Satisfiability Modulo
Theories (SMT) solving

Amar Shah

C (Carnegie Mellon University Advanced Topics in Logic: Automated Reasonin

Computer Science Department and Satisfiability

Come to my Office Hours!!
(CIC 2206, Wednesdays 11am - noon)

- Slides inspire by previous presentations by Sanjit Seshia,
Clark Barrett, Andrew Reynolds, Leonardo de Moura, and
Alberto Oliveras
- SMT solving is a pretty broad field, which is continuing to
evolve. This presentation is only a taste

S o AW hoB.

Introduction

Defining SMT

Eager Approach

_azy Approach
Universal Quantifiers
-uture of SMT solving

This class so far: Boolean SAT solving

P1
Is there an \
assignment to P>

the p,, p,, ..., P,
variables such

that ¢ evaluates
to true?

Pn

Satisfiability Modulo Theories

X — y

Is there an
assignment
tOﬁW,x,y,Z X-I-ZZZ].
such that ¢ '
evaluates to :
true? w & 0xFFFF = x
l.e. Is the
formula

fx)=w

satisfiable?

What is SMT?
° o)

e SAT: use propositional logic as the formalization language
+ high degree of efficiency
- expressive (all NP-complete) but involved encodings

—

@2221/\f(x)=w)
O S

e SMT? propoositional logic + domain-specific reasoning (multi-sorted
first-order logic)
+ improves the expressivity
- certain (but acceptable) loss of efficiency

Goal: Introduce SMT solving and its main techniques

History Lesson: trying to solve first-order logic

We should formally

verify stuff
. : —Levi o
1936: Turings o 1971: Cook-Levin : 2002 First SMT
undecidabﬁity o theorem. SAT is NP- ;994{: Inteé S475M o solversI
unde hard entium bug
esu

. 2001: SAT 2022: > 1 billion SMT
1928: Hll'bert 1961: DPLL revolution: Chaff queries a day
Entscheidungs- algorithm for (o)

problem propositional logic amazon

30.0 A1

10.0 A
5.0

2.0 1
1.0 1
0.5 1

A Billion SMT Queries a Day
(Invited Paper)

cvc5-1.0.0 (s)

0.1 4

(roughly the same number as ChatGPT)

- How did we get here?
- "Just because a problem is undecidable, it doesn't stop being important”
- Modelling solvers after the problems we want to solve
- Combination of multiple approaches: eager and lazy

- Where do we go next?
- Find the right problems
- Atrillion SMT queries a day?

Many Applications

Policy Access Analyzer

Hardware Verification

Model checking Wkoni-

SMT solvers &3 CVCS

=]

Program Verification @ D@W

10

2. Defining SMT

Formally: multi-sorted first-order logic

Can define a set of sorts S for example S = {Bool, Int, Real, String}
o Can have user-defined (uninterpreted) sorts
A sighature X with:
o Functionsymbols X = {f : 0y XX 0= 7, ...}
o Predicate Symbols Xz = {P : 04 X -+ X 03}
o O;ES
Function symbols with arity O are called constants
A set of variables V
From these build up a set of terms, atomic formulas, and formulas
A theory is a set of formulas closed under logical deduction
Bool and = are part of all theories

12

Example: Uninterpreted Functions (UF)

(declare-sort T 0)

(declare-fun x () T)
(declare-fun f (T) T)

(assert (= (f (f (f x))) x))
(assert (= (f (f (f (f (f x))))) x))

(assert (not (= (f x) x))

L This is SMT syntax. Sorry!

