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Talk	Roadmap	
• 	Basic	Building	Blocks:	

Ø  Sparse	Coding	
Ø  Autoencoders	

• 	Deep	Genera4ve	Models	
Ø  Restricted	Boltzmann	Machines	
Ø  Deep	Belief	Network,	Deep	Boltzmann	Machines	
Ø  Helmholtz	Machines	/	Varia4onal	Autoencoders		

• 	Genera4ve	Adversarial	Networks		

• 	Model	Evalua4on	



Genera4ve	Adversarial	Networks	
• 	There	is	no	explicit	defini4on	of	the	density	for	p(x)	–	Only	need	to	
be	able	to	sample	from	it.	

• 	No	varia4onal	learning,	no	maximum-likelihood	es4ma4on,	no	
MCMC.	How?	

• 	By	playing	a	game!	



Genera4ve	Adversarial	Networks	
• 	Set	up	a	game	between	two	players:	

Ø  Discriminator	D		

Ø  Generator	G	

• 	Discriminator	D	tries	to	discriminate	between:		

Ø  A	sample	from	the	data	distribu4on.		

Ø  And	a	sample	from	the	generator	G.	

• 	The	Generator	G	aWempts	to	“fool”	D	by	genera4ng	samples	that	
are	hard	for	D	to	dis4nguish	from	the	real	data.	

(Generative Adversarial Networks, Goodfellow et al., NIPS 2014)



Genera4ve	Adversarial	Networks	

Slide Credit: Ian Goodfellow
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Genera4ve	Adversarial	Networks	
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Genera4ve	Adversarial	Networks	
• 	Minimax	value	func4on	In other words, D and G play the following two-player minimax game with value function V (G,D):

min

G

max

D

V (D,G) = E
x⇠pdata(x)[logD(x)] + E

z⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) p

x

from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D

⇤(x) =
pdata(x)

pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution p

g

as the distribution of the samples
G(z) obtained when z ⇠ p

z

. Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for p
g

= pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

3

Discriminator:	Classify	
data	as	being	real			

Discriminator:	Classify	
generator	samples	as	
being	fake		

Generator:	generate	samples	
that	D	would	classify	as	real	

Discriminator:	
Pushes	up	

Generator:	
Pushes	down	

• 	Op4mal	strategy	for	Discriminator	is:	
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DCGAN	Architecture	

(Radford, Metz, Chintalaet, 2015)



LSUN	Bedrooms:	Samples	

(Radford, Metz, Chintalaet, 2015)



CIFAR		

(Salimans	et.	al.,	2016)	

Training	 Samples	



IMAGENET	

(Salimans	et.	al.,	2016)	

Training	 Samples	



ImageNet:	Cherry-Picked	Results	

Slide	Credit:	Ian	Goodfellow	

• 	Open	Ques4on:	How	can	we	quan4ta4vely	evaluate	these	models!		



Talk	Roadmap	
• 	Basic	Building	Blocks:	

Ø  Sparse	Coding	
Ø  Autoencoders	

• 	Deep	Genera4ve	Models	
Ø  Restricted	Boltzmann	Machines	
Ø  Deep	Belief	Network,	Deep	Boltzmann	Machines	
Ø  Helmholtz	Machines	/	Varia4onal	Autoencoders		

• 	Genera4ve	Adversarial	Networks		

• 	Model	Evalua4on	



Markov	Random	Fields	
Graphical	Models:	Powerful	framework	for	represen4ng	
dependency	structure	between	random	variables.	

Par44on	func4on:	difficult	to	
compute	

•  Goal:	Obtain	good	es4mates	of												.			



Restricted	Boltzmann	Machines	

The	energy	of	the	joint	configura4on:		

model	parameters.	

Markov	random	fields,	Boltzmann	machines,	log-linear	models.	

are	connected	to	stochas4c	binary	hidden	
variables 	 								.		

Stochas4c	binary	visible	variables	

Image						visible	variables	

		hidden	variables	

Bipar4te		
Structure	

Probability	of	the	joint	configura4on	is	given	by	the	Boltzmann	
distribu4on:	

Tractable	 Intractable	



• 	Which	model	is	a	beWer	genera4ve	model?	

