
1

Satisfiability Modulo
Theories (SMT) solving

Amar Shah

Advanced Topics in Logic: Automated Reasoning

and Satisfiability

2

Come to my Office Hours!!
(CIC 2206, Wednesdays 11am – noon)

3

- Slides inspire by previous presentations by Sanjit Seshia,
Clark Barrett, Andrew Reynolds, Leonardo de Moura, and

Alberto Oliveras
- SMT solving is a pretty broad field, which is continuing to

evolve. This presentation is only a taste

4

1. Introduction
2. Defining SMT
3. Eager Approach
4. Lazy Approach
5. Universal Quantifiers
6. Future of SMT solving

This class so far: Boolean SAT solving

5

C. Barrett & S. A. Seshia ICCAD 2009 Tutorial 5

∨

.

.

.



p2

p1

pn

Is there an

assignment to

the p1, p2, …, pn

variables such

that  evaluates

to true?

.

.

.

.

.

.

.

.

.

∨

∨

∧

∧
¬

Satisfiability Modulo Theories

6

C. Barrett & S. A. Seshia ICCAD 2009 Tutorial 6

∨

.

.

.


𝑥 + 2𝑧 ≥ 1

x = y
Is there an

assignment

to f, w, x, y, z

such that 

evaluates to

true?

.

.

.

.

.

.

.

.

.

∨

∨

∧

∧
¬

𝑤 & 0𝑥𝐹𝐹𝐹𝐹 = 𝑥

𝑓 𝑥 = 𝑤

i.e. is the

formula

satisfiable?

What is SMT?

7

● SAT: use propositional logic as the formalization language
+ high degree of efficiency
- expressive (all NP-complete) but involved encodings

● SMT: propositional logic + domain-specific reasoning (multi-sorted
first-order logic)

+ improves the expressivity
- certain (but acceptable) loss of efficiency

Goal: Introduce SMT solving and its main techniques

𝑝1 ∨ (𝑝2 ∧ 𝑝3)

𝑥 = 𝑦 ∨ (𝑥 + 2𝑧 ≥ 1 ∧ 𝑓 𝑥 = 𝑤)

History Lesson: trying to solve first-order logic

8

1936: Turings
undecidability
result

2001: SAT
revolution: Chaff

2002: First SMT
solvers

1928: Hilbert
Entscheidungs-
problem

1971: Cook-Levin
theorem. SAT is NP-
hard

First order logic is

unsolvable

Propositional logic is

hard

2022: > 1 billion SMT
queries a day

1994: Intel $475M
Pentium bug

We should formally

verify stuff

1961: DPLL
algorithm for
propositional logic

9

- How did we get here?
- “Just because a problem is undecidable, it doesn’t stop being important”
- Modelling solvers after the problems we want to solve
- Combination of multiple approaches: eager and lazy

- Where do we go next?
- Find the right problems
- A trillion SMT queries a day?

(roughly the same number as ChatGPT)

Many Applications

10

Policy Access Analyzer

Program Verification

Model checking

Hardware Verification

…

SMT solvers

11

1. Introduction
2. Defining SMT
3. Eager Approach
4. Lazy Approach
5. Universal Quantifiers
6. Future of SMT solving

Formally: multi-sorted first-order logic

12

● Can define a set of sorts 𝑆 for example 𝑆 = {𝐵𝑜𝑜𝑙, 𝐼𝑛𝑡, 𝑅𝑒𝑎𝑙, 𝑆𝑡𝑟𝑖𝑛𝑔}

○ Can have user-defined (uninterpreted) sorts
● A signature Σ with:

○ Function symbols Σ𝐹 = {𝑓 ∶ 𝜎1 ×⋯× 𝜎𝑙→ 𝜎,… }

○ Predicate Symbols Σ𝑅 = {𝑃 ∶ 𝜎1 ×⋯ × 𝜎𝑘}

○ 𝜎𝑖 ∈ 𝑆

● Function symbols with arity 0 are called constants
● A set of variables 𝑉
● From these build up a set of terms, atomic formulas, and formulas
● A theory is a set of formulas closed under logical deduction
● 𝐵𝑜𝑜𝑙 and = are part of all theories

Example: Uninterpreted Functions (UF)

13

● Also called the “free theory”
● Because function symbols can take

any meaning
● Only property required is

congruence: that functions map
identical arguments to identical
values i.e., x = y => f(x) = f(y)

● 𝑆 = {𝐵𝑜𝑜𝑙, 𝑇, … } where T is a user
defined sorts

● Σ𝐹 = {𝑓, 𝑔,… } where f, g are user
defined functions

(declare-sort T 0)

(declare-fun x () T)

(declare-fun f (T) T)

(assert (= (f (f (f x))) x))

(assert (= (f (f (f (f (f x))))) x))

(assert (not (= (f x) x))

This is SMT syntax. Sorry!