Also called the “free theory”
Because function symbols can take
any meaning

Only property required is
congruence: that functions map
identical arguments to identical
values ie., x=y =>f(x) = fly)

S ={Bool, T,..} where T is a user
defined sorts

X ={f,g, ..} Wheref, gareuser
defined functions

13

Example: Linear Integer Arithmetic

(declare-fun x () Int)
(declare-funy () Int)
(declare-fun z () Int)
(assert (or (<= (+ x y) 10)

(=x2))

(assert (<= (- (+ xx) y) 5))

S ={Bool, Int}

= {0,1,+, -}

2p = {S,=}

Can express larger integers

and >, <, >

Boolean combination of

linear constraints of the form
(@, x;+a, X, *+ . +a, X, ~b)

There are also nonlinear and

real arithmetic theories

14

Example: (Real) Integer Difference Logic

(declare-fun x () Int)

e S ={Bool, Int}
(declare-funy () Int) e Y= {01, -}

(declare-fun z () Int) o Xp={5,=}

e Boolean combination of
linear constraints of the form

(= x 2)) X; xj"'cij or xX;~ ¢

o Appllcatlons

Processor datapath
verification

o Job shop scheduling /
real-time systems

o Timing verification for
circuits

(assert (or (>= (- xy) 10)

(assert (<= (-x z) 5))

15

Example: Bitvectors

(declare-fun x () (_ BitVec 8)) e S ={Bool, BV1,BV2, BV3..)

(declare-funy () (_ BitVec 8)) e Fixed width data words
o Can model int, short, long, .
e Arithmetic operations
(assert (= x #b10101010)) o add/subtract/multiply/divi
de & comparisons
o Two's complement and
(assert (= (bvadd x y) #xff)) unsigned operations
e Bit-wise logical operations
o E.g.,and/or/xor,
shift/extract and equality
e Boolean connectives

(declare-fun z () (_ BitVec 8))

(assert (= z (bvand x y))

16

Example: Arrays

(declare-fun arr () (Array Int Int))
(declare-funi () Int

(declare-fun j () Int)
(assert (= (select arr i) 42))

(assert (= (select (store arrj 10) i) 10))

(assert (not (=i j)))

Two interpreted functions: select

and store

select(A,i) ->Read from A at index i
store(A,i,d)-> Write d to A at index i

Two main axioms:

o fori#j

One other axiom:
(Vi.select(A,i) = select(B,i)) —
A=B

17

Others

Strings

Floating Points
Algebraic Datatypes
Higher Order Functions
Finite Fields

18

3. Eager Approach

Have to combine theory reasoning with SAT solving

Two main approaches:

1. "Eager’
- translate into an equisatisfiable propositional formula
- feed it to any SAT solver

2. "Lazy”
- abstract the input formula to a propositional one
- feed it to a (DPLL-based) SAT solver
- use a theory decision procedure to refine the formula and guide the SAT solver

20

Eager Approach to SMT

Input Formula
|

!

Satisfiability-preserving
Boolean Encoder

Boolean lFormuIa

SAT Solver

; ;

satisfiable unsatisfiable

EAGER ENCODING

SAT Solver involved in
Theory Reasoning

Key ldeas:

Small-domain encoding

Constrain model search

Rewrite rules

Abstraction-based methods (eager + lazy)

Example Solvers:
NFA2SAT, Bitwuzla, Algaroba, UCLID, STP

21

Ackerman’s Encoding: UF to SAT

v

J(x) Jfx
) - fy

For each pair of function
applications add:

X=y= [X=fy

(declare-sort T 0)
(declare-fun x () T)
(declare-fun f (T) T)

(assert (= (f (f (f x))) x))
(assert (= (f (f (f (f (f x))))) x))

(assert (not (= (f x) x))

What is the Ackerman encoding of this?

22

Another example: bitvectors

(declare-fun x () (_ BitVec 8))
(declare-funy () (_ BitVec 8))

(declare-fun z () (_ BitVec 8))

(assert (= x #610101010))

(assert (= z (bvand x y))

Can we bit-blast this to SAT?

23

4. Lazy Approach

Lazy SMT solving: often called CDCL(T)

assertions

----- _—y
(Conflicts :[
I Lemmas I

[Propagations [

\ Exanaions

25

Lazy SMT solving: often called CDCL(T)

Theory Solvers

- Decide T -satisfiability of a
conjunction of theory literals
- Incremental

- Backtrackable

- Conflict Generation
 Theory Propagation

SAT Solver

+ Only sees Boolean skeleton
of problem

- Builds partial model by
assigning truth values to
literals

- Sends these literals to the
theory solver as assertions

26

Congruence Closure Algorithm (for UF)

x = FIFFGO)) A 4=
x = F(F(FFUF @) A <=
x # f(x) —

We learn a conflict clause and backtrack!

