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Abstract. Human observations and classifications have shown to provide substantial leverage for
developing models of students’ motivation, attitudes, and strategic choices, as a student interacts
with an intelligent tutoring system. However, human observation and classification is highly time-
consuming, which has limited its use. We present a technique for conducting human classification
on “low-fidelity” text-based replays of student behavior derived from logs of tutor usage. We show
that low-fidelity classification is much faster than live classification, and that low-fidelity
classification is approximately as accurate as live classification for detecting a behavior known as
gaming the system, using a machine-learning detector of this behavior as the gold standard.

Keywords: Observation, Classification, Gaming the System, Machine Learning, Data Mining

INTRODUCTION

In recent years, there has been increasing interest in using human observations and classifications to improve
both our understanding of how students interact with intelligent tutoring systems, and to develop systems which
can adapt to differences in student motivation, attitudes, and strategic choices. Human judgment can provide
substantial leverage for studying how students interact with intelligent tutoring systems: human beings regularly
make judgments about other humans’ affective state, motivation, attitudes, and strategies in order to participate
effectively in daily life. However, although humans are very good at making this sort of judgments about others,
they are not as good at describing how they make these judgments, likely due to the large role that unconscious
processing plays (Adolphs, 2006). Because humans are good at making judgments about affect, motivation, and
strategy but not as good at explaining their decision-making process, one strategy which has recently become
popular is to combine quantitative data from human observation and classification, with machine learning or data
mining techniques.

In such an approach, a set of categories of interest are first developed. These may be specific categories of
behavior (working with a tutor, talking off task to a neighbor, gaming the system — cf. Baker et al., 2004),
categories of affect (effort, confidence, satisfaction — cf. de Vicente and Pain, 2002; boredom, frustration, and
flow — cf. Craig, Graesser, Sullins, and Gholson, 2004), or even whether the user is receptive to a specific
interaction (interruptible versus non-interruptible — cf. Fogarty et al., 2005). Next, a human observer observes a
set of students over a period of time — either one at a time, or switching between students according to a pre-
determined schedule (cf. Baker et al, 2004). In each observation, a student is classified into one of the pre-
determined categories. This process of observation and classification may be done live, or it may be done later,
using video recordings or screen capture.

Once classifications have been obtained, data from logs (or videotapes, or other records) of the student or
user’s behavior is distilled into a set of features that can be used within a machine learning algorithm. Finally, a
machine learning algorithm is used to develop a detector of the categories of interest, predicting the data from the
human observations using some combination of the distilled features. This approach has successfully been used
in each of the cases mentioned above: to predict student affect (de Vicente and Pain, 2002), whether a student is
gaming the system (Baker et al., 2004), and whether a user is interruptible (Fogarty et al., 2005).

Hence, human observation and classification has proved its value for the development of detectors which can
effectively detect a wide variety of student characteristics. However, human observation and classification is
highly time-consuming, a disadvantage which has limited its use. As shown in Table 1, while the official
observation periods of human classifications are usually around 20 or 30 seconds, the actual time required to
obtain each observation is considerably more. de Vicente and Pain (2002) report making 85 classifications in
around 6 hours, an average of one classification every 4.2 minutes. Baker et al. (2004) report making 563
classifications in around 7.5 hours of class time. However, since the observations in Baker et al. were made in



Table 1. Estimations of the actual time per classification, in three prior studies using high-fidelity observations

Study Total Time Spent | Session Number of Theoretical Actual Time per
Classifying Logistical Classifications Classification | Classification
(approx) Time (approx) Time

de Vicente and Pain 2002 | 6 hours minimal 85 N/A 4.2 minutes

Baker et al. 2004 7.5 hours 6 hours 563 20 seconds 1.3 minutes

Craig et al. 2004 20 hours 8.5 hours ? 30 seconds >5 minutes

classrooms distant from the researchers’ offices, driving time and setup time should also be counted as part of the
overall time cost of conducting these observations. If we assume around a half hour driving time in each
direction, and 15 minutes setup time before each session, that works out to around 6 hours logistical time. Hence,
while each observation took 20 seconds to conduct, the actual time cost per classification is 1.3 minutes. Craig et
al. (2004) do not report exactly how many classifications were made, but since there was some setup time for
each of the 34 study participants, and the observation technique used was to conduct one 30 second observation
every 5 minutes, the time cost of this method was at minimum 5 minutes per classification. Hence, human
observation and classification of student behavior/attitudes/affect within tutoring systems appears to have a
general time cost of around 1-10 minutes per classification, depending on specifics of the categories being
classified and the classification method chosen. This breakdown is shown in Table 1.