Genera4ve	Model	

Model	A	 Model	B	



• 	More	generally,	how	can	we	choose	between	models?	

RBM	samples	 Mixture	of	Bernoulli’s	

Compare													on	the	valida4on	set:		

Need	an	es4mate	of	Par44on	Func4on		

Model	Selec4on	



• 	More	generally,	how	can	we	choose	between	models?	

RBM	samples	 Mixture	of	Bernoulli’s	

Model	Selec4on	

MoB,	test	log-probability: 	 	-137.64	nats/digit		
RBM,	test	log-probability: 	 			-86.35	nats/digit		

Difference	of	about	50	nats!	



Simple	Importance	Sampling	
• 	Two	distribu4ons	defined	on							with	probability	distribu4on	
func4ons																																													and	

Proposal,	easy	to	sample	
from	distribu4on		

Intractable,	target	
distribu4on	

• 	In	high-dimensional	spaces,	the	variance	will	be	high	(or	infinite).	

• 	Under	mild	condi4ons:	

• 	Get	unbiased	es4mate	of	using	Monte	Carlo	approxima4on:		



Annealed	Importance	Sampling	
• 	Consider	a	sequence	of	intermediate	distribu4ons:	
																																with																							and																						.	

• 	One	general	way	is	to	use	geometric	averages:	

with																																															chosen	by	the	user.		

inverse	temperature	
• 	If												is	the	uniform	distribu4on,	then:	

hence	the	term	annealing.		

Annealing by Averaging Moments, 
Grosse et al., NIPS, 2013

(Neal, Statistics and Computing, 2001 )



• 	Move	gradually	from	hoWer	distribu4on	to	colder	distribu4on:		

Problem setup

Geometric averages

Geometric averages:

f�(x) = f
0

(x)1��f
1

(x)�

This is what basically everyone uses, since it’s easy to compute

If f
0

is the uniform distribution, this becomes

f�(x) = f
1

(x)� ,

which explains the term “annealing”

Think of � as an inverse temperature

Roger Grosse (joint work with Chris Maddison, Ruslan Salakhutdinov)Annealing between distributions by averaging moments May 22, 2013 4 / 22

• 	Need	to	define	transi4on	operator																						that	leaves					
invariant	(e.g.	Gibbs	sampling)	–	Easy	to	implement!	

Annealed	Importance	Sampling	



RBMs	with	Geometric	Averages	

Samples	from	target	
distribu4on		

AIS	with	geometric	
averages	

• 	Restricted	Boltzmann	Machines	trained	on	MNIST.		



Problems	with	Undirected	Models	
• 	AIS	provides	an	unbiased	es4mator:																												.	In	general,	
we	are	interested	in	es4ma4ng		

underes4mate	overes4mate	

Stochas4c	lower	
bound!	

• 	By	Jensen’s	inequality:		

• 	Compute	log-probability	on	the	test	set:		

• 	By	Markov’s	inequality:	very	unlikely	to	overes4mate		



Mo4va4on:	RBM	Sampling	
Run	Markov	chain	(alterna4ng	Gibbs	Sampling):	



Run	Markov	chain	(alterna4ng	Gibbs	Sampling):	

Random	

Mo4va4on:	RBM	Sampling	



Run	Markov	chain	(alterna4ng	Gibbs	Sampling):	

Random	

Mo4va4on:	RBM	Sampling	



Run	Markov	chain	(alterna4ng	Gibbs	Sampling):	

Random	 V	

Mo4va4on:	RBM	Sampling	



Run	Markov	chain	(alterna4ng	Gibbs	Sampling):	

Random	 V	

Mo4va4on:	RBM	Sampling	



Run	Markov	chain	(alterna4ng	Gibbs	Sampling):	

…	
Random	 V	 T=	infinity	

Equilibrium	
Distribu4on	

1	Gibbs	step:	Transi4on	operator	T.			

Mo4va4on:	Sampling	



Run	Markov	chain	(alterna4ng	Gibbs	Sampling):	

…	
Random	 V	 T=	1000	

Pretend:	
Equilibrium	
Distribu4on	

1	Gibbs	step:	Transi4on	operator	T.			

Mo4va4on:	Sampling	



Unrolled	RBM	as	a	Deep	
	Genera4ve	Model	

Random	(uniform)	