Notice x =

f2(x)

, Hence f(x) =
f300)

i >Conflict

27

More examples

1. f(f(a,b),b) #aANf(a,b)=a

2. f(a,a)=bAg(ca)= c/\g(c,f(a,a)) =
flg(c,a), glc,a)) Af(cc) # g(c b)

3. fla,a) =bAg(c,a)= cAg(c,f(a,a)) =
f(g(c,a),glc,a)) A f(h(d),d) =
f(g(a,c),g(c,a)) Ah(a) = h(c)

28

Putting it all together: lazy SMT solving

[(x = FFFCE) Ax = FEFFFCONN Ax # f(x))
V (f(f(a,b),b) # aAf(ab) = a)]
AMx = FEFED V= FEFEFCON) V= £F()]
A(f(f(a,b),b) = aV f(a,b) # a

x=fFFCNAx = fFEFFFEIN) Ax # f(x))
(f(f(a,b),b) # aAf(a,b) =a)
Conflict!

UNSAT!

29

5. Universal Quantifiers

30

FOL is undecidable: because of quantifiers

o How do we reason about"forall” statements?

o Could enumerate all cases?
o Two smarter approaches?

= Model-based quantifier instantiation

« Trigger/Pattern based quantifier instantiation

J

~

A~

UNSAT

-

SAT

31

Model-based quantifier instantiation

o ldea: Instantiate quantifiers based on (complete) QF models
o Complete for certain fragments, e.g. EPR, essentially uninterpreted
o Can be useful for answering “sat”

A Finite Model 4 A

>

J Instantiations
J \ J

Example: f(t) A g(s) A[Vx.=f(x) V —g(x)]

Pattern/Trigger based quantifier instantiation

o ldea: Instantiations found by pattern matching
o Implemented in early SMT solvers (e.g. simplify) as well as z3, cvcs
o Key applications: Software verification (dafny, Verus)

4) 4)

Egraph
P
J (datastructure of terms)

Instantiations

. J . J

Example: f(t) A g(s) A[Vx. f(g(x)) : pattern g(x)] ——> Instantiation: f(g(s))

Pattern-based Instantiations Example (from Verus)

We have the assertion

(assert

(not (=> (and (is_member x (set_union s1 s2))

(is_mr

Trying to instantiate quantifier

(forall ((y Poly) (set Poly)) (!

(= (is_member y set) (Set.contains set y))

:pattern ((is_member y set)))))

Adding the instantiations:

(= (is_member x (set_union s1 s2))
(Set.contains (set_union sl s2) x)

(= (is_member x s1) (Set.contains s1 x))

(= (is_member x s2) (Set.contains s2 x))

34

Other quantifier instantiation techniques

o Enumerative instantiation
o Counter-example guided instantiation
o Syntax Guided instantiation

35

6. Future of SMT solving

36

Where else are SMT solvers useful?

- Disclaimer: SMT landscape Is vast and | only gave you
a brief taste of it

- Recent Applications in cryptography, programming
languages, systems, and machine learning

37

Programming Languages: A Hammer for Lean

o — Proof (Lean) - Lean is a programming

 Er—— oo memmm— | lANQUage/interactive

Preprocessor

Preprocessing
Proof

Postprocessor

| theorem prover
Calls tactics
e i - Two new tactics, lean-auto
cves's Loan AP and lean-smt call SMT
SMTQuery f[-------=------ Proof (CPC) ii
' solvers to prove Lean goals

-------------- Proof (Lean)

lean-smt: An SMT tactic for discharging proof goals in Lean (2025) 38

Systems: Reliability/Instability of SMT solvers

- SMT solvers used by systems with O(1 billion) queries
- They need to be robust/reliable

o =

I Komodop

I Komodog
~— T4 .)
I | 3O VeriBetrKVp inconclusive .
£ HEE VeriBetrKVp unstable . .
'*g 54 [DICE% unsolvable.
| W vWasmp
;3 | artifact solver
3
=
o 24