A number of factors account for the difference in time taken per classification, in the studies discussed. One
factor is the study setting. Conducting studies with multiple simultaneous participants (for example, in a
classroom) offers time savings over studying the same behavior in the lab. However, lab studies allow for more
precision and instrumentation in measurement. In addition, classroom studies generally involve more startup
costs (school recruitment, approval, and scheduling), though this can be avoided by overlaying a classification
study on top of an already occurring study (as in the Baker et al study). It is also worth noting that some
behaviors (such as talking off task) many not occur in the lab, and must be studied in a classroom context.

Overall, though, it appears that the benefits of human observation and classification are currently offset by the
large time cost. This time cost currently hinders the large-scale utilization of these methods. While small-scale
human observation studies can be useful for improving our understanding of student interactions with software
(cf. Craig et al, 2004), they are less immediately applicable to the problem of developing detectors of student
behaviors and attitudes that can be deployed on a large scale and across different tutor lessons or even different
tutoring systems. Recent work suggests that conducting observations across multiple tutor lessons may be
sufficient to train a behavior detector that could transfer between tutor lessons (Baker et al, to appear). However,
even in that example, collecting enough classifications to develop and verify a generalizable detector of gaming
behavior required over 60 hours of observation and logistical time.

In this paper, we will discuss and validate an alternative observational technique: observations of low-fidelity
replays of student behavior. We investigate this technique within the context of studying whether students are
“gaming the system”, a behavior for which we already have a considerable amount of observational data and a
validated machine-learned detector (Baker et al, to appear). We find that the individual classifications obtained
through low-fidelity replays have lower inter-rater reliability than individual classifications obtained through live
observations; however, the aggregate predictions made about each student’s frequency of gaming agree equally
well with the machine-learned model as the live classifications (used to train the model) do.

FIDELITY

Each of the three previous studies discussed here involved “high-fidelity” observations, meaning that the
observer had access to a very broad range of data to use when making inferences. For instance, in both the Craig
et al. and Baker et al. studies, the observer was physically co-located with the observed participant. Hence, the
observer could watch the observed student’s actions in the user interface in considerable detail: not just what the
participant entered as answers, but partial responses, backspacing, pauses in the middle of responding, switching
windows, and mouse movements. Additionally, the observer could view the observed participant’s posture, facial
expression, and gestures, and could hear whatever comments or exclamations the observed participant made. In
the de Vicente and Pain study, observations were not co-located but were based on exact replays of the student’s
screen. The observer could therefore watch the observed student’s actions in the user interface in the same detail
as in the co-located studies, but did not have access to potential data from the observed student’s behavior
outside of the user interface (e.g. posture, facial expressions, gestures, comments, and exclamations).

There is a fairly wide space for what data can be available to the human observer, beyond what was utilized in
these three studies. A simple model of this space is shown in Figure 1.

Between live co-located observation and exact screen replays (in terms of fidelity), there are exact video
replays. Exact video replays show the same overall data as live co-located observation, but only from a single
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Fig. 1. Differing degrees of fidelity in the data a human observer has at hand when making a classification.

camera angle. Whereas a live observer can adjust his/her angle to see the student’s facial expression or the screen
(when obscured), a single camera can sometimes be obscured. Additionally, not all utterances may be picked up
by a single camera (as compared to a live observer with good hearing). On the other hand, exact video replays
enable repeated re-coding and can be directly analyzed with image-processing software. Exact video replays are
common in research into interactive systems (cf. Fogarty et al., 2005).

