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Impact	of	Deep	Learning	

• 	Speech	Recogni:on	

• 	Computer	Vision	

• 	Language	Understanding		

• 	Recommender	Systems		

• 	Drug	Discovery	and	Medical	
Image	Analysis		
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(Hinton & Salakhutdinov, Science 2006)



Example:	Understanding	Images	

Model	Samples	

• 	a	group	of	people	in	a	crowded	area	.	
• 	a	group	of	people	are	walking	and	talking	.	
• 	a	group	of	people,	standing	around	and	talking	.	

strangers,		coworkers,		conven:oneers,		
aUendants,		patrons	

TAGS:	

Nearest	Neighbor	Sentence:	
people	taking	pictures	of	a	crazy	person	



Cap:on	Genera:on	



Talk	Roadmap	

•  Defini:on	of	Neural	Networks	
•  Training	Neural	Networks		
•  Recent	Op:miza:on	/	Regulariza:on	Techniques	

Part	1:	Supervised	Learning:	Deep	Networks		

Part	2:	Unsupervised	Learning:	Learning	Deep	
Genera:ve	Models	

Part	3:	Open	Research	Ques:ons	
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Tradi:onal	Approaches	

Image	 vision	features	 Recogni:on	

Object	
detec:on	

Audio	
classifica:on	

Audio	 audio	features	
Speaker	

iden:fica:on	

Data Feature 
extraction 

Learning 
algorithm 



Computer	Vision	Features	

SIFT	

HoG	 RIFT	

Textons	

GIST	



ZCR	

Spectrogram	 MFCC	

Rolloff	Flux	
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ZCR	

Spectrogram	 MFCC	

Rolloff	Flux	

Representa:on	Learning:	
Can	we	automa:cally	learn	
these	representa:ons?	

Audio	Features	



Neural Networks Online Course 

•  Hugo’s class covers 
many other topics: 
convolutional networks, 
neural language model, 
Boltzmann machines, 
autoencoders, sparse 
coding, etc. 

•  We will use his 
material for some of the 
other lectures.  

•  Disclaimer: Some of the material and slides for this lecture were 
borrowed from Hugo Larochelle’s class on Neural Networks: 
https://sites.google.com/site/deeplearningsummerschool2016/ 



Feedforward Neural Networks 
‣  Definition of Neural Networks  

-  Forward propagation 
-  Types of units 
-  Capacity of neural networks 

‣  How to train neural nets:  
-  Loss function 
-  Backpropagation with gradient descent 

‣  More recent techniques: 
-  Dropout 
-  Batch normalization 
-  Unsupervised Pre-training 



Artificial Neuron 
•  Neuron pre-activation (or input activation): 
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•  Neuron output activation: 
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where 
      are the weights (parameters) 
      is the bias term 
      is called the activation function   
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Artificial Neuron 

Bias only changes 
the position of the 
riff 

Range is 
determined  
by  
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•  Output activation of the neuron: 

Feedforward neural network

Hugo Larochelle
D

´

epartement d’informatique

Universit

´

e de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w

>
x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x

1

xd b w

1

wd

• w

• {

• g(·) b

• h(x) = g(a(x))

• a(x) = b

(1) +W

(1)

x

⇣
a(x)i = b

(1)

i

P
j W

(1)

i,j xj

⌘

• o(x) = g

(out)(b(2) +w

(2)

>
x)

1

(from Pascal Vincent’s slides) 



Activation Function  
•  Sigmoid activation function:  
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Ø  Squashes the neuron’s 
output between 0 and 1  

Ø  Always positive 

Ø  Bounded 

Ø  Strictly Increasing  



Activation Function  
•  Rectified linear (ReLU) activation function:  

Feedforward neural network

Hugo Larochelle
D

´

epartement d’informatique

Universit

´

e de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+

P
i wixi = b+w

>
x

• h(x) = g(a(x)) = g(b+

P
i wixi)

• x

1

xd b w

1

wd

• w

• {

• g(a) = a

• g(a) = sigm(a) =

1

1+exp(�a)

• g(a) = tanh(a) =

exp(a)�exp(�a)
exp(a)+exp(�a) =

exp(2a)�1

exp(2a)+1

• g(a) = max(0, a)

• g(a) = reclin(a) = max(0, a)

• g(·) b

• h(x) = g(a(x))

• a(x) = b

(1)

+W

(1)

x

⇣
a(x)i = b

(1)

i

P
j W

(1)

i,j xj

⌘

• o(x) = g

(out)

(b

(2)

+w

(2)

>
x)

1

Ø  Bounded below by 0 
(always non-negative) 

Ø  Tends to produce units 
with sparse activities 

Ø  Not upper bounded 

Ø  Strictly increasing  



Single Hidden Layer Neural Net 
•  Hidden layer pre-activation: 
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•  Hidden layer activation: 
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•  Output layer activation: 

Output activation 
function 



Multilayer Neural Net 
•  Consider a network with L hidden layers.  

-  hidden layer activation  
   from 1 to L: 

-  layer pre-activation for k>0 
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-  output layer activation (k=L+1): 

• p(y = c|x)
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Capacity of Neural Nets 
•  Consider a single layer neural network 2Réseaux de neurones
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(from Pascal Vincent’s slides) 



Capacity of Neural Nets 
•  Consider a single layer neural network 

(from Pascal Vincent’s slides) 



Universal Approximation 
•  Universal Approximation Theorem (Hornik, 1991): 

-  “a single hidden layer neural network with a linear output 
unit can approximate any continuous function arbitrarily well, 
given enough hidden units’’ 

•  This applies for sigmoid, tanh and many other activation 
functions. 

