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Talk Roadmap

e Basic Building Blocks:
> Sparse Coding

> Autoencoders

e Deep Generative Models

> Restricted Boltzmann Machines
> Deep Belief Network, Deep Boltzmann Machines

» Helmholtz Machines / Variational Autoencoders

* Generative Adversarial Networks

* Model Evaluation



Generative Adversarial Networks

* There is no explicit definition of the density for p(x) — Only need to
be able to sample from it.

* No variational learning, no maximum-likelihood estimation, no
MCMC. How?

* By playing a game!



Generative Adversarial Networks

* Set up a game between two players:

> Discriminator D

> Generator G

e Discriminator D tries to discriminate between:

> A sample from the data distribution.

> And a sample from the generator G.

* The Generator G attempts to “fool” D by generating samples that
are hard for D to distinguish from the real data.

(Generative Adversarial Networks, Goodfellow et al., NIPS 2014)



Generative Adversarial Networks
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Slide Credit: Ian Goodfellow



Generative Adversarial Networks
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Generative Adversarial Networks
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Generative Adversarial Networks

Generator: generate Samples

* Minimax value function that D would classify as real

m&n mgXV(D, G) = Fo o pias () log D(x)] + Eznp.(2) log(1 — D(G(2)))]

| ] | |

Discriminator: Discriminator: Classify Discriminator: Classify
Pushes up data as being real generator samples as
being fake
Generator:

Pushes down

e Optimal strategy for Discriminator is:

. pdata(x)
D(x) B pdata(aj) _I_pmodel(x)




DCGAN Architecture
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(Radford, Metz, Chintalaet, 2015)



LSUN Bedrooms: Samples

(Radford, Metz, Chintalaet, 2015)



Training

(Salimans et. al., 2016)
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(Salimans et. al., 2016)



ImageNet: Cherry-Picked Results

* Open Question: How can we quantitatively evaluate these models!

Slide Credit: lan Goodfellow
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Markov Random Fields

Graphical Models: Powerful framework for representing
dependency structure between random variables.

1 o fa(x)
Z19) P (CE(x:0)) = g(g)

O—CO0—0O0—-C0O—0 Partition function: difficult to

O-O-O-O—O  compute

Pg (X) —

* Goal: Obtain good estimates of Z(4).



Restricted Boltzmann Machines

hidden variables
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Probability of the joint configuration is given by the Boltzmann
distribution:
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Tractable Intractable

Markov random fields, Boltzmann machines, log-linear models.



Generative Model

* Which model is a better generative model?
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Model A
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Model Selection

* More generally, how can we choose between models?
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samples Mixture of Bernoulli’s

Compare P(x) on the validation set: P(x) = f(x)/Z.

Need an estimate of Partition Function 2



Model Selection

* More generally, how can we choose between models?
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RBM samples Mixture of Bernoulli’s

MoB, test log-probability: -137.64 nats/digit
RBM, test log-probability: -86.35 nats/digit

Difference of about 50 nats!



Simple Importance Sampling

e Two distributions defined on X’ with probability distribution
functions pini(x) = fini(x)/ 20 and Pret(X) = figt(X)/ Zigt
§

J
~
Proposal, easy to sample Intractable, target
from distribution distribution

e Under mild conditions:

Zigt = Z f tgt ftgt x) X Pini(X)

plm <X>

e Get unbiased estimate of using Monte Carlo approximation:

ftgt (X
> L3 um g,

m—1 p1n1<X i )
* In high-dimensional spaces, the variance will be high (or infinite).

m




Annealed Importance Sampling

e Consider a sequence of intermediate distributions:
Po; P1, -, PK with pp = pinj and PK = Dtgt.

e One general way is to use geometric averages:
pa(x) = f3(x)/ 25 = fii(x)' 7 frat(%)° /) 25

with 0 = 3y < 51 < ... < Bk =1 chosen by the user.

o If Pini is the uniform distribution, then:
_— inverse temperature

pﬁ (X) — ftgt (X)B/Zﬁ Annealing by Averaging Moments,

Grosse et al., NIPS, 2013

hence the term annealing.
(Neal, Statistics and Computing, 2001 )



Annealed Importance Sampling

 Move gradually from hotter distribution to colder distribution:

A~ N\

* Need to define transition operator Tk(X/‘X> that leaves Py

invariant (e.g. Gibbs sampling) — Easy to implement!



