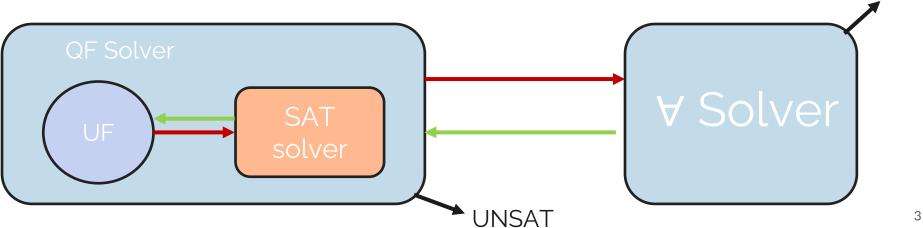


UNSAT!

- 1. Introduction
- 2. Defining SMT
- 3. Eager Approach
- 4. Lazy Approach
- 5. Universal Quantifiers
- 6. Future of SMT solving

FOL is undecidable: because of quantifiers

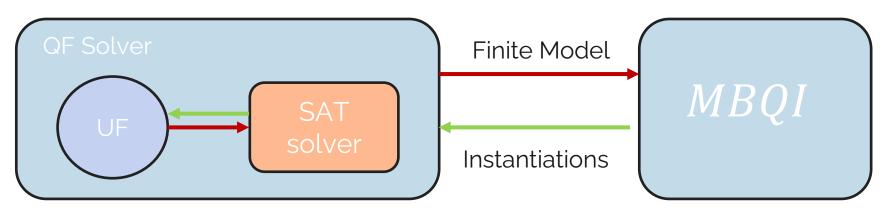
- How do we reason about "forall" statements?
- Could enumerate all cases?
- Two smarter approaches?
 - Model-based quantifier instantiation
 - Trigger/Pattern based quantifier instantiation



SAT

Model-based quantifier instantiation

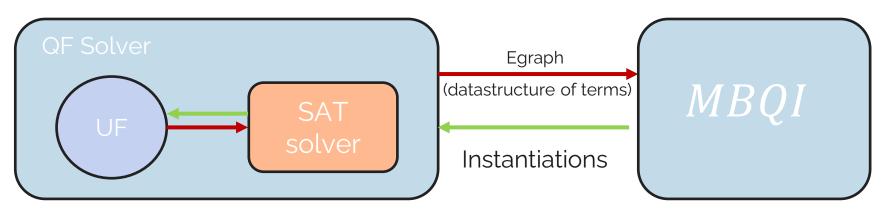
- Idea: Instantiate quantifiers based on (complete) QF models
- Complete for certain fragments, e.g. EPR, essentially uninterpreted
- Can be useful for answering "sat"



Example: $f(t) \land g(s) \land [\forall x. \neg f(x) \lor \neg g(x)]$

Pattern/Trigger based quantifier instantiation

- Idea: Instantiations found by pattern matching
- Implemented in early SMT solvers (e.g. simplify) as well as z3, cvc5
- Key applications: Software verification (dafny, Verus)



Example: $f(t) \land g(s) \land [\forall x. f(g(x)) : pattern g(x)] \longrightarrow$ Instantiation: f(g(s))

Pattern-based Instantiations Example (from Verus)

We have the assertion

```
(assert

(not (=> (and (is_member x (set_union s1 s2))

(not (is_member x s1)))

(is_member x s2))))
```

Trying to instantiate quantifier

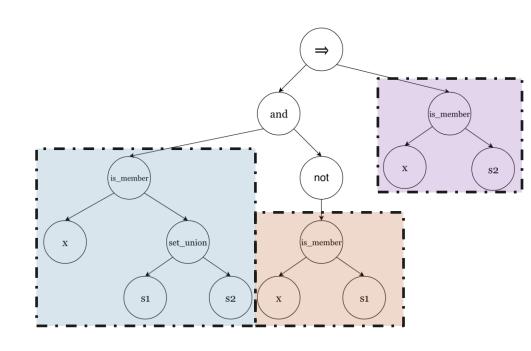
```
(forall ((y Poly) (set Poly)) (!
  (= (is_member y set) (Set.contains set y))
  :pattern ((is_member y set)))))
```

Adding the instantiations:

```
(= (is_member x (set_union s1 s2))
  (Set.contains (set_union s1 s2) x)

(= (is_member x s1) (Set.contains s1 x))

(= (is_member x s2) (Set.contains s2 x))
```