•  However, this does not mean that there is learning algorithm that 
can find the necessary parameter values.  



Feedforward Neural Networks 
‣  How neural networks predict f(x) given an input x: 

-  Forward propagation 
-  Types of units 
-  Capacity of neural networks 

‣  How to train neural nets:  
-  Loss function 
-  Backpropagation with gradient descent 

‣  More recent techniques: 
-  Dropout 
-  Batch normalization 
-  Unsupervised Pre-training 



Training  
•  Empirical Risk Minimization: 
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Loss function  Regularizer 

•  Learning is cast as optimization.  

Ø  For classification problems, we would like to minimize 
classification error. 

Ø  Loss function can sometimes be viewed as a surrogate for 
what we want to optimize (e.g. upper bound)  



Stochastic Gradient Descend 
•  Perform updates after seeing each example:  
-  Initialize:  
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Training epoch 
= 

Iteration of all examples 

•  To train a neural net, we need: 

Ø   Loss function: 
Ø   A procedure to compute gradients: 
Ø   Regularizer and its gradient:          ,   

Feedforward neural network

Hugo Larochelle
D

´

epartement d’informatique

Universit
´
e de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• l(f(x(t)
;✓), y(t))

• r✓l(f(x(t)
;✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x

(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

r
f(x) � log f(x)y =

�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=

�e(c)

f(x)y

1

Feedforward neural network

Hugo Larochelle
D

´

epartement d’informatique

Universit
´
e de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• l(f(x(t)
;✓), y(t))

• r✓l(f(x(t)
;✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x

(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

r
f(x) � log f(x)y =

�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=

�e(c)

f(x)y

1

Feedforward neural network

Hugo Larochelle
D

´

epartement d’informatique

Universit
´
e de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• l(f(x(t)
;✓), y(t))

• r✓l(f(x(t)
;✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x

(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

r
f(x) � log f(x)y =

�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=

�e(c)

f(x)y

1

Feedforward neural network

Hugo Larochelle
D

´

epartement d’informatique

Universit
´
e de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• l(f(x(t)
;✓), y(t))

• r✓l(f(x(t)
;✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x

(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

r
f(x) � log f(x)y =

�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=

�e(c)

f(x)y

1



Computational Flow Graph  
•  Forward propagation can be represented 
as an acyclic flow graph 

•  Forward propagation can be implemented 
in a modular way: 

Ø  Each box can be an object with an fprop 
method, that computes the value of the 
box given its children 

Ø  Calling the fprop method of each box in 
the right order yields forward propagation 



•  Each object also has a bprop method 

•  By calling bprop in the reverse order, we 
obtain backpropagation 

-  it computes the gradient of the loss with 
respect to each child box.  

Computational Flow Graph  



Model Selection 
•  Training Protocol: 

-  Train your model on the Training Set  
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-  For model selection, use Validation Set  
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Ø  Hyper-parameter search: hidden layer size, learning rate, 
number of iterations/epochs, etc. 

-  Estimate generalization performance using the Test Set 

• bµ =

1
T

P
t x

(t)

• b�2
=

1
T�1

P
t(x

(t) � bµ)2

• b
⌃ =

1
T�1

P
t(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2
] = �2

E

h
b
⌃

i
= ⌃

• bµ�µp
b�2/T

• µ 2 bµ±�1.96
p

b�2/T

•
b✓ = argmax

✓
p(x(1), . . . ,x(T )

)

•
p(x(1), . . . ,x(T )

) =

Y

t

p(x(t)
)

• T�1
T

b
⌃ =

1
T

P
t(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain
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• f(x;✓)

• Dvalid Dtest
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•  Generalization is the behavior of the model on unseen 
examples.  



Early Stopping 
•  To select the number of epochs, stop training when validation set 
error increases (with some look ahead). 



Mini-batch, Momentum 
•  Make updates based on a mini-batch of examples (instead of a 
single example): 

Ø  the gradient is the average regularized loss for that mini-batch 

Ø  can give a more accurate estimate of the gradient 

Ø  can leverage matrix/matrix operations, which are more efficient 

•  Momentum: Can use an exponential average of previous 
gradients: 
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Ø  can get pass plateaus more quickly, by ‘‘gaining momentum’’ 



Feedforward Neural Networks 
‣  How neural networks predict f(x) given an input x: 

-  Forward propagation 
-  Types of units 
-  Capacity of neural networks 

‣  How to train neural nets:  
-  Loss function 
-  Backpropagation with gradient descent 

‣  More recent techniques: 
-  Dropout 
-  Batch normalization 
-  Unsupervised Pre-training 



Learning Distributed Representations 
•  Deep learning is research on learning models with multilayer 
representations 

Ø  multilayer (feed-forward) neural networks  

Ø  multilayer graphical model (deep belief network, deep Boltzmann 

machine) 

•  Each layer learns ‘‘distributed representation’’ 

Ø  Units in a layer are not mutually exclusive 

•  each unit is a separate feature of the input 

•  two units can be ‘‘active’’ at the same time 

Ø   Units do not correspond to a partitioning (clustering) of the inputs 

•  in clustering, an input can only belong to a single cluster 
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Inspiration from Visual Cortex 



Why Training is Hard 
•  First hypothesis: Hard optimization 
problem (underfitting) 

Ø  vanishing gradient problem 

Ø  saturated units block gradient 

propagation 

•  This is a well known problem in 
recurrent neural networks 



Why Training is Hard 
•  Second hypothesis: Overfitting 

Ø  we are exploring a space of complex functions 

Ø  deep nets usually have lots of parameters 

•  Might be in a high variance / low bias situation 



Why Training is Hard 
•  First hypothesis (underfitting): better optimize 

Ø  Use better optimization tools (e.g. batch-normalization, second 

order methods, such as KFAC) 

Ø  Use GPUs, distributed computing.  