RBMs with Geometric Averages

e Restricted Boltzmann Machines trained on MNIST.
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beta = 0.00

Samples from target AlS with geometric
distribution averages



Problems with Undirected Models

e AIS provides an unbiased estimator: E[Ztgt] = Ziot. In general,
we are interested in estimating log Zi.t

e By Jensen’s inequality:

t[log ZAtgt] < log t[ZAtgt] = log Zigt

e By Markov’s inequality: very unlikely to overestimate log Ztgt

Pr(log ZAtgt > log Ztgt + b) < €_b Stochastic lower

. bound!
* Compute log-probability on the test set:

g p(X)= log £ (x) -
/ /

overestimate underestimate



Motivation: RBM Sampling

Run Markov chain (alternating Gibbs Sampling):
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Motivation: RBM Sampling

Run Markov chain (alternating Gibbs Sampling):
P(h|v)

hOO
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Random

P(n|v) P(hj|v) P(h; = 1|v) =

1 + eXp(— Zl Wz’jvi — CLj)

|
b.z



Motivation: RBM Sampling

Run Markov chain (alternating Gibbs Sampling):
P(h|v)

hOO
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Random
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Motivation: RBM Sampling

Run Markov chain (alternating Gibbs Sampling):
P(h|v)

hOO h OO
v OOO OOO

Random

1
P(h|v) P(h;|v) — 1lv) =
() = 1TP0st) Py =) = ey
1

Vh P h P — 1lh) =
(Vi) H i) Ploc= 1) = o S iy~ )




Motivation: Sampling

Run Markov chain (alternating Gibbs Sampling):
P(h|v)

hOO hOO hOO

v OOO OOO OOO

Random T=infinity
N\ J
Y oo .
1 Gibbs step: Transition operator T. Equilibrium
Distribution
1
P(h|v) P(h;|v P(hj=1 —
(hlv) H ilv) v) =+ P i S A——

1

P(v|h) P(vi|h) P(v; = 1]h) =
(v|h) H ) Pl =1h) = §




Motivation: Sampling

Run Markov chain (alternating Gibbs Sampling):
P(h|v)

hOO hOO hOO

v OOO OOO OOO

Random T=1000
. J
Y T Pretend:
1 Gibbs step: Transition operator T. Equilibrium
| Distribution
P(hlv) = HP (hjlv) P(h; =1[v) = T S —
1

P(vh) = HPvz|h P(v; = 1|h) =

1 + eXp(— Zj Wz’jhj — bz)



Unrolled RBM as a Deep
Generative Model

Random (uniform)
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Unrolled RBM as a Deep
Generative Model

Random (uniform)
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Unrolled RBM as a Deep
Generative Model
Random (uniform)

OO0 v

* If we use infinite number of layers,

1 WT then:
060 v Pge'n.(V) — PRBA{(V)

l, w!  Otherwise, deep generative model is

OO h just an approximation to an RBM.
iw
vOOO0

Observed Data
(Burda, Grosse, Salakhutdinov, AISTATS 2015)



Reverse AIS Estimator (RAISE)

e Let us consider X = {v, h} wherevis

OOO V0 observed and h is unobserved.

1 0 e Define the following generative
process (sequence of AlS distributions):
Ty(xk[xp—1) i

cee Prwd(X0: 1) = Po(X0) H Ty (xg|xg—1)

OO0 vi-1 k1
-
1 0.999W e Generative model, that we call the

OO h annealing model:
3 Vo= Y ok vi)
Pann\VK ) = Ptwd\X0: K —1, K, VK
OVC}?O

X0 K10

(Burda, Grosse, Salakhutdinov, AISTATS 2015)



Reverse AIS Estimator (RAISE)

e As K goes to infinity:

p Pin(x) = P X
000 (x) = Prm(X)

* We would like to estimate p(Vtest)-

0.000W' £ J 0
cee * We use reverse chain as our proposal:
vii.1 OO0 Grev(X0: 1 —1, e[ Viest) =

aaww T K
O.OOSWTt 1 0-999W pet (g | Viest) H T(xp—1]x)

OO nx

k=1
(),999W—r t 1 \%% T Assume tractable, which is
OOO the case for RBMs
Observed Data * Can be easily extended to non-tractable

VK posteriors, e.g. DBMs, DBNs.



Reverse AIS Estimator (RAISE)

 We now have our generative model (theoretical construct):
K

Prwa(x0:5) = po(x0) | | Th(xglxp—1)
k=1

e Proposal starts at the data and melts the distribution:
K

Grev(X0-5—1, D¢ | Viest) = Prat(hic|Viest) | | Tr(xr—11x)
k=1
e \We then obtain:

P, ann(Vtest> — Eqrev [fde]

(rev

= f k+1<Xk

e Tends to underestimate rather than overestimate log-probs!