Example: Linear Integer Arithmetic

14

● 𝑆 = {𝐵𝑜𝑜𝑙, 𝐼𝑛𝑡}

● Σ𝐹 = {0, 1, +, −}

● Σ𝑃 = {≤,=}

● Can express larger integers
and ≥,< ,>

● Boolean combination of
linear constraints of the form

(a1 x1 + a2 x2 + … + an xn ~ b)
● There are also nonlinear and

real arithmetic theories

(declare-fun x () Int)

(declare-fun y () Int)

(declare-fun z () Int)

(assert (or (<= (+ x y) 10)

(= x z))

(assert (<= (- (+ x x) y) 5))

Example: (Real) Integer Difference Logic

15

● 𝑆 = {𝐵𝑜𝑜𝑙, 𝐼𝑛𝑡}

● Σ𝐹 = {0, 1, −}

● Σ𝑃 = {≤,=}
● Boolean combination of

linear constraints of the form
xi - xj ~ cij or xi ~ ci

● Applications
○ Processor datapath

verification
○ Job shop scheduling /

real-time systems
○ Timing verification for

circuits

(declare-fun x () Int)

(declare-fun y () Int)

(declare-fun z () Int)

(assert (or (>= (- x y) 10)

(= x 2))

(assert (<= (- x z) 5))

Example: Bitvectors

16

● 𝑆 = 𝐵𝑜𝑜𝑙, 𝐵𝑉1, 𝐵𝑉2, 𝐵𝑉3…

● Fixed width data words
○ Can model int, short, long, .

● Arithmetic operations
○ add/subtract/multiply/divi

de & comparisons
○ Two’s complement and

unsigned operations
● Bit-wise logical operations

○ E.g., and/or/xor,
shift/extract and equality

● Boolean connectives

(declare-fun x () (_ BitVec 8))

(declare-fun y () (_ BitVec 8))

(declare-fun z () (_ BitVec 8))

(assert (= x #b10101010))

(assert (= z (bvand x y))

(assert (= (bvadd x y) #xff))

Example: Arrays

17

● Two interpreted functions: select
and store

select(A,i) ->Read from A at index i
store(A,i,d)-> Write d to A at index i

● Two main axioms:

○ for i  j
● One other axiom:

(∀𝑖. 𝑠𝑒𝑙𝑒𝑐𝑡 𝐴, 𝑖 = 𝑠𝑒𝑙𝑒𝑐𝑡(𝐵, 𝑖)) →

𝐴 = 𝐵

(declare-fun arr () (Array Int Int))

(declare-fun i () Int

(declare-fun j () Int)

(assert (= (select arr i) 42))

(assert (= (select (store arr j 10) i) 10))

(assert (not (= i j)))

18

Others

- Strings
- Floating Points
- Algebraic Datatypes
- Higher Order Functions
- Finite Fields

19

1. Introduction
2. Defining SMT
3. Eager Approach
4. Lazy Approach
5. Universal Quantifiers
6. Future of SMT solving

20

Have to combine theory reasoning with SAT solving

Two main approaches:

1. “Eager”
- translate into an equisatisfiable propositional formula
- feed it to any SAT solver

2. “Lazy”
- abstract the input formula to a propositional one
- feed it to a (DPLL-based) SAT solver
- use a theory decision procedure to refine the formula and guide the SAT solver

Eager Approach to SMT

21

C. Barrett & S. A. Seshia ICCAD 2009 Tutorial 21

Key Ideas:
Small-domain encoding
Constrain model search
Rewrite rules
Abstraction-based methods (eager + lazy)

Example Solvers:
NFA2SAT, Bitwuzla, Algaroba, UCLID, STP
…

Input Formula

Boolean Formula

satisfiable unsatisfiable

Satisfiability-preserving
Boolean Encoder

SAT Solver

EAGER ENCODING

SAT Solver involved in
Theory Reasoning

Ackerman’s Encoding: UF to SAT

22

f(x) fx

f(y) fy

x = y fx = fy

(declare-sort T 0)

(declare-fun x () T)

(declare-fun f (T) T)

(assert (= (f (f (f x))) x))

(assert (= (f (f (f (f (f x))))) x))

(assert (not (= (f x) x))

What is the Ackerman encoding of this?

For each pair of function
applications add:

Another example: bitvectors

23

Can we bit-blast this to SAT?