Unrolled	RBM	as	a	Deep	
	Genera4ve	Model	

…	

Random	(uniform)	



Unrolled	RBM	as	a	Deep	
	Genera4ve	Model	

…	

Random	(uniform)	



Unrolled	RBM	as	a	Deep	
	Genera4ve	Model	

…	

Random	(uniform)	



Unrolled	RBM	as	a	Deep	
	Genera4ve	Model	

Observed	Data	

…	

Random	(uniform)	



Unrolled	RBM	as	a	Deep	
	Genera4ve	Model	

Observed	Data	

…	

Random	(uniform)	

• 	If	we	use	infinite	number	of	layers,	
then:	

• 	Otherwise,	deep	genera4ve	model	is	
just	an	approxima4on	to	an	RBM.		

(Burda, Grosse, Salakhutdinov, AISTATS 2015)



• 	Let	us	consider																													where	v	is	
observed	and	h	is	unobserved.		

…

Reverse	AIS	Es4mator	(RAISE)	

• 	Define	the	following	genera4ve	
process	(sequence	of	AIS	distribu2ons):	

• 	Genera4ve	model,	that	we	call	the	
annealing	model:	

(Burda, Grosse, Salakhutdinov, AISTATS 2015)



Reverse	AIS	Es4mator	(RAISE)	
• 	As	K	goes	to	infinity:	

• 	We	would	like	to	es4mate																	.		

Observed	Data	

…

Assume	tractable,	which	is	
the	case	for	RBMs	

• 	Can	be	easily	extended	to	non-tractable	
posteriors,	e.g.	DBMs,	DBNs.	

• 	We	use	reverse	chain	as	our	proposal:	



Reverse	AIS	Es4mator	(RAISE)	
• 	We	now	have	our	genera4ve	model	(theore4cal	construct):	

• 	Proposal	starts	at	the	data	and	melts	the	distribu4on:	

• 	We	then	obtain:	

• 	Tends	to	underes4mate	rather	than	overes4mate	log-probs!		



MNIST		
• 	RBM	with	500	hidden	units	trained	on	MNIST.		

• 	Ini4al	distribu4on	is	uniform:	AIS	is	off	by	20	nats!	



Omniglot	Dataset	
• 		RBM	with	500	hidden	units	trained	on	Omniglot.		

AIS estimates
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MNIST	and	Omniglot	Results	

• 	CSL:	Conserva4ve	Sampling-based	Log-likelihood	(CSL)	es4mator		
of	Bengio	et.	al.			

• 	RAISE	errs	on	the	side	of	underes4ma4ng	the	log-likelihood.		

• 	Note	that	the	gap	is	very	small.	

Bengio, Yao, Cho. Bounding the test log- 
likelihood of generative models, 2013



DBMs	and	DBNs	

Deep	Boltzmann	Machine		 Deep	Believe	Network	



Decoder-Based	Models	
• 	Decoder-Based	Models:	Transform	samples	from	some	simple	
distribu4on	(e.g.	normal)	to	the	data	manifold:	

Ø  Varia4onal	Autoencoders	(VAEs)	(Knigma	
and	Welling,	2014)		

Ø  Genera4ve	Adversarial	Networks	(GANs)	
(Goodfellow	et.al.,	2014)	

Ø  Genera4ve	Moment	Matching	Networks	
(GMMNs)	(Li	&	Swersky,	2015;	Dziugaite	et	
al.,	2015)	

Determinis4c	neural	network	
Genera4ve	
Process	



Decoder-Based	Models	
• 	Decoder-Based	Models:	Transform	samples	from	some	simple	
distribu4on	(e.g.	normal)	to	the	data	manifold:	

Ø  Varia4onal	Autoencoders	(VAEs)	(Knigma	
and	Welling,	2014)		

Ø  Genera4ve	Adversarial	Networks	(GANs)	
(Goodfellow	et.al.,	2014)	

Ø  Genera4ve	Moment	Matching	Networks	
(GMMNs)	(Li	&	Swersky,	2015;	Dziugaite	et	
al.,	2015)	