•  Second hypothesis (overfitting): use better regularization 

Ø  Unsupervised pre-training 

Ø  Stochastic drop-out training 

•  For many large-scale practical problems, you will need to use both: 
better optimization and better regularization!  



Unsupervised Pre-training 
•  Initialize hidden layers using unsupervised learning 

Ø  Force network to represent latent structure of input distribution 

Ø  Encourage hidden layers to encode that structure 



Unsupervised Pre-training 
•  Initialize hidden layers using unsupervised learning 

Ø  This is a harder task than supervised learning (classification) 

Ø  Hence we expect less overfitting 



Autoencoders: Preview 
•  Feed-forward neural network trained to reproduce its input at the 
output layer 
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Université de Sherbrooke
hugo.larochelle@usherbrooke.ca

October 16, 2012

Abstract

Math for my slides “Autoencoders”.

•

h(x) = g(a(x))

= sigm(b+Wx)

•

b
x = o(

b
a(x))

= sigm(c+W

⇤
h(x))

• f(x) ⌘ b
x l(f(x)) =

P
k(bxk � xk)

2
l(f(x)) = �

P
k (xk log(bxk) + (1� xk) log(1� bxk))

1

Encoder 

For binary units 



Autoencoders: Preview 
•  Loss function for binary inputs 
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Ø  Cross-entropy error function 
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•  Loss function for real-valued inputs 

Ø  sum of squared differences 

Ø  we use a linear activation function at the output 
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Pre-training 
•  We will use a greedy, layer-wise procedure 

Ø  Train one layer at a time with unsupervised criterion 

Ø  Fix the parameters of previous hidden layers 

Ø  Previous layers can be viewed as feature extraction 



Fine-tuning 
•  Once all layers are pre-trained 

Ø  add output layer 
Ø  train the whole network using 

supervised learning 

•  We call this last phase fine-tuning 

Ø  all parameters are ‘‘tuned’’ for the 
supervised task at hand 

Ø  representation is adjusted to be more 
discriminative 



Why Training is Hard 
•  First hypothesis (underfitting): better optimize 

Ø  Use better optimization tools (e.g. batch-normalization, second 

order methods, such as KFAC) 

Ø  Use GPUs, distributed computing.  

•  Second hypothesis (overfitting): use better regularization 

Ø  Unsupervised pre-training 

Ø  Stochastic drop-out training 

•  For many large-scale practical problems, you will need to use both: 
better optimization and better regularization!  



Dropout 
•  Key idea: Cripple neural network by removing hidden units 
stochastically 

Ø  each hidden unit is set to 0 with 
probability 0.5 

Ø  hidden units cannot co-adapt to 
other units 

Ø  hidden units must be more 
generally useful 

•  Could use a different dropout 
probability, but 0.5 usually works well 



Dropout 
•  Use random binary masks m(k)  

Ø  layer pre-activation for k>0 
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Ø  hidden layer activation (k=1 to L): 
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Ø  Output activation (k=L+1) 
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Dropout at Test Time  
•  At test time, we replace the masks by their expectation 

Ø  This is simply the constant vector 0.5 if dropout probability is 0.5 

Ø  For single hidden layer: equivalent to taking the geometric average 

of all neural networks, with all possible binary masks 

•  Can be combined with unsupervised pre-training 

•  Beats regular backpropagation on many datasets 

•  Ensemble: Can be viewed as a geometric average of exponential 
number of networks.  



Why Training is Hard 
•  First hypothesis (underfitting): better optimize 

Ø  Use better optimization tools (e.g. batch-normalization, second 

order methods, such as KFAC) 

Ø  Use GPUs, distributed computing.  

•  Second hypothesis (overfitting): use better regularization 

Ø  Unsupervised pre-training 

Ø  Stochastic drop-out training 

•  For many large-scale practical problems, you will need to use both: 
better optimization and better regularization!  



Batch Normalization 
•  Normalizing the inputs will speed up training (Lecun et al. 1998) 

Ø  could normalization be useful at the level of the hidden layers? 

•  Batch normalization is an attempt to do that (Ioffe and Szegedy, 2014) 

Ø  each unit’s pre-activation is normalized (mean subtraction, stddev 

division) 

Ø  during training, mean and stddev is computed for each minibatch 

Ø  backpropagation takes into account the normalization 

Ø  at test time, the global mean / stddev is used 



Batch Normalization 

Learned linear transformation to adapt to non-linear 
activation function (𝛾 and β are trained)  and β are trained) 



•  Why normalize the pre-activation? 

Ø  can help keep the pre-activation in a non-saturating regime 
(though the linear transform                             could cancel this 
effect) 

vector, and X be the set of these inputs over the training
data set. The normalization can then be written as a trans-
formation

x̂ = Norm(x,X )

which depends not only on the given training example x
but on all examples X – each of which depends on Θ if
x is generated by another layer. For backpropagation, we
would need to compute the Jacobians

∂Norm(x,X )

∂x
and

∂Norm(x,X )

∂X
;

ignoring the latter term would lead to the explosion de-
scribed above. Within this framework, whitening the layer
inputs is expensive, as it requires computing the covari-
ance matrix Cov[x] = Ex∈X [xxT ] − E[x]E[x]T and its
inverse square root, to produce the whitened activations
Cov[x]−1/2(x − E[x]), as well as the derivatives of these
transforms for backpropagation. This motivates us to seek
an alternative that performs input normalization in a way
that is differentiable and does not require the analysis of
the entire training set after every parameter update.
Some of the previous approaches (e.g.