(declare-fun x () (_ BitVec 8))

(declare-fun y () (_ BitVec 8))

(declare-fun z () (_ BitVec 8))

(assert (= x #b10101010))

(assert (= z (bvand x y))

24

1. Introduction
2. Defining SMT
3. Eager Approach
4. Lazy Approach
5. Universal Quantifiers
6. Future of SMT solving

Lazy SMT solving: often called CDCL(T)

25

SAT
solver

UF

Arrays
Arithmetic

Bitvectors

assertions

Conflicts

Lemmas

Propagations

Explanations

Lazy SMT solving: often called CDCL(T)

26

SAT
solver

UF

Arrays
Arithmetic

Bitvectors

assertions

Explanations

Conflicts

Lemmas

Propagations

SAT Solver
• Only sees Boolean skeleton
of problem
• Builds partial model by
assigning truth values to
literals
• Sends these literals to the
theory solver as assertions

Theory Solvers
• Decide T -satisfiability of a
conjunction of theory literals
• Incremental
• Backtrackable
• Conflict Generation
• Theory Propagation

Congruence Closure Algorithm (for UF)

27
𝑥

𝑓(𝑥)

𝑓2(𝑥)

𝑓3(𝑥)

𝑓4(𝑥)

𝑓5(𝑥)

Notice 𝑥 =
𝑓2(𝑥)

Hence 𝑓(𝑥) =
𝑓3(𝑥)

We learn a conflict clause and backtrack!

Conflict

𝑥 = 𝑓(𝑓(𝑓 𝑥)) ∧
𝑥 = 𝑓(𝑓(𝑓(𝑓(𝑓 𝑥)))) ∧

𝑥 ≠ 𝑓(𝑥)

More examples

28

1. 𝑓 𝑓 𝑎, 𝑏 , 𝑏 ≠ 𝑎 ∧ 𝑓 𝑎, 𝑏 = 𝑎

2. 𝑓 𝑎, 𝑎 = 𝑏 ∧ 𝑔 𝑐, 𝑎 = 𝑐 ∧ 𝑔 𝑐, 𝑓 𝑎, 𝑎 =

𝑓(𝑔 𝑐, 𝑎 , 𝑔 𝑐, 𝑎) ∧ 𝑓 𝑐, 𝑐 ≠ 𝑔(𝑐, 𝑏)

3. 𝑓 𝑎, 𝑎 = 𝑏 ∧ 𝑔 𝑐, 𝑎 = 𝑐 ∧ 𝑔 𝑐, 𝑓 𝑎, 𝑎 =

𝑓 𝑔 𝑐, 𝑎 , 𝑔 𝑐, 𝑎 ∧ 𝑓 ℎ 𝑑 , 𝑑 =

𝑓 𝑔 𝑎, 𝑐 , 𝑔 𝑐, 𝑎 ∧ ℎ 𝑎 = ℎ(𝑐)

Putting it all together: lazy SMT solving

29

SAT
solverUF

[(𝑥 = 𝑓(𝑓(𝑓 𝑥)) ∧ 𝑥 = 𝑓(𝑓(𝑓(𝑓 𝑓 𝑥)))) ∧ 𝑥 ≠ 𝑓 𝑥

∨ (𝑓 𝑓 𝑎, 𝑏 , 𝑏 ≠ 𝑎 ∧ 𝑓 𝑎, 𝑏 = 𝑎)]

∧ [(𝑥 ≠ 𝑓(𝑓(𝑓 𝑥)) ∨ 𝑥 ≠ 𝑓(𝑓(𝑓(𝑓 𝑓 𝑥)))) ∨ 𝑥 = 𝑓 𝑥]

(𝑥 = 𝑓(𝑓(𝑓 𝑥)) ∧ 𝑥 = 𝑓(𝑓(𝑓(𝑓 𝑓 𝑥)))) ∧ 𝑥 ≠ 𝑓 𝑥

Conflict!

(𝑓 𝑓 𝑎, 𝑏 , 𝑏 ≠ 𝑎 ∧ 𝑓 𝑎, 𝑏 = 𝑎)

∧ [(𝑓 𝑓 𝑎, 𝑏 , 𝑏 = 𝑎 ∨ 𝑓 𝑎, 𝑏 ≠ 𝑎]

UNSAT!

30

1. Introduction
2. Defining SMT
3. Eager Approach
4. Lazy Approach
5. Universal Quantifiers
6. Future of SMT solving

FOL is undecidable: because of quantifiers

31

○ How do we reason about”forall” statements?
○ Could enumerate all cases?
○ Two smarter approaches?