Determinis4c	neural	network	
Genera4ve	
Process	

AIS can be used to properly 
evaluate decoder-based models
(Wu, Burda, Salakhutdinov, Grosse, 2016)



Talk	Roadmap	

•  Defini4on	of	Neural	Networks	
•  Training	Neural	Networks		
•  Recent	Op4miza4on	/	Regulariza4on	Techniques	

Part	1:	Supervised	Learning:	Deep	Networks		

Part	2:	Unsupervised	Learning:	Learning	Deep	
Genera4ve	Models	

Part	3:	Open	Research	Problems	



(Some)	Open	Problems	

•  Unsupervised	Learning	/	Transfer	Learning	/	
One-Shot	Learning	

•  Reasoning,	AWen4on,	and	Memory	

•  Natural	Language	Understanding	

•  Deep	Reinforcement	Learning		



(Some)	Open	Problems	

•  Unsupervised	Learning	/	Transfer	Learning	/	
One-Shot	Learning	

•  Reasoning,	AWen4on,	and	Memory	

•  Natural	Language	Understanding	

•  Deep	Reinforcement	Learning		



Decoder	

Sequence	to	Sequence	Learning	

•  RNN	Encoder-Decoders	
for	Machine	Transla4on	
(Sutskever	et	al.	2014;	
Cho	et	al.	2014;	
Kalchbrenner	et	al.	2013,	
Srivastava	et.al.,	2015)	Input	Sequence	

Encoder	

Learned	
Representa7on	

Output	Sequence	



Encoder	

Sentence	 Generate	Forward	Sentence	

Generate	Previous	Sentence	
Skip-Thought	Model		

(Kiros et al., NIPS 2015)



Learning	Objec4ve	
• 	Objec4ve:	The	sum	of	the	log-probabili4es	for	the	next	and	
previous	sentences	condi4oned	on	the	encoder	representa4on:	

representa4on	of	
encoder	

Forward	sentence		 Previous	sentence		

• 	Data:	Book-11K	corpus:	



Seman4c	Relatedness		

• 	Our	models	outperform	all	previous	systems	from	the	SemEval	
2014	compe44on.		

SemEval	
2014	sub-
missions	

Results	
reported	
by	Tai	et.al.	

Ours	

(Kiros et al., NIPS 2015)



Seman4c	Relatedness		
Recurrent	Neural	Network	

• 	How	similar	the	two	sentences	are	on	the	scale	1	to	5?	

A	man	is	driving	a	car.	 A	car	is	being	driven	by	a	man.	

Ground	Truth	5.0			 	 		Predic4on	4.9		

A	girl	is	looking	at	a	
woman	in	costume.	

A	girl	in	costume	looks	like	
a	woman.	

A	person	is	performing	
tricks	on	a	motorcycle	

The	performer	is	tricking	a	
person	on	a	motorcycle		

Ground	Truth	2.9			 	 		Predic4on	3.5		

Ground	Truth	2.6			 	 		Predic4on	4.4		



	Paraphrase	Detec4on	
•  Microsos	Research	Paraphrase	Corpus:	For	two	sentences	one	

must	predict	whether	or	not	they	are	paraphrases.		

•  The	training	set	
contains	4076	sentence	
pairs	(2753	are	posi4ve)		

•  The	test	set	contains	
1725	pairs	(1147	are	
posi4ve).	

Recursive	
Auto-
encoders	

Best	
published	
results	

Ours	



Neural	Story	Telling	
Sample	from	the	Genera7ve	Model	
(recurrent	neural	network):	

The	sun	had	risen	from	the	ocean,	making	her	feel	more	alive	
than	normal	.	She	is	beau4ful,	but	the	truth	is	that	I	do	not	
know	what	to	do.	The	sun	was	just	star4ng	to	fade	away,	
leaving	people	scaWered	around	the	Atlan4c	Ocean.		

She	was	in	love	with	him	for	the	first	
4me	in	months,	so	she	had	no	
inten4on	of	escaping.		