A lower-fidelity option is limited, or low-fidelity, screen replays (cf. Aleven et al, 2004). Limited screen
replays attempt to show the best possible approximation of the student’s behavior, given log files not explicitly
designed for that purpose. For instance, many if not most intelligent tutoring systems now log each student action
at the level of type of action, interface widget/problem step, and input entered. From these logs, it is possible to
create an approximation of the student’s screen, containing the same windows (and information, prior answers,
etc., within them) as the student’s screen had; it is not possible, however, to correctly represent window position
or when one window occludes another. Hence the context of the student’s behavior can be shown, but may
include some information that was not salient to the student at the time of their action(s). Additionally, the
student’s actions which were directly processed by the software (such as answers or help requests) can be shown
in the replay, but mouse movements and partial responses are not included. Limited screen replays provide less
rich information than an exact screen replay; however, since they can be generated automatically from existing
log files, they can be conducted on the pre-existing tutor data which now exists in large quantity in several
intelligent tutor research groups.

An even lower-fidelity option is text replays. Text replays are generated from the same data as limited screen
replays, but make little attempt to show context or represent actions as they occurred. A sequence of actions of a
pre-selected duration are shown in a textual format that shows each action’s time (relative to the first action in the
clip), what type of action it was, the interface widget selected, the input entered, and how the system assessed the
action (for instance, correct, incorrect, a help request, or an incorrect action indicating a known misconception).
Other information in the logs (such as the probability the student knew the skill) can also be included. An
example of a sequence of text action descriptions is shown in Figure 2. Text replays omit context such as
students’ previous answers, and omit visual information such as mouse movements or partial responses. It is also
necessary to use an annotated printout of the user interface to interpret what widgets such as ‘“x-axis-glb-ns”
mean. Hence, text replays have a very low bandwidth of information, compared to live co-located observations or
full screen replays. However, they are likely to be very quick to classify (though the cost in terms of accuracy
may be high), and like limited screen replays can be generated automatically from existing log files.

Though live co-located observations is the highest-fidelity technique which is currently commonly used, they
are not the highest fidelity technique possible. For example, video replays could be augmented with other
information such as eye-tracking data (Jacob, 1995), Functional Magnetic Resonance Imaging (fMRI) data, or
retrospective think-aloud data (Russo, Johnson, and Stephens, 1989).

IS HIGH FIDELITY NECESSARY?

High fidelity observations have proven their utility, but have also been shown to be very time-consuming. In this
section, we will compare high-fidelity observations to a very low-fidelity technique, text replays, in order to
clarify the relative advantages and disadvantages of using high-fidelity and low-fidelity techniques. In specific,
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Fig. 2. A text replay of a student’s actions

we will study a behavior using low-fidelity techniques that has already been studied using high-fidelity
techniques, gaming the system, in order to compare the data which results from each technique.

Previous Studies, using High-Fidelity Observations

From 2003 to 2005, we collected data on student behavior in a set of 16 classrooms in 2 schools in the Pittsburgh
suburbs. The goal of these studies was to investigate the prevalence of a set of student behaviors in intelligent
tutoring systems, and the learning gains associated with those behaviors. Within these studies, we used live, co-
located observations to classify a student as engaging in one of the following behaviors:

on-task -- working on the tutor

on-task conversation -- talking to the teacher or another student about the subject material

off-task conversation — talking about anything other than the subject material

off-task solitary behavior — any behavior that did not involve the tutoring software or another individual

(such as reading a magazine or surfing the web)

5. inactivity -- for instance, the student staring into space or putting his/her head down on the desk for the
entire observation period

6. gaming the system — inputting answers quickly and systematically, and/or quickly and repeatedly asking

for help until the tutor gives the student the correct answer

e

In each of these studies, each student’s behavior was observed and classified several times during the course
of each class period, by one of three observers. Most of the observations involved a single observer and a single
student; however during an inter-rater reliability session in 2004, two observers classified the same student at the
same time. The observational method used was based on prior techniques used to code on-task and off-task
classroom behavior (cf. Karweit & Slavin, 1982; Lloyd & Loper, 1986); in order to avoid bias towards more
interesting or dramatic events, the coder observed the set of students in a specific order determined before the
class began, as in Lloyd and Loper (1986). Any behavior by a student other than the student currently being
observed was not coded. In each study, between 500 and 1000 observations were taken, with around 6-10
observations taken for each student in each study, with some variation due to different class sizes and students
arriving to class early or leaving late.