-

ﬁﬁ Wﬁ will _ wﬂi SR 5

N i Q)
A® v % 2> N N4
D D > 3 R\ A2l Ao Ao
(L‘ \ (l) \ ©L Q\‘\ (L‘ ‘\ (L‘ ‘\ (])%CL“CL‘;‘\Q "l)rl"rl‘“qjl‘\Q ‘1)(3’%“1‘5\

solver versinns and release dates

Mariposa: Measuring SMT Instability in Automated Program Verification (2023) 39

Mathematics: Enumerating matrices

Input:

Divide:

Conquer:

QOutput:

Conjecture and an order n to verify

Generate SAT instances

instances

inequivalent

CAS

instances

partial satisfying

SAT solver

assignment

conflict

of conjecture in order n

CAS

clause

Verification or counterexample

- Combining a SAT
solver with a
computer algebra
system

- Very good with
enumerating
matrices of certain
properties

A SAT+CAS Method for Enumerating Williamson Matrices of Even Order 40

Machine Learning: Verifying Neural Networks

Verifying Neural Networks—can mostly be modeled as a
linear function
Special decision procedure to deal with RelLU

Input Hidden Output
layer Layer layer

RelLU
o @@ 1
11
_1.0 .ReLU. 1.0

Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks (2017)

v V31

41

Cryptography: Satisfiability modulo Finite Fields

' +1y = Zfill 2=l AN = 2?21 oi=1l, A /\E-H_l1 zy(z,;, —1) =0

(4 1=

Used to prove the correctness of a Zero Knowledge Proof compiler!

Definition 1 (Correctness). A ZKP compiler Compile(¢) — (¢', Exty, Exty,)
is correct if it is demonstrably complete and demonstrably sound.

e demonstrable completeness: For all x € dom(z),w € dom(w) such that

Px,w) =T, A

@' (Extz(x), Exty(x,w)) =T

e demonstrable soundness: There exists an efficient algorithm Inv(x’,w’) = w
such that for all x € dom(z),w’ € dom(w') such that ¢'(Ext,(x),w') = T,

d(x, Inv(Exty (x),w)) = T

Satisfiability modulo Finite Fields (2023)

42

How can SMT solvers be applied to work that you do?

43

Come to my Office Hours!!
(CIC 2206, Wednesdays 11am - noon)

	Slide 1: Satisfiability Modulo Theories (SMT) solving
	Slide 2
	Slide 3
	Slide 4
	Slide 5: This class so far: Boolean SAT solving
	Slide 6: Satisfiability Modulo Theories
	Slide 7: What is SMT?
	Slide 8: History Lesson: trying to solve first-order logic
	Slide 9
	Slide 10: Many Applications
	Slide 11
	Slide 12: Formally: multi-sorted first-order logic
	Slide 13: Example: Uninterpreted Functions (UF)
	Slide 14: Example: Linear Integer Arithmetic
	Slide 15: Example: (Real) Integer Difference Logic
	Slide 16: Example: Bitvectors
	Slide 17: Example: Arrays
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Eager Approach to SMT
	Slide 22: Ackerman’s Encoding: UF to SAT
	Slide 23: Another example: bitvectors
	Slide 24
	Slide 25: Lazy SMT solving: often called CDCL(T)
	Slide 26: Lazy SMT solving: often called CDCL(T)
	Slide 27: Congruence Closure Algorithm (for UF)
	Slide 28: More examples
	Slide 29: Putting it all together: lazy SMT solving
	Slide 30
	Slide 31: FOL is undecidable: because of quantifiers
	Slide 32: Model-based quantifier instantiation
	Slide 33: Pattern/Trigger based quantifier instantiation
	Slide 34: Pattern-based Instantiations Example (from Verus)
	Slide 35: Other quantifier instantiation techniques
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