(Kiros et al., NIPS 2015)



Recurrent	Neural	Network		

x1	 x2	 x3	

h1	 h2	 h3	

Nonlinearity		 Hidden	State		at	
previous	4me	step	

Input	at	4me	
step	t	



Mul4plica4ve	Integra4on	

• 	Replace	

• 	With		

• 	Or	more	generally	

Wu et al., NIPS 2016



“Who	Did	What”	Dataset		
• 	Document:	Japanese	prime	minister	Taro	Aso	said	on	Friday	he	
would	call	for	stronger	monitoring	of	interna4onal	finance	at	the	
G20	summit	next	week……	US	treasury	secretary	Timothy	
Geithner	has	said	president	Barack	Obama		would	discuss	new	
global	financial	regulatory	standards	at	the	London	summit.			

• 	Query:		US	president	Barack	will	push	higher	financial	
regulatory	standards	for	across	the	globe	at	the	upcoming	G20	
summit	in	London	XXX	said	on	Thursday		

• 	Answer:		Timothy	Geithner		

Onishi, Wang, Bansal, Gimpel, McAllester. 
Who did what: A large-scale person-centered 
cloze dataset. EMNLP, 2016.



Represen4ng	Document/Query	
• 	Forward	RNN	reads	sentences			
from	les	to	right:	

• 	Backward	RNN	reads	sentences	
from	right	to	les:	

• 	The	hidden	states	are	then	concatenated:	

• 		Use	GRUs	to	encode	a	document	and	a	query:	



Ø  use	the	element-wise	mul4plica4on	
operator	to	model	the	interac4ons	
between								and	

Gated	AWen4on	(GA)	Mechanism		
• 	For	each	word	in	document	D,	we	form	a	token-specific	
representa4on	of	the	query	Q:	

(Dhingra, Liu, Yang, Cohen, Salakhutdinov, 2016)



Mul4-hop	Architecture	
• 	Many	QA	tasks	require	reasoning	over	mul4ple	sentences.		
• 	Need	to	performs	several	passes	over	the	context.	



Affect	of	Mul4plica4ve	Ga4ng		
• 	Performance	of	different	ga4ng	func4ons	on	“Who	did	
What”	(WDW)	dataset.	





(Some)	Open	Problems	

•  Unsupervised	Learning	/	Transfer	Learning	/	
One-Shot	Learning	

•  Reasoning	and	Natural	Language	
Understanding	

•  Deep	Reinforcement	Learning		



One-Shot	Learning	
“zarc” 

(Lake, Salakhutdinov, Tenenbaum, Science, 2015) 



One-Shot	Learning	
“zarc” “segway” 

How	can	we	learn	a	novel	concept	–	a	high	dimensional	
sta4s4cal	object	–	from	few	examples.			

(Lake, Salakhutdinov, Tenenbaum, Science, 2015) 



One-Shot	Learning:		
Humans	vs.	Machines	



Reinforcement	Learning	

Figure	credit:	Nando	de	Freitas	

(Mnih et al., 2014, Rusu et al., 2015, Wang et al., 2015)

• 	Can	a	single	network	play	
many	games	at	once?	

• 	Can	we	learn	new	games	
faster	by	using	knowledge	
about	the	previous	games?	



Actor-Mimic	Net	in	Ac4on	
• 	The	mul4task	network	can	match	expert	performance	on	8	
games	(we	are	extending	this	to	more	games).	

(Parisotto, Ba, Salakhutdinov, ICLR 2016) 



Transfer	Learning	

Star	Gunner	

• 	Can	the	network	learn	new	games	faster	by	leveraging	
knowledge	about	the	previous	games	it	learned.		

Transfer	 No	Transfer	



Summary	
•  Efficient	learning	algorithms	for	Deep	Unsupervised	Models	

•  Deep	models	improve	the	current	state-of-the	art	in	many	
applica4on	domains:	
Ø  Object	recogni4on	and	detec4on,	text	and	image	retrieval,	handwriWen	

character	and	speech	recogni4on,	and	others.	

HMM	decoder	

Speech	Recogni7on	

sunset,	pacific	ocean,	
beach,	seashore	

Mul7modal	Data	
Object	Detec7on	

Text	&	image	retrieval	/		
Object	recogni7on	

Learning	a	Category	
Hierarchy	

mosque,	tower,	
building,	cathedral,	
dome,	castle	

Image	Tagging	



Thank	you	