Other quantifier instantiation techniques

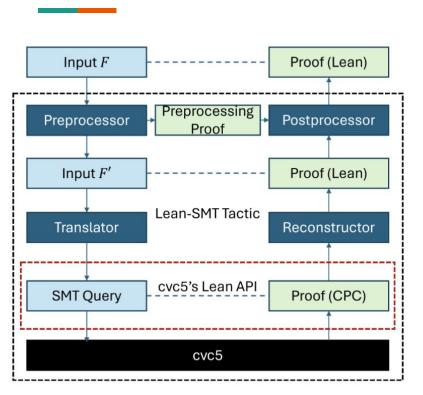
- Enumerative instantiation
- Counter-example guided instantiation
- Syntax Guided instantiation

- 1. Introduction
- 2. Defining SMT
- 3. Eager Approach
- 4. Lazy Approach
- 5. Universal Quantifiers
- 6. Future of SMT solving

Where else are SMT solvers useful?

- Disclaimer: SMT landscape is vast and I only gave you a brief taste of it
- Recent Applications in cryptography, programming languages, systems, and machine learning

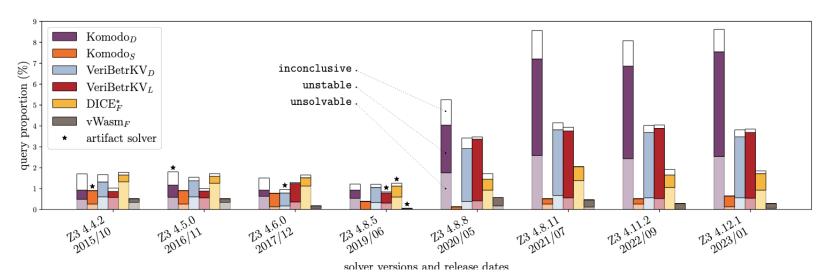
Programming Languages: A Hammer for Lean



- Lean is a programming language/interactive theorem prover
 - Calls tactics
 - Two new tactics, lean-auto and lean-smt call SMT solvers to prove Lean goals

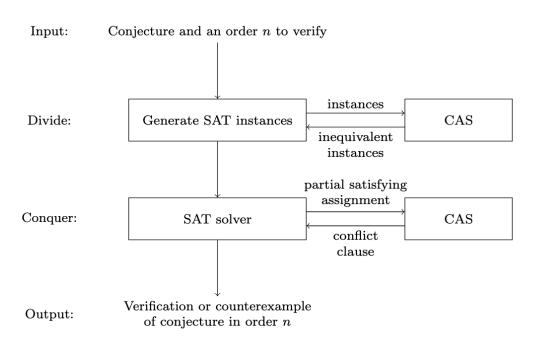
Systems: Reliability/Instability of SMT solvers

- SMT solvers used by systems with O(1 billion) queries
- They need to be robust/reliable



Mariposa: Measuring SMT Instability in Automated Program Verification (2023)

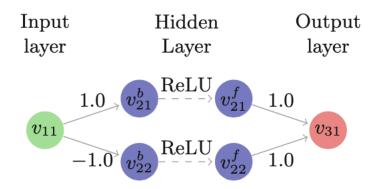
Mathematics: Enumerating matrices



- Combining a SAT solver with a computer algebra system
- Very good with enumerating matrices of certain properties

Machine Learning: Verifying Neural Networks

- Verifying Neural Networks—can mostly be modeled as a linear function
- Special decision procedure to deal with ReLU



Cryptography: Satisfiability modulo Finite Fields

$$x' + y' = \sum_{i=1}^{b+1} 2^{i-1} z_i' \quad \land \quad z' = \sum_{i=1}^{b} 2^{i-1} z_i' \quad \land \quad \bigwedge_{i=1}^{b+1} z_b'(z_b' - 1) = 0$$

Used to prove the correctness of a Zero Knowledge Proof compiler!

Definition 1 (Correctness). A ZKP compiler Compile(ϕ) \rightarrow (ϕ' , Ext_x, Ext_w) is **correct** if it is demonstrably complete and demonstrably sound.

• demonstrable completeness: For all $x \in \text{dom}(x), w \in \text{dom}(w)$ such that $\hat{\phi}(x, w) = \top$, $\hat{\phi}'(\text{Ext}_x(x), \text{Ext}_w(x, w)) = \top$

• demonstrable soundness: There exists an efficient algorithm
$$Inv(x', w') \to w$$
 such that for all $x \in dom(x), w' \in dom(w')$ such that $\hat{\phi}'(Ext_x(x), w') = \top$,

$$\hat{\phi}(\mathsf{x},\mathsf{Inv}(\mathsf{Ext}_x(\mathsf{x}),\mathsf{w}')) = \top$$

Come to my Office Hours!! (CIC 2206, Wednesdays 11am – noon)