■ Model-based quantifier instantiation
■ Trigger/Pattern based quantifier instantiation

QF Solver

SAT
solver

UF
∀ Solver

UNSAT

SAT

Model-based quantifier instantiation

32

○ Idea: Instantiate quantifiers based on (complete) QF models
○ Complete for certain fragments, e.g. EPR, essentially uninterpreted
○ Can be useful for answering “sat”

SAT
solver

UF
𝑀𝐵𝑄𝐼

Finite Model

Instantiations

QF Solver

Example: 𝑓 𝑡 ∧ 𝑔 𝑠 ∧ [∀𝑥. ¬𝑓 𝑥 ∨ ¬𝑔 𝑥]

Pattern/Trigger based quantifier instantiation

33

○ Idea: Instantiations found by pattern matching
○ Implemented in early SMT solvers (e.g. simplify) as well as z3, cvc5
○ Key applications: Software verification (dafny, Verus)

SAT
solver

UF
𝑀𝐵𝑄𝐼

Egraph

(datastructure of terms)

Instantiations

QF Solver

Example: 𝑓 𝑡 ∧ 𝑔 𝑠 ∧ [∀𝑥. 𝑓 𝑔 𝑥 ∶ 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑔(𝑥)] Instantiation: 𝑓(𝑔 𝑠)

Pattern-based Instantiations Example (from Verus)

34

(assert

(not (=> (and (is_member x (set_union s1 s2))

(not (is_member x s1)))

(is_member x s2))))

We have the assertion

Trying to instantiate quantifier

Adding the instantiations:

(= (is_member x (set_union s1 s2))

(Set.contains (set_union s1 s2) x)

(= (is_member x s1) (Set.contains s1 x))

(= (is_member x s2) (Set.contains s2 x))

(forall ((y Poly) (set Poly)) (!

(= (is_member y set) (Set.contains set y))

:pattern ((is_member y set)))))

Other quantifier instantiation techniques

35

○ Enumerative instantiation
○ Counter-example guided instantiation
○ Syntax Guided instantiation

36

1. Introduction
2. Defining SMT
3. Eager Approach
4. Lazy Approach
5. Universal Quantifiers
6. Future of SMT solving

37

Where else are SMT solvers useful?

- Disclaimer: SMT landscape is vast and I only gave you
a brief taste of it

- Recent Applications in cryptography, programming
languages, systems, and machine learning

38

Programming Languages: A Hammer for Lean

- Lean is a programming
language/interactive
theorem prover

- Calls tactics
- Two new tactics, lean-auto

and lean-smt call SMT
solvers to prove Lean goals

lean-smt: An SMT tactic for discharging proof goals in Lean (2025)

39

Systems: Reliability/Instability of SMT solvers

- SMT solvers used by systems with O(1 billion) queries
- They need to be robust/reliable

Mariposa: Measuring SMT Instability in Automated Program Verification (2023)

40

Mathematics: Enumerating matrices

- Combining a SAT
solver with a
computer algebra
system

- Very good with
enumerating
matrices of certain
properties

A SAT+CAS Method for Enumerating Williamson Matrices of Even Order

41

Machine Learning: Verifying Neural Networks

- Verifying Neural Networks—can mostly be modeled as a
linear function

- Special decision procedure to deal with ReLU

Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks (2017)

42

Cryptography: Satisfiability modulo Finite Fields

Used to prove the correctness of a Zero Knowledge Proof compiler!

Satisfiability modulo Finite Fields (2023)

43

How can SMT solvers be applied to work that you do?

44

Come to my Office Hours!!
(CIC 2206, Wednesdays 11am – noon)

	Slide 1: Satisfiability Modulo Theories (SMT) solving
	Slide 2
	Slide 3
	Slide 4
	Slide 5: This class so far: Boolean SAT solving
	Slide 6: Satisfiability Modulo Theories
	Slide 7: What is SMT?
	Slide 8: History Lesson: trying to solve first-order logic
	Slide 9
	Slide 10: Many Applications
	Slide 11
	Slide 12: Formally: multi-sorted first-order logic
	Slide 13: Example: Uninterpreted Functions (UF)
	Slide 14: Example: Linear Integer Arithmetic
	Slide 15: Example: (Real) Integer Difference Logic
	Slide 16: Example: Bitvectors
	Slide 17: Example: Arrays
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Eager Approach to SMT
	Slide 22: Ackerman’s Encoding: UF to SAT
	Slide 23: Another example: bitvectors
	Slide 24
	Slide 25: Lazy SMT solving: often called CDCL(T)
	Slide 26: Lazy SMT solving: often called CDCL(T)
	Slide 27: Congruence Closure Algorithm (for UF)
	Slide 28: More examples
	Slide 29: Putting it all together: lazy SMT solving
	Slide 30
	Slide 31: FOL is undecidable: because of quantifiers
	Slide 32: Model-based quantifier instantiation
	Slide 33: Pattern/Trigger based quantifier instantiation
	Slide 34: Pattern-based Instantiations Example (from Verus)
	Slide 35: Other quantifier instantiation techniques
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

