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Abstract

The ability to transfer knowledge from previous experiences is critical for an agent
to rapidly adapt to different environments and effectively learn new tasks. In
this paper we conduct an empirical study of Deep Q-Networks (DQNs) where
the agent is evaluated on previously unseen environments. We show that we
can train a robust network for navigation in 3D environments and demonstrate
its effectiveness in generalizing to unknown maps with unknown background
textures. We further investigate the effectiveness of pretraining and finetuning
for transferring knowledge between various scenarios in 3D environments. In
particular, we show that the features learnt by the navigation network can be
effectively utilized to transfer knowledge between a diverse set of tasks, such as
object collection, deathmatch, and self-localization.

1 Introduction

Deep reinforcement learning (RL) has recently caught the attention of researchers for its effectiveness
in achieving human-level performance in a wide variety of tasks, including playing Atari 2600 games
[10], Go [13], high-dimensional robot control [7], and solving physics-based control problems [4].

Although it is possible to leverage the knowledge acquired from previous environments, many of
the existing models are commonly trained and tested on different tasks independently [10, 15, 16],
making it hard for the network to learn from previous experiences. As a consequence, some tasks
turn out to be extremely challenging to learn, even though they may have good policies that would
be easy to find if some previous knowledge could be transferred from other simpler environments.
Furthermore, transfer learning could significantly reduce the long training times of RL models.

While there have been some recent approaches for transfer learning in Atari games [! 1, 3, 12], in this
paper, we focus on 3D environments as they are comparatively more challenging to learn from scratch
and ideal to study transfer learning as almost all scenarios require the knowledge of basic navigation.
Furthermore, unlike most Atari games, states are partially observable, and the agent receives a
first-person perspective, which makes the task more suitable for real-world robotics applications.

A number of previous transfer learning applications of deep RL in 3D environments often assume
similar source and target environments. For example, [ 12] use object collection on a particular map
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Figure 1: (a) A screenshot of Doom. [6] (b) Self-localization scenario

(e.g. an M-shaped maze) as the source task and the same objective on another map (e.g. a Y-shaped
maze), having the same background texture, as the target task. Similarly, [18] show transfer learning
of target-driven navigation from known to unknown scenes. In contrast, we train a navigation network
that can handle unknown maps with unknown textures. We next investigate transfer learning between
source and target tasks having different objectives (for instance, from navigation to object collection).
Furthermore, the maps used in our experiments are much larger and more complex than simple M
and Y-shaped mazes used by [12].

Our contribution in this paper is threefold: First, we study the application of Deep Q-Networks
(DQNSs) [10] where the agent is evaluated on previously unseen environments and is shown to be
as effective as in the training environment. Second, we train a robust network for navigation in 3D
environments with a simple trick of using random textures during training, and show its effectiveness
in generalizing to unknown maps with unknown background textures. Finally, we investigate the
effectiveness of pretraining and finetuning for transferring knowledge between various scenarios in
3D environments. Specifically, we show that the features learned by the navigation network can be
utilized to effectively transfer the knowledge of navigation to a diverse and complex set of scenarios,
including object collection, deathmatch, and self-localization.

2 Related Work

Transfer learning for RL algorithms has been widely studied in the past two decades. [I4] provide a
survey of transfer learning methods for RL prior to the introduction of deep learning for RL. In the
context of deep learning, transfer learning approaches of pretraining and finetuning have been shown
to be effective in multiple domains [2, 9, 17]. These methods can be adapted for transfer learning in
deep RL applications. One of the closest approaches to our work is the work of [I 1], who pretrain a
multi-task Actor-Mimic Network on several Atari games, and use the weights of this network to train
a DQN on unseen Atari games after removing the final softmax layer. We employ a similar idea in
the context of 3D environments in the game of Doom, but train the source network on a single task.