MNIST

e RBM with 500 hidden units trained on MNIST.
e Initial distribution is uniform: AlS is off by 20 nats!

20 intermediate distributions

set log p

S

o

|
average test

® o
o O
\ﬁ
i
.y
>
(0p)
m

10’ 107 10° 10" 10°



Omniglot Dataset

e RBM with 500 hidden units trained on Omniglot.
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MNIST and Omniglot Results

uniform
Model exact CSL RAISE AIS
mnistCD1-20 -164.50 -185.74 -165.33 -164.51
mnistPCD-20 -150.11 -152.13 -150.58 -150.04
mnistCD1-500 — -566.91 -150.78 -106.52
mnistPCD-500 — -138.76 -101.07 -99.99
mnistCD25-500 — -145.26 -88.51 -86.42
omniPCD-1000 — -144.25 -100.47 -100.45

e RAISE errs on the side of underestimating the log-likelihood.

* Note that the gap is very small.

e CSL: Conservative Sampling-based Log-likelihood (CSL) estimator
of Bengio et. al.

Bengio, Yao, Cho. Bounding the test log-
likelihood of generative models, 2013



DBMs and DBNs

Deep Boltzmann Machine
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Decoder-Based Models

* Decoder-Based Models: Transform samples from some simple
distribution (e.g. normal) to the data manifold:

p(x,z) = p(x|z)p(z)

Z
OO0

OOOOOO0

v
OOOOOO0

v
OO0

1
S

Generative
Process

S~

Deterministic neural network

Variational Autoencoders (VAEs) (Knigma
and Welling, 2014)

Generative Adversarial Networks (GANs)
(Goodfellow et.al., 2014)

Generative Moment Matching Networks
(GMMNs) (Li & Swersky, 2015; Dziugaite et
al., 2015)



Decoder-Based Models

* Decoder-Based Models: Transform samples from some simple
distribution (e.g. normal) to the data manifold:

Z
OO0

OOOOOO0

v

OOOOOO0

v
OO0

1
S

p(x,2) = p(x|z)p(z)

Generative S~

Process Deterministic neural network

v

>  Variational Autoencoders (VAEs) (Knigma
and Welling, 2014)

>  Generative Adversarial Networks (GANSs)
(Goodfellow et.al., 2014)

AIS can be used to properly tworks

evaluate decoder-based models [V82"€ €t
(Wu, Burda, Salakhutdinov, Grosse, 2016)




Talk Roadmap
Part 1: Supervised Learning: Deep Networks

e Definition of Neural Networks
* Training Neural Networks
* Recent Optimization / Regularization Techniques

Part 2: Unsupervised Learning: Learning Deep
Generative Models

Part 3: Open Research Problems



(Some) Open Problems

Unsupervised Learning / Transfer Learning /
One-Shot Learning

Reasoning, Attention, and Memory
Natural Language Understanding

Deep Reinforcement Learning
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Sequence to Sequence Learning

Learned Output Sequence

Representation

Encoder

* RNN Encoder-Decoders
for Machine Translation
(Sutskever et al. 2014;
Cho et al. 2014;
Kalchbrenner et al. 2013,
Srivastava et.al., 2015)

v v

Decoder

Input Sequence



Skip-Thought Model

Encoder

Sentence

Generate Previous Sentence

Generate Forward Sentence
(Kiros et al., NIPS 2015)



Learning Objective

* Objective: The sum of the log-probabilities for the next and
previous sentences conditioned on the encoder representation:

representation of

encoder \
E log P(w Z+1\wz+1, ) + § log P(w;_ 1’“% 15 i)
g J t L J
Y Y
Forward sentence Previous sentence

e Data: Book-11K corpus:

# of books | # of sentences | # of words | # of unique words

11,038 | 74,004,228 | 984,846,357 | 1,316,420



Semantic Relatedness

Method T p MSE

SemEval [ Illinois-LH [18] 0.7993 0.7538 0.3692

2014 sub- J  UNAL-NLP [19] 0.8070 0.7489  0.3550

. Meaning Factory [20] 0.8268 0.7721 0.3224
MISSIONS | ECNU [21] 0.8414 - -

~ Mean vectors [22] 0.7577 0.6738 0.4557

Results DT-RNN [23] 0.7923 0.7319 0.3822

by Tai et.al. ) LSTM [22] 0.8528 0.7911 0.2831

Bidirectional LSTM [22] 0.8567 0.7966 0.2736

- Dependency Tree-LSTM [22] 0.8676 0.8083 0.2532

" uni-skip 0.8477 0.7780 0.2872

J bi-skip 0.8405 0.7696  0.2995

Ours combine-skip 0.8584 0.7916 0.2687

_  combine-skip+COCO 0.8655 0.7995 0.2561

* Our models outperform all previous systems from the SemEval

2014 competition.

(Kiros et al., NIPS 2015)



Semantic Relatedness
Recurrent Neural Network

* How similar the two sentences are on the scale 1to 57

Ground Truth 5.0 Prediction 4.9
[ A man is driving a car. A car is being driven by a man. J
Ground Truth 2.9 Prediction 3.5
4 )
A girl is looking at a A girl in costume looks like
woman in costume. a woman.
\_ J
Ground Truth 2.6 Prediction 4.4
é )
A person is performing The performer is tricking a
tricks on a motorcycle person on a motorcycle
\_ .




Paraphrase Detection

* Microsoft Research Paraphrase Corpus: For two sentences one
must predict whether or not they are paraphrases.

Method Acc F1
Recursive [ feats [24] 73.2
Auto- RAE+DP [24] 72.6
encoders | RAE+feats [24]  74.2
_ RAE+DP+feats [24] 76.8 83.6
Best " FHS [25] 75.0 82.7
published J PE [26] 76.1  82.7
results WDDP [27] 75.6 83.0
_ MTMETRICS [28] 774 84.1
(" uni-skip 73.0 81.9
0 bi-skip 71.2 81.2
Urs < combine-skip 73.0  82.0
_ combine-skip + feats 75.8  83.0

The training set
contains 4076 sentence
pairs (2753 are positive)

The test set contains

1725 pairs (1147 are
positive).



Neural Story Telling

Sample from the Generative Model
(recurrent neural network):

She was in love with him for the first
time in months, so she had no
intention of escaping.

The sun had risen from the ocean, making her feel more alive
than normal . She is beautiful, but the truth is that | do not
know what to do. The sun was just starting to fade away,
leaving people scattered around the Atlantic Ocean.

(Kiros et al., NIPS 2015)



Recurrent Neural Network

ht — ¢(Uht_1 WXt b)

/NN

Nonlinearity Hidden State at Input at time
previous time step step t




Multiplicative Integration

e Replace 3.0
w— yanilla-RNN
2.7 == MI-RNN-simple
¢(Uh -+ “" X + b) O ~&~- MI-RNN-general
S 2.4
c
=
° W|th g 2.1
]
1.8
#»(Uh © Wx + b)
1.5 - -
0 5 10 15 20 25
e Or more generally number of epochs

$(a © Uh® Wx + 8, © Uh + B, ©® Wx + b)

Wu et al., NIPS 2016



“Who Did What” Dataset

 Document: Japanese prime minister Taro Aso said on Friday he
would call for stronger monitoring of international finance at the
G20 summit next week...... US treasury secretary Timothy
Geithner has said president Barack Obama would discuss new
global financial regulatory standards at the London summit.

e Query: US president Barack will push higher financial
regulatory standards for across the globe at the upcoming G20
summit in London XXX said on Thursday

 Answer: Timothy Geithner

Onishi, Wang, Bansal, Gimpel, McAllester.

Who did what: A large-scale person-centered
cloze dataset. EMNLP, 2016.



Representing Document/Query

peemeegresmesgresomeegreo e oo o Egrward RNN reads sentences
5 [ Re [ | Be [ he [B] B | £ he |1 from left to right:

[h>17 h>27 e 7|D|]

________________________________________________ * Backward RNN reads sentences

T T T T T T from righ’f to left:

yi

a person sking down a mountain N ) <
h1, ho,.., hp]

* The hidden states are then concatenated:

« > <
GRU = [h1,hg, ..., hypy], hi=[hq, ]

* Use GRUs to encode a document and a query:

D =GRUp(X) Q=CGRUG(Y)



Gated Attention (GA) Mechanism

* For each word in document D, we form a token-specific
representation of the query Q:

X visited prague —m az — SOftma,X(QT dz)
(query)
g = Quoy
[ T, =d; ©g; }
> use the element-wise multiplication

operator to model the interactions
between d; and ¢;

Obama

met

prague ———»

(Dhingra, Liu, Yang, Cohen, Salakhutdinov, 2016)



Multi-hop Architecture

* Many QA tasks require reasoning over multiple sentences.

* Need to performs several passes over the context.

X visited prague —m

(query)

Obama

met

P(Obamald, q)

Softmax

(document) < K Layers >



Affect of Multiplicative Gating

* Performance of different gating functions on “Who did
What” (WDW) dataset.

Gating Function Accuracy
Val | Test
Sum 62.9 | 62.1
Concatenate 63.1 | 61.1
Multiply 67.8 | 67.0

Model Strict Relaxed
Val | Test | Val | Test

Human f = 84.0 | - -
Attentive Reader | - 530 - 550
AS Reader f - 570 | - 590
Stanford AR T - 640 | - 650
NSE 7 66.5 66.2 | 67.0 66.7
GA Reader-- } - 570 | - 600
GA Reader 67.8 67.0 | 664 66.3
GA Reader (+feature) | 70.1 69.5 | 70.9 70.6




Model ' CNN | DailyMail | CBT-NE | CBT-CN
' Val Test | Val Test | Val Test | Val Test
Humans (query) { - - - - - 520, - 644
Humans (context + query) f - - - - - 816, - 816
LSTMs (context + query) { - - - - | 512 418 | 62.6 56.0
Deep LSTM Reader 1 550 570 633 622 - - - -
Attentive Reader 1 616 630 705 690 - - - -
Impatient Reader 61.8 638 690 680 - - - -
MemNets 1 634 668 - - | 704 666 | 642 63.0
AS Reader 1 686 695 750 739 | 738 686 688 634
DER Network 713 729 | - - - - - -
Stanford AR (relabeling) 1 738 736 776 766 | - - - -
Iterative Attentive Reader 1 726 733 - - 752 686 | 72.1 69.2
EpiReader f 734 740 - - | 753 697 | 715 674
AoA Reader t 73.1 744 | - - | 778 720 | 722 694
ReasoNet 1 729 747 | 776 766 | - - - -
NSE t - - - - | 782 732 743 719
MemNets (ensemble) T 66.2 694 - - - - - -
AS Reader (ensemble) T 739 754 787 717 762 710 71.1 68.9
Stanford AR (relabeling,.ensemble) f | 77.2 77.6 | 80.2 79.2 - - - -
Iterative Attentive Reader (ensemble) ¥ | 75.2 76.1 - - 769 720 | 74.1 71.0
EpiReader (ensemble) { - - - - 766 718 | 73.6 70.6
AS Reader (+BookTest) 1 1 - - - - | 805 762 832 80.8
AS Reader (+BookTest,ensemble) T 1 - - - - | 823 784 857 837
GA Reader-- 73.0 738 | 76.7 757 | 749 690  69.0 63.9
GA Reader 779 779 815 809 | 749 708 718 69.0
GA Reader (+feature) 77.3 769  80.7 800 | 76.8 725  73.1 69.6




(Some) Open Problems

* Unsupervised Learning / Transfer Learning /
One-Shot Learning

* Reasoning and Natural Language
Understanding

* Deep Reinforcement Learning



One-Shot Learning

(Lake, Salakhutdinov, Tenenbaum, Science, 2015)



One-Shot Learning

i 85
o &
me

How can we learn a novel concept — a high dimensional
statistical object — from few examples.

N
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(Lake, Salakhutdinov, Tenenbaum, Science, 2015)



One-Shot Learning:
Humans vs. Machines

]

2

V1 W VT
MM ™

M 7Y
V1 7T AT

1

JTTL

)M

Mo, W
JTIC are J74

ST LT

€

ST ™17

€€ &
€€ £
€ & £




Reinforcement Learning

* Can a single network play
many games at once?

e Can we learn new games
faster by using knowledge
about the previous games?

Figure credit: Nando de Freitas

(Mnih et al., 2014, Rusu et al., 2015, Wang et al., 2015)



Actor-Mimic Net in Action

* The multitask network can match expert performance on 8
games (we are extending this to more games).

Space Invaders Enduro

(Parisotto, Ba, Salakhutdinov, ICLR 2016)



Transfer Learning

e Can the network learn new games faster by leveraging
knowledge about the previous games it learned.

Transfer No Transfer

.

Actor-Mimic Random
500k frames

Star Gunner




Summary

» Efficient learning algorithms for Deep Unsupervised Models

Text & image retrieval / Image Tagging Learning a Category
Object recognition Hierarchy
4. % REUTERS H

=5 AP Associated Press

£Va
QN | oS

Object Detection

mosque, tower,

building, cathedral, Eﬂ

dome, castle

Multimodal Data

MM decoder
VY BN
ik e o e am sunset, pacific ocean, i
\t5iZ mer= === : beach,seashore :

 Deep models improve the current state-of-the art in many
application domains:

» Object recognition and detection, text and image retrieval, handwritten
character and speech recognition, and others.



Thank you