(Lyu & Simoncelli, 2008)) use statistics computed
over a single training example, or, in the case of image
networks, over different feature maps at a given location.
However, this changes the representation ability of a
network by discarding the absolute scale of activations.
We want to a preserve the information in the network, by
normalizing the activations in a training example relative
to the statistics of the entire training data.

3 Normalization via Mini-Batch
Statistics

Since the full whitening of each layer’s inputs is costly
and not everywhere differentiable, we make two neces-
sary simplifications. The first is that instead of whitening
the features in layer inputs and outputs jointly, we will
normalize each scalar feature independently, by making it
have the mean of zero and the variance of 1. For a layer
with d-dimensional input x = (x(1) . . . x(d)), we will nor-
malize each dimension

x̂(k) =
x(k) − E[x(k)]√

Var[x(k)]

where the expectation and variance are computed over the
training data set. As shown in (LeCun et al., 1998b), such
normalization speeds up convergence, even when the fea-
tures are not decorrelated.
Note that simply normalizing each input of a layer may

change what the layer can represent. For instance, nor-
malizing the inputs of a sigmoid would constrain them to
the linear regime of the nonlinearity. To address this, we
make sure that the transformation inserted in the network
can represent the identity transform. To accomplish this,

we introduce, for each activation x(k), a pair of parameters
γ(k),β(k), which scale and shift the normalized value:

y(k) = γ(k)x̂(k) + β(k).

These parameters are learned along with the original
model parameters, and restore the representation power
of the network. Indeed, by setting γ(k) =

√
Var[x(k)] and

β(k) = E[x(k)], we could recover the original activations,
if that were the optimal thing to do.
In the batch setting where each training step is based on

the entire training set, we would use the whole set to nor-
malize activations. However, this is impractical when us-
ing stochastic optimization. Therefore, we make the sec-
ond simplification: since we use mini-batches in stochas-
tic gradient training, each mini-batch produces estimates
of the mean and variance of each activation. This way, the
statistics used for normalization can fully participate in
the gradient backpropagation. Note that the use of mini-
batches is enabled by computation of per-dimension vari-
ances rather than joint covariances; in the joint case, reg-
ularization would be required since the mini-batch size is
likely to be smaller than the number of activations being
whitened, resulting in singular covariance matrices.
Consider a mini-batch B of size m. Since the normal-

ization is applied to each activation independently, let us
focus on a particular activation x(k) and omit k for clarity.
We havem values of this activation in the mini-batch,

B = {x1...m}.

Let the normalized values be x̂1...m, and their linear trans-
formations be y1...m. We refer to the transform

BNγ,β : x1...m → y1...m

as the Batch Normalizing Transform. We present the BN
Transform in Algorithm 1. In the algorithm, ϵ is a constant
added to the mini-batch variance for numerical stability.

Input: Values of x over a mini-batch: B = {x1...m};
Parameters to be learned: γ, β

Output: {yi = BNγ,β(xi)}

µB ←
1

m

m∑

i=1

xi // mini-batch mean

σ2
B ←

1

m

m∑

i=1

(xi − µB)
2 // mini-batch variance

x̂i ←
xi − µB√
σ2
B
+ ϵ

// normalize

yi ← γx̂i + β ≡ BNγ,β(xi) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

The BN transform can be added to a network to manip-
ulate any activation. In the notation y = BNγ,β(x), we

3

Batch Normalization 

•  Use the global mean and stddev at test time. 

Ø  removes the stochasticity of the mean and stddev 

Ø  requires a final phase where, from the first to the last hidden layer 
•  propagate all training data to that layer 
•  compute and store the global mean and stddev of each unit 

Ø  for early stopping, could use a running average 



Optimization Tricks 
•  SGD with momentum, batch-normalization, and dropout usually 
works very well 

•  Pick learning rate by running on a subset of the data 
Ø  Start with large learning rate & divide by 2 until loss does not diverge 

Ø  Decay learning rate by a factor of ~100 or more by the end of training  

•  Use ReLU nonlinearity  

•   Initialize parameters so that each feature across layers has 
similar variance. Avoid units in saturation. 

[From Marc'Aurelio Ranzato, CVPR 2014 tutorial] 



Visualization 
•  Check gradients numerically by finite differences 

•  Visualize features (features need to be uncorrelated) and have 
high variance 

•  Good training: hidden units 
are sparse across samples  

[From Marc'Aurelio Ranzato, CVPR 2014 tutorial] 



Visualization 
•  Check gradients numerically by finite differences 

•  Visualize features (features need to be uncorrelated) and have 
high variance 

•   Visualize parameters: learned features should exhibit structure 
and should be uncorrelated and are uncorrelated  



Visualization 
•  Check gradients numerically by finite differences 

•  Visualize features (features need to be uncorrelated) and have 
high variance 

•  Bad training: many hidden 
units ignore the input and/or 
exhibit strong correlations 



Computer Vision  
•  Design algorithms that can process visual data to accomplish a given task:  

Ø  For example, object recognition: Given an input image, identify 

which object it contains 



Prediction Very deep network 

…. 