Transfer learning for deep RL in 3D environments has also gained some attention recently. [12] intro-
duced an architecture called progressive neural networks, that use lateral connections for sequentially
transferring learned features from previous tasks without forgetting. This approach is shown to be
effective in transferring knowledge between different mazes in 3D Labyrinth environment with the
same objective of object collection. Similarly, [ 18] introduce deep siamese actor-critic network for
transfer learning from known to unknown scenes with the same goal of target-driven navigation. In
this work, we focus on a setting where the source and target tasks have very different objectives: for
example, transferring knowledge from navigation to the object collection, or self-localization task.

3 Background: Deep Q-Learning

Reinforcement learning deals with learning a policy for an agent interacting in an unknown environ-
ment. At each step, an agent observes the current state s, of the environment, decides on an action
a; according to a policy 7, and observes a reward signal 7,. The goal of the agent is to find a policy
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Figure 2: Figure showing the optimal sequence of actions in various scenarios. The agent is shown in green,
objects in yellow and enemies in red. The dashed line shows the optimal path.

that maximizes the expected sum of discounted rewards R;. The Q)-function of a given policy 7 is
defined as the expected return from executing an action a in a state s. It is common to use a function
approximator to estimate the action-value function (). In particular, Deep Q-Learning uses a neural
network to obtain an estimate of the (Q-function of the current policy which is close to the optimal
@-function Q* defined as the highest return we can expect to achieve by following any strategy:

Q" (s,a) = maxE [Ri|s; = s,a; = a] = max Q7 (s, a).

In other words, the goal is to find 6 such that Qg (s, a) = Q*(s, a). The optimal Q-function verifies
the Bellman optimality equation, Q*(s,a) = E[r + ymax, Q*(s',a’)|s, a]. If Qo = Q*, itis
natural to think that Qg should be close from also verifying the Bellman equation. This leads to the
loss function:

Lt(at) =Esa,rs [(yt - Q9¢(87 a))z}a

where ¢ is the current time step, and y; = 7 + v max, Qp, (s, a’).

Instead of performing the Q-learning updates in an online fashion, it is common to use experience
replay [8] to break the correlation between successive samples. At each time step, agent experiences
(8¢, at, T, S¢+1) are stored in a replay memory, and the Q-learning updates are carried out on mini-
batches of experiences randomly sampled from the memory.

At each training step, the next action is generated using an e-greedy strategy: with a probability e,
the next action is selected randomly, and with probability 1 — ¢, the next action is chosen to be the
best action according to the current network. In practice, it is common to start with e = 1 and to
progressively decay e.

4 Experimental setup

In this section, we describe the various scenarios used to investigate transfer learning in DQNs. We
developed these scenarios in the Doom game environment using the ViZdoom API [5] and open
source Doom editor, Slade 3. Figure 1(a) shows a screenshot of Doom environment. The ViZDoom
API gives a direct access to the Doom game engine and allows to synchronously send commands
to the game agent and receive inputs of the current state of the game. We interacted with the Doom
game engine using ACS scripts inside the Doom editor to calculate rewards for different scenarios.
We plan to release the code and game scenario files for all the experiments.

4.1 Navigation in Unknown Maps

In the navigation scenario, the objective is to cover as much distance as possible in the map. The
motivation behind this task is to learn to not be stuck against walls or in alternating actions (left
and right). The action space contains 3 actions: “Move Forward”, “Turn Left”, and “Turn Right”.
The reward at each time step is the distance travelled since the last time step. Figure 2(a) shows the
optimal path in the navigation scenario.
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Figure 3: An illustration of the architecture of Deep Q-Network used for the Self-localization task.

In our setting, the distance information was obtained from the game engine and might not be available
in other applications. However, we argue that most robotics applications will have this information
from their motor sensors. In the future, we plan to estimate the distance travelled using the change in
visuals seen by the agent to make the learning process robust to applications where this information
is not available.

We next introduce a simple trick of using random textures on multiple maps to generalize to unknown
maps with unknown textures. For each episode during training, we randomly select a map from a
set of 10 training maps and then use random textures for each wall, floor and ceiling from a set of
300 textures. For evaluation, we use a set of 3 different test maps, and a separate set of 100 test
textures. This means that our agent is tested to navigate in unknown maps with unknown textures.
Each episode lasts 60 seconds.