Each observation lasted for 20 seconds — if a student was inactive for the entire 20 seconds, the student was
coded as being inactive. If two distinct behaviors were seen during an observation, only the first behavior
observed was coded. In order to avoid affecting the current student’s behavior if they became aware they were
being observed, the observer viewed the student out of peripheral vision while appearing to look at another
student.

The observations involved a total of six tutor lessons, involving a range of tutor topics. One lesson, on
creating and interpreting scatterplots of data, was used in all three years. The observational data from this set of
studies was used to validate that there was a significant relationship between gaming the system and poorer
learning (Baker, Corbett, Koedinger, and Wagner, 2004), and to develop a detector of gaming behavior that
transferred between tutor lessons without retraining (Baker et al, to appear).

Current Study, using Low-Fidelity Observations

We conducted a study on the effectiveness of low-fidelity observations, using log file data from one of the
previous high-fidelity observational studies, a 2005 study on an unmodified version of the scatterplot tutor
lesson. We only investigated gaming behavior, since this behavior has already been studied in considerable depth
using high-fidelity observations, allowing a clear comparison. Additionally, gaming behavior is entirely
expressible in the student’s actions within the tutor (by contrast to, for instance, talking off task), though the
richer data accessible in live co-located observations may provide additional leverage for identifying gaming.

In the low-fidelity study, two coders coded a set of clips of student behavior. These coders were the same two
coders who had conducted the majority of the observations in the previous high-fidelity observations. They were
also the same two coders who conducted the inter-rater reliability session in 2004, which determined the inter-
rater reliability of the high-fidelity observations. These coders coded overlapping sets of clips: Both coder A and
coder B coded the same 318 clips; coder A coded an additional 273 clips. Hence, there were a total of 909
classifications made during the low-fidelity study.

It was not possible to exactly sync the low-fidelity clips with the previous high-fidelity classroom
observations, since exact times were not recorded for the earlier high-fidelity observations. Hence, the clips
classified were chosen as follows: For each clip, one student action (entering an answer or requesting help) was
chosen at random. This action became the first action in the clip. Subsequent actions were added to the clip, in
the order they occurred in the log file, until adding an action would make the clip more than 20 seconds long (20
seconds was the length of the live observations).

The clips were shown to the observers in the format shown in Figure 2.

Time Taken

The 909 classifications made by the two coders, using text replays, were conducted in approximately 2 hours and
20 minutes. Since the two coders could code at their desks on their personal computer, and could start and stop
whenever they liked, there was minimal logistical time associated with conducting the classifications (time spent
programming the coding system was not counted, much as time spent negotiating an observation schedule with
teachers and principals is not counted in the time taken for the classroom observations). Overall, this worked out
to around 9 seconds per text replay classification.

Within the 2005 high-fidelity study, around 5 hours of classification time and 3 hours of logistical time were
devoted to collecting 488 observations. (In actuality, half the class was using a different tutor lesson on percents,
and observations were collected for both lessons in the same session — for comparability, since half the class was
using the other tutor lesson, we simply halved the total amount of classification and logistical time from that
study). This works out to around 1 minute per classification, an amount in line with the 1.3 minutes per

Table 2. Estimations of the actual time per classification, in three prior studies using
high-fidelity observations, and in the current study using text action descriptions

Study Total Time Spent | Session Number of Theoretical Actual Time per
Classifying Logistical Classifications | Classification | Classification
(approx) Time (approx) Time

de Vicente and Pain 2002 6 hours minimal 85 N/A 4.2 minutes

Baker et al. 2004 7.5 hours 6 hours 563 20 seconds 1.3 minutes

Craig et al. 2004 20 hours 8.5 hours ? 30 seconds >5 minutes

2005 high-fidelity 5 hours 3 hours 488 20 seconds 1 minute

(live observation) study

Text replays 2.3 hours minimal 909 N/A 9 seconds




observation calculated for the earlier study conducted in 2003 (Baker et al., 2004). The moderate decrease in
time per observation from 2003 to 2005 suggests that the observers may have become more efficient at writing
down their observations and moving on to the next student from year to year.