High-level feature 
space 

•  Convolution 
•  Pooling 
•  Normalization 
•  Densely connected 

Deep Convolutional Nets 



Convolution 

Pooling 

… 

… 

Deep Convolutional Nets 



ConvNets: Examples 
•  Optical Character Recognition, House Number and Traffic Sign 
classification 



ConvNets: Examples 
•  Pedestrian detection 

(Sermanet et al., Pedestrian detection with unsupervised multi-stage, CVPR 2013)



ConvNets: Examples 
•  Object Detection  

Sermanet et al., OverFeat: Integrated recognition, localization, 2013
Girshick et al., Rich feature hierarchies for accurate object detection, 2013
Szegedy et al., DNN for object detection, NIPS 2013



ImageNet Dataset 
•  1.2 million images, 1000 classes 

(Deng et al., Imagenet: a large scale hierarchical image database, CVPR 2009)

Examples of Hammer 



Important	Breakthrough	
• 	Deep	Convolu:onal	Nets	for	Vision	(Supervised)		

Krizhevsky, A., Sutskever, I. and Hinton, G. E., ImageNet Classification with Deep 
Convolutional Neural Networks, NIPS, 2012. 

1.2	million	training	images	
1000	classes	



Architecture  
•  How can we select the right architecture: 

Ø  Manual tuning of features is now replaced with the manual tuning 

of architechtures 

•  Depth 

•  Width 

•  Parameter count 



How to Choose Architecture  
•  Many hyper-parameters: 

Ø  Number of layers, number of feature maps 

•  Cross Validation 

•  Grid Search (need lots of GPUs) 

•  Smarter Strategies  

Ø  Random search  

Ø  Bayesian Optimization  



AlexNet 
•  8 layers total 

•  Trained on Imagenet 
dataset [Deng et al. CVPR’09] 

•  18.2% top-5 error  

Input Image 

Layer 1: Conv + Pool 

Layer 6: Full 

Layer 3: Conv 

Softmax Output 

Layer 2: Conv + Pool 

Layer 4: Conv 

Layer 5: Conv + Pool 

Layer 7: Full 

[From Rob Fergus’ CIFAR 2016 tutorial] 



AlexNet 
•  Remove top fully connected layer 7  

•  Drop ~16 million parameters 

•  Only 1.1% drop in performance! 

Input Image 

Layer 1: Conv + Pool 

Layer 6: Full 

Layer 3: Conv 

Softmax Output 

Layer 2: Conv + Pool 

Layer 4: Conv 

Layer 5: Conv + Pool 

[From Rob Fergus’ CIFAR 2016 tutorial] 



AlexNet 
•  Let us remove upper feature extractor layers 
and fully connected: 

•  Drop ~50 million parameters 

•  33.5 drop in performance! 

•  Depth of the network is the key.  

Input Image 

Layer 1: Conv + Pool 

Layer 6: Full 

Softmax Output 

Layer 2: Conv + Pool 

Layer 5: Conv + Pool 

Ø  Layers 3,4, 6 and 7 

[From Rob Fergus’ CIFAR 2016 tutorial] 



GoogLeNet 

(Szegedy et al., Going Deep with Convolutions, 2014)

Convolution 
Pooling 
Softmax 
Other 

•  24 layer model that uses so-called inception 
module.  



GoogLeNet 
•  GoogLeNet inception module: 

Ø  Multiple filter scales at each layer 

Ø  Dimensionality reduction to keep computational requirements down 

1x1 
number 
of filters 

3x3 

5x5 

(a) Inception module, naı̈ve version
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�[��FRQYROXWLRQV �[��FRQYROXWLRQV
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(b) Inception module with dimension reductions

Figure 2: Inception module

increase in the number of outputs from stage to stage. Even while this architecture might cover the
optimal sparse structure, it would do it very inefficiently, leading to a computational blow up within
a few stages.

This leads to the second idea of the proposed architecture: judiciously applying dimension reduc-
tions and projections wherever the computational requirements would increase too much otherwise.
This is based on the success of embeddings: even low dimensional embeddings might contain a lot
of information about a relatively large image patch. However, embeddings represent information in
a dense, compressed form and compressed information is harder to model. We would like to keep
our representation sparse at most places (as required by the conditions of [2]) and compress the
signals only whenever they have to be aggregated en masse. That is, 1⇥1 convolutions are used to
compute reductions before the expensive 3⇥3 and 5⇥5 convolutions. Besides being used as reduc-
tions, they also include the use of rectified linear activation which makes them dual-purpose. The
final result is depicted in Figure 2(b).

In general, an Inception network is a network consisting of modules of the above type stacked upon
each other, with occasional max-pooling layers with stride 2 to halve the resolution of the grid. For
technical reasons (memory efficiency during training), it seemed beneficial to start using Inception
modules only at higher layers while keeping the lower layers in traditional convolutional fashion.
This is not strictly necessary, simply reflecting some infrastructural inefficiencies in our current
implementation.

One of the main beneficial aspects of this architecture is that it allows for increasing the number of
units at each stage significantly without an uncontrolled blow-up in computational complexity. The
ubiquitous use of dimension reduction allows for shielding the large number of input filters of the
last stage to the next layer, first reducing their dimension before convolving over them with a large
patch size. Another practically useful aspect of this design is that it aligns with the intuition that
visual information should be processed at various scales and then aggregated so that the next stage
can abstract features from different scales simultaneously.

The improved use of computational resources allows for increasing both the width of each stage
as well as the number of stages without getting into computational difficulties. Another way to
utilize the inception architecture is to create slightly inferior, but computationally cheaper versions
of it. We have found that all the included the knobs and levers allow for a controlled balancing of
computational resources that can result in networks that are 2� 3⇥ faster than similarly performing
networks with non-Inception architecture, however this requires careful manual design at this point.

5 GoogLeNet

We chose GoogLeNet as our team-name in the ILSVRC14 competition. This name is an homage to
Yann LeCuns pioneering LeNet 5 network [10]. We also use GoogLeNet to refer to the particular
incarnation of the Inception architecture used in our submission for the competition. We have also
used a deeper and wider Inception network, the quality of which was slightly inferior, but adding it
to the ensemble seemed to improve the results marginally. We omit the details of that network, since
our experiments have shown that the influence of the exact architectural parameters is relatively

5

(Szegedy et al., Going Deep with Convolutions, 2014)



GoogLeNet 

•  Width of inception modules ranges from 256 filters (in early modules) to 
1024 in top inception modules. 

•  Can remove fully connected layers on top completely 

•  Number of parameters is reduced to 5 million 

•  6.7% top-5 validation error on Imagnet 

(Szegedy et al., Going Deep with Convolutions, 2014)



Residual Networks  

(He, Zhang, Ren, Sun, CVPR 2016)
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Figure 3. Example network architectures for ImageNet. Left: the
VGG-19 model [41] (19.6 billion FLOPs) as a reference. Mid-
dle: a plain network with 34 parameter layers (3.6 billion FLOPs).
Right: a residual network with 34 parameter layers (3.6 billion
FLOPs). The dotted shortcuts increase dimensions. Table 1 shows
more details and other variants.

Residual Network. Based on the above plain network, we
insert shortcut connections (Fig. 3, right) which turn the
network into its counterpart residual version. The identity
shortcuts (Eqn.(1)) can be directly used when the input and
output are of the same dimensions (solid line shortcuts in
Fig. 3). When the dimensions increase (dotted line shortcuts
in Fig. 3), we consider two options: (A) The shortcut still
performs identity mapping, with extra zero entries padded
for increasing dimensions. This option introduces no extra
parameter; (B) The projection shortcut in Eqn.(2) is used to
match dimensions (done by 1⇥1 convolutions). For both
options, when the shortcuts go across feature maps of two
sizes, they are performed with a stride of 2.

3.4. Implementation

Our implementation for ImageNet follows the practice
in [21, 41]. The image is resized with its shorter side ran-
domly sampled in [256, 480] for scale augmentation [41].
A 224⇥224 crop is randomly sampled from an image or its
horizontal flip, with the per-pixel mean subtracted [21]. The
standard color augmentation in [21] is used. We adopt batch
normalization (BN) [16] right after each convolution and
before activation, following [16]. We initialize the weights
as in [13] and train all plain/residual nets from scratch. We
use SGD with a mini-batch size of 256. The learning rate
starts from 0.1 and is divided by 10 when the error plateaus,
and the models are trained for up to 60⇥ 104 iterations. We
use a weight decay of 0.0001 and a momentum of 0.9. We
do not use dropout [14], following the practice in [16].

In testing, for comparison studies we adopt the standard
10-crop testing [21]. For best results, we adopt the fully-
convolutional form as in [41, 13], and average the scores
at multiple scales (images are resized such that the shorter
side is in {224, 256, 384, 480, 640}).

4. Experiments
4.1. ImageNet Classification

We evaluate our method on the ImageNet 2012 classifi-
cation dataset [36] that consists of 1000 classes. The models
are trained on the 1.28 million training images, and evalu-
ated on the 50k validation images. We also obtain a final
result on the 100k test images, reported by the test server.
We evaluate both top-1 and top-5 error rates.

Plain Networks. We first evaluate 18-layer and 34-layer
plain nets. The 34-layer plain net is in Fig. 3 (middle). The
18-layer plain net is of a similar form. See Table 1 for de-
tailed architectures.

The results in Table 2 show that the deeper 34-layer plain
net has higher validation error than the shallower 18-layer
plain net. To reveal the reasons, in Fig. 4 (left) we com-
pare their training/validation errors during the training pro-
cedure. We have observed the degradation problem - the
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Abstract
Deeper neural networks are more difficult to train. We

present a residual learning framework to ease the training
of networks that are substantially deeper than those used
previously. We explicitly reformulate the layers as learn-
ing residual functions with reference to the layer inputs, in-
stead of learning unreferenced functions. We provide com-
prehensive empirical evidence showing that these residual
networks are easier to optimize, and can gain accuracy from
considerably increased depth. On the ImageNet dataset we
evaluate residual nets with a depth of up to 152 layers—8⇥
deeper than VGG nets [41] but still having lower complex-
ity. An ensemble of these residual nets achieves 3.57% error
on the ImageNet test set. This result won the 1st place on the
ILSVRC 2015 classification task. We also present analysis
on CIFAR-10 with 100 and 1000 layers.

The depth of representations is of central importance
for many visual recognition tasks. Solely due to our ex-
tremely deep representations, we obtain a 28% relative im-
provement on the COCO object detection dataset. Deep
residual nets are foundations of our submissions to ILSVRC
& COCO 2015 competitions1, where we also won the 1st
places on the tasks of ImageNet detection, ImageNet local-
ization, COCO detection, and COCO segmentation.

1. Introduction
Deep convolutional neural networks [22, 21] have led

to a series of breakthroughs for image classification [21,
50, 40]. Deep networks naturally integrate low/mid/high-
level features [50] and classifiers in an end-to-end multi-
layer fashion, and the “levels” of features can be enriched
by the number of stacked layers (depth). Recent evidence
[41, 44] reveals that network depth is of crucial importance,
and the leading results [41, 44, 13, 16] on the challenging
ImageNet dataset [36] all exploit “very deep” [41] models,
with a depth of sixteen [41] to thirty [16]. Many other non-
trivial visual recognition tasks [8, 12, 7, 32, 27] have also

1http://image-net.org/challenges/LSVRC/2015/ and
http://mscoco.org/dataset/#detections-challenge2015.
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Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet is presented in Fig. 4.

greatly benefited from very deep models.
Driven by the significance of depth, a question arises: Is

learning better networks as easy as stacking more layers?
An obstacle to answering this question was the notorious
problem of vanishing/exploding gradients [1, 9], which
hamper convergence from the beginning. This problem,
however, has been largely addressed by normalized initial-
ization [23, 9, 37, 13] and intermediate normalization layers
[16], which enable networks with tens of layers to start con-
verging for stochastic gradient descent (SGD) with back-
propagation [22].

When deeper networks are able to start converging, a
degradation problem has been exposed: with the network
depth increasing, accuracy gets saturated (which might be
unsurprising) and then degrades rapidly. Unexpectedly,
such degradation is not caused by overfitting, and adding
more layers to a suitably deep model leads to higher train-
ing error, as reported in [11, 42] and thoroughly verified by
our experiments. Fig. 1 shows a typical example.

The degradation (of training accuracy) indicates that not
all systems are similarly easy to optimize. Let us consider a
shallower architecture and its deeper counterpart that adds
more layers onto it. There exists a solution by construction
to the deeper model: the added layers are identity mapping,
and the other layers are copied from the learned shallower
model. The existence of this constructed solution indicates
that a deeper model should produce no higher training error
than its shallower counterpart. But experiments show that
our current solvers on hand are unable to find solutions that
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model top-1 err. top-5 err.
VGG-16 [41] 28.07 9.33
GoogLeNet [44] - 9.15
PReLU-net [13] 24.27 7.38

plain-34 28.54 10.02
ResNet-34 A 25.03 7.76
ResNet-34 B 24.52 7.46
ResNet-34 C 24.19 7.40
ResNet-50 22.85 6.71
ResNet-101 21.75 6.05
ResNet-152 21.43 5.71

Table 3. Error rates (%, 10-crop testing) on ImageNet validation.
VGG-16 is based on our test. ResNet-50/101/152 are of option B
that only uses projections for increasing dimensions.

method top-1 err. top-5 err.
VGG [41] (ILSVRC’14) - 8.43†

GoogLeNet [44] (ILSVRC’14) - 7.89
VGG [41] (v5) 24.4 7.1
PReLU-net [13] 21.59 5.71
BN-inception [16] 21.99 5.81
ResNet-34 B 21.84 5.71
ResNet-34 C 21.53 5.60
ResNet-50 20.74 5.25
ResNet-101 19.87 4.60
ResNet-152 19.38 4.49

Table 4. Error rates (%) of single-model results on the ImageNet
validation set (except † reported on the test set).

method top-5 err. (test)
VGG [41] (ILSVRC’14) 7.32
GoogLeNet [44] (ILSVRC’14) 6.66
VGG [41] (v5) 6.8
PReLU-net [13] 4.94
BN-inception [16] 4.82
ResNet (ILSVRC’15) 3.57

Table 5. Error rates (%) of ensembles. The top-5 error is on the
test set of ImageNet and reported by the test server.

ResNet reduces the top-1 error by 3.5% (Table 2), resulting
from the successfully reduced training error (Fig. 4 right vs.
left). This comparison verifies the effectiveness of residual
learning on extremely deep systems.

Last, we also note that the 18-layer plain/residual nets
are comparably accurate (Table 2), but the 18-layer ResNet
converges faster (Fig. 4 right vs. left). When the net is “not
overly deep” (18 layers here), the current SGD solver is still
able to find good solutions to the plain net. In this case, the
ResNet eases the optimization by providing faster conver-
gence at the early stage.

Identity vs. Projection Shortcuts. We have shown that
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64-d 256-d

Figure 5. A deeper residual function F for ImageNet. Left: a
building block (on 56⇥56 feature maps) as in Fig. 3 for ResNet-
34. Right: a “bottleneck” building block for ResNet-50/101/152.

parameter-free, identity shortcuts help with training. Next
we investigate projection shortcuts (Eqn.(2)). In Table 3 we
compare three options: (A) zero-padding shortcuts are used
for increasing dimensions, and all shortcuts are parameter-
free (the same as Table 2 and Fig. 4 right); (B) projec-
tion shortcuts are used for increasing dimensions, and other
shortcuts are identity; and (C) all shortcuts are projections.

Table 3 shows that all three options are considerably bet-
ter than the plain counterpart. B is slightly better than A. We
argue that this is because the zero-padded dimensions in A
indeed have no residual learning. C is marginally better than
B, and we attribute this to the extra parameters introduced
by many (thirteen) projection shortcuts. But the small dif-
ferences among A/B/C indicate that projection shortcuts are
not essential for addressing the degradation problem. So we
do not use option C in the rest of this paper, to reduce mem-
ory/time complexity and model sizes. Identity shortcuts are
particularly important for not increasing the complexity of
the bottleneck architectures that are introduced below.

Deeper Bottleneck Architectures. Next we describe our
deeper nets for ImageNet. Because of concerns on the train-
ing time that we can afford, we modify the building block
as a bottleneck design4. For each residual function F , we
use a stack of 3 layers instead of 2 (Fig. 5). The three layers
are 1⇥1, 3⇥3, and 1⇥1 convolutions, where the 1⇥1 layers
are responsible for reducing and then increasing (restoring)
dimensions, leaving the 3⇥3 layer a bottleneck with smaller
input/output dimensions. Fig. 5 shows an example, where
both designs have similar time complexity.

The parameter-free identity shortcuts are particularly im-
portant for the bottleneck architectures. If the identity short-
cut in Fig. 5 (right) is replaced with projection, one can
show that the time complexity and model size are doubled,
as the shortcut is connected to the two high-dimensional
ends. So identity shortcuts lead to more efficient models
for the bottleneck designs.

50-layer ResNet: We replace each 2-layer block in the

4Deeper non-bottleneck ResNets (e.g., Fig. 5 left) also gain accuracy
from increased depth (as shown on CIFAR-10), but are not as economical
as the bottleneck ResNets. So the usage of bottleneck designs is mainly due
to practical considerations. We further note that the degradation problem
of plain nets is also witnessed for the bottleneck designs.
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Figure 2. Residual learning: a building block.

are comparably good or better than the constructed solution
(or unable to do so in feasible time).

In this paper, we address the degradation problem by
introducing a deep residual learning framework. In-
stead of hoping each few stacked layers directly fit a
desired underlying mapping, we explicitly let these lay-
ers fit a residual mapping. Formally, denoting the desired
underlying mapping as H(x), we let the stacked nonlinear
layers fit another mapping of F(x) := H(x)�x. The orig-
inal mapping is recast into F(x)+x. We hypothesize that it
is easier to optimize the residual mapping than to optimize
the original, unreferenced mapping. To the extreme, if an
identity mapping were optimal, it would be easier to push
the residual to zero than to fit an identity mapping by a stack
of nonlinear layers.

The formulation of F(x)+x can be realized by feedfor-
ward neural networks with “shortcut connections” (Fig. 2).
Shortcut connections [2, 34, 49] are those skipping one or
more layers. In our case, the shortcut connections simply
perform identity mapping, and their outputs are added to
the outputs of the stacked layers (Fig. 2). Identity short-
cut connections add neither extra parameter nor computa-
tional complexity. The entire network can still be trained
end-to-end by SGD with backpropagation, and can be eas-
ily implemented using common libraries (e.g., Caffe [19])
without modifying the solvers.

We present comprehensive experiments on ImageNet
[36] to show the degradation problem and evaluate our
method. We show that: 1) Our extremely deep residual nets
are easy to optimize, but the counterpart “plain” nets (that
simply stack layers) exhibit higher training error when the
depth increases; 2) Our deep residual nets can easily enjoy
accuracy gains from greatly increased depth, producing re-
sults substantially better than previous networks.

Similar phenomena are also shown on the CIFAR-10 set
[20], suggesting that the optimization difficulties and the
effects of our method are not just akin to a particular dataset.
We present successfully trained models on this dataset with
over 100 layers, and explore models with over 1000 layers.

On the ImageNet classification dataset [36], we obtain
excellent results by extremely deep residual nets. Our 152-
layer residual net is the deepest network ever presented on
ImageNet, while still having lower complexity than VGG
nets [41]. Our ensemble has 3.57% top-5 error on the

ImageNet test set, and won the 1st place in the ILSVRC
2015 classification competition. The extremely deep rep-
resentations also have excellent generalization performance
on other recognition tasks, and lead us to further win the
1st places on: ImageNet detection, ImageNet localization,
COCO detection, and COCO segmentation in ILSVRC &
COCO 2015 competitions. This strong evidence shows that
the residual learning principle is generic, and we expect that
it is applicable in other vision and non-vision problems.

2. Related Work

Residual Representations. In image recognition, VLAD
[18] is a representation that encodes by the residual vectors
with respect to a dictionary, and Fisher Vector [30] can be
formulated as a probabilistic version [18] of VLAD. Both
of them are powerful shallow representations for image re-
trieval and classification [4, 48]. For vector quantization,
encoding residual vectors [17] is shown to be more effec-
tive than encoding original vectors.

In low-level vision and computer graphics, for solv-
ing Partial Differential Equations (PDEs), the widely used
Multigrid method [3] reformulates the system as subprob-
lems at multiple scales, where each subproblem is respon-
sible for the residual solution between a coarser and a finer
scale. An alternative to Multigrid is hierarchical basis pre-
conditioning [45, 46], which relies on variables that repre-
sent residual vectors between two scales. It has been shown
[3, 45, 46] that these solvers converge much faster than stan-
dard solvers that are unaware of the residual nature of the
solutions. These methods suggest that a good reformulation
or preconditioning can simplify the optimization.

Shortcut Connections. Practices and theories that lead to
shortcut connections [2, 34, 49] have been studied for a long
time. An early practice of training multi-layer perceptrons
(MLPs) is to add a linear layer connected from the network
input to the output [34, 49]. In [44, 24], a few interme-
diate layers are directly connected to auxiliary classifiers
for addressing vanishing/exploding gradients. The papers
of [39, 38, 31, 47] propose methods for centering layer re-
sponses, gradients, and propagated errors, implemented by
shortcut connections. In [44], an “inception” layer is com-
posed of a shortcut branch and a few deeper branches.

Concurrent with our work, “highway networks” [42, 43]
present shortcut connections with gating functions [15].
These gates are data-dependent and have parameters, in
contrast to our identity shortcuts that are parameter-free.
When a gated shortcut is “closed” (approaching zero), the
layers in highway networks represent non-residual func-
tions. On the contrary, our formulation always learns
residual functions; our identity shortcuts are never closed,
and all information is always passed through, with addi-
tional residual functions to be learned. In addition, high-
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Choosing the Architecture 
•  Task dependent 

•  Cross-validation 

•   [Convolution → pooling]* + fully connected layer  

•  The more data: the more layers and the more kernels 

Ø  Look at the number of parameters at each layer 

Ø  Look at the number of flops at each layer 

•  Computational resources 

[From Marc'Aurelio Ranzato, CVPR 2014 tutorial] 
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