Overall, then, text action description observations require about 15% as much time to conduct as live co-
located observations. This is a considerable gain in terms of speed; but if that gain comes at substantial cost in
terms of accuracy, higher-fidelity observations may still be superior.

Consistency Measures

In the 2004 inter-rater reliability session, two coders conducted live co-located observations on the same student
at the same time. In order to do this, the two observers observed the same student out of peripheral vision, but
from different angles. The observers moved from left to right; the observer on the observed student’s left stood
close behind the student to the left of the observed student, and the observer on the observed student’s right stood
further back and further right, so that the two observers did not appear to hover around a single student. The two
observers began and ended each observation at the same time, through hand signals.

The two observers in the 2004 inter-rater reliability session made 49 simultaneous classifications; considering
solely whether a behavior was coded as gaming or not gaming, Cohen’s (1960) ¥ was 0.83, indicating very high
agreement between these two observers. Within the text action description observations, the two observers
separately coded the same 318 clips. Within these 318 clips, Cohen’s ¥ was 0.58, indicating only moderate
agreement. The overall rate of gaming codes in the two conditions was comparable (6.6% versus 5.3%),
validating that Cohen’s ¥ can validly be compared, between methods.

The greater degree of agreement in the live co-located observations suggests that this observational method is
generally more accurate than text replays. However, text action description observations still had a high enough
degree of agreement to suggest that they may be useful for capturing behavior. Additionally, reliability concerns
can be addressed by using multiple coders for text replays. Given the differences in speed, it would be possible to
have three coders code every clip, and still be twice as fast as live co-located observations.

Agreement Between Methods

To some extent, how internally consistent individual low-fidelity observations are is less important than whether
they accurately capture the target behavior. We can assess this in two fashions: first, by comparing the data from
low-fidelity observations to the data from high-fidelity observations, and second, by comparing both to a “gold-
standard” indicator of each student’s gaming frequency — the predictions made by the machine-learned gaming
detector.

In both cases, we will need a more distilled measure than individual observations (since individual
observations are not synched between methods). To this end, we compute an estimated gaming frequency for
each student, according to each of the two measures, as the number of gaming classifications divided by the total
number of classifications. We can then compare these estimated gaming frequencies, between methods.

Given the incomplete agreement of the classifications based on text replays, it is possible that greater
accuracy will be obtained by having two observers code each clip. To test this possibility, we will analyze both
the set of 591 clips coded by observer A, and the set of 318 clips coded by both observers A and B. In the single-
observer case, between 1 and 25 clips were classified for each student; in the two-observer case, between 1 and
15 clips were classified for each student. In both cases, we eliminated any student with 4 or fewer total text
replay classifications (occurring due to sampling error, or using the tutor only briefly), since any estimated
frequency based on such a small number of clips would be quite imprecise.

There was a correlation of 0.32 between the estimated gaming frequencies calculated using live observations,
and the estimated gaming frequencies calculated using text replays by two observers, significantly better than
chance, F(1,48)=5.76, p=0.02. There was a very similar correlation of 0.31 between the live-observation gaming
frequencies and the estimated gaming frequencies calculated using only observer A’s text action description
observations, again significantly better than chance, F(1,47)=5.11, p=0.03.

These results suggest that the text replay observations produce results reasonably similar to live observations,
in terms of how often each student is assessed to be gaming. The correlation is not perfect — this may be due to
differences between the behavior captured in each technique, or it may be due to the amount of variation which
naturally exists due to time-sampling and the lower reliability of the text replays. Additionally, it appears that
there is not a large difference between using data from a single observer and using data from two observers, for
text replays.



Agreement With “Gold-Standard” Metric

We can also investigate how much each observational method varies from capturing “true gaming behavior” by
comparing each observational method’s results to an alternate gold standard. This gold standard is the machine-
learned detector of gaming, which looks at every action the student makes across their whole history of using the
tutor (Baker et al, to appear). The current version of the detector was originally trained using data from live co-
located observations in multiple tutor lessons from 2003 to 2005, and has been verified to transfer effectively
between tutor lessons without re-training (Baker et al, to appear). Since this detector was trained on live co-
located observational data, including the 2005 live co-located scatterplot observations, it may bias in favor of the
live co-located observations; nonetheless, it provides an additional test of each observational method’s accuracy.

The live co-located observational data achieves an excellent correlation of 0.54 to the predictions made for
each student by the gaming detector. The text replay data for both observers achieves a very similar correlation
of 0.57 to the predictions made for each student by the gaming detector. The text replay data for only observer A
also achieves a similar correlation of 0.59 to the gaming detector’s predictions.

The correlation between the text observations (either single-observer or two-observer) and the gaming
detector is significantly higher than the correlation between the text observations and the live observations,
respectively t(47) = 2.49, p=0.02, t(48) = 2.15, p=0.04, for a two-tailed Hotelling’s t-test (Walker and Lev,
1953). Similarly, the correlation between the live observations and the gaming detector is marginally
significantly higher than the correlation between the live observations and the (two-observer) text observations,
t(48) =1.91, p=0.06.

Thus, live and text observations correlate better to the gold standard than they correlate to one another. This
suggests that the differences between the two methods have more to do with natural variation due to sampling
than actual differences between the behaviors captured. And, as before, it does not appear that there is a
substantial difference between using data from a single observer and using data from two observers, for text
replay observations.

DISCUSSION AND CONCLUSIONS

Within this paper, we have presented a theoretical framework for differences in the fidelity of human
classifications, which we define as how broad a band of data an observer can use when making inferences. We
have also shown that, at least in the case of assessing whether students are gaming the system, a very low-fidelity
observational technique (text descriptions of a sequence of student actions) has lower internal reliability than a
higher-fidelity technique (live co-located observations), but nonetheless correlates as well to a gold-standard
definition of gaming behavior as the higher-fidelity technique does. The low-fidelity and high-fidelity predictions
are also correlated to each other, but not as well as either is correlated to the gold-standard definition of gaming,
perhaps because of sampling variation. The low-fidelity observations were also more than 5 times faster to
conduct than the high-fidelity observations.

Thus, low-fidelity observations using text replays appear to offer considerable advantages as a technique for
studying student behavior: They are considerably faster to conduct than higher-fidelity observational techniques,
achieve comparable accuracy, and can be conducted on the type of simple log-files which are collected by most
tutor research groups. Because they can be conducted on standard log files, they can be used for retrospective
analyses on existing corpuses of log tutor data, and do not require conducting a special observational experiment.

Another potential advantage, not explored in this paper, is that the set of low-fidelity observations an observer
codes can be selected by processes other than randomly selected 20 or 30 second contiguous clips — for instance,
it would be very feasible to analyze a student’s behavior on a specific skill across every opportunity to practice
that skill in a week of tutor usage. Such analyses may prove useful for tracking behaviors that occur sporadically
over time; such analyses are considerably more difficult with higher-fidelity techniques such as live observations
or video replays (where isolating the proper video segments becomes a significant task in itself).

It is important to note, however, that there are potential limitations to the applicability of low-fidelity
observations. First, low-fidelity observations can only be used to detect behaviors which occur entirely within the

Table 3. Correlations between predicted frequency of gaming, from each method.
All correlations are significantly higher than chance.

Study Live Observations Gaming detector
Live observations . 0.54
Text replays (both observers) 0.32 0.57
Text replays (observer A) 0.31 0.59




tutoring system. For example, the original observations conducted by Baker et al. were also used to examine the
frequency of off-task behavior such as talking off-task; text observations would almost certainly be unable to
distinguish between talking off-task and talking on-task with the teacher.

Additionally, it is not clear to what degree low-fidelity observations will be successful for detecting affect, as
opposed to specific behaviors such as gaming. Detecting affect may depend on subtleties in student behavior that
are only capturable through higher-fidelity observation techniques. Determining what types of classification can
successfully be conducted with low-fidelity observations will therefore be an important area of future work.
Nonetheless, the higher speed and convenience associated with low-fidelity observations suggest that they may
be a powerful tool for the analysis and development of tutoring systems that can respond in sophisticated ways to
differences in student behavior and affect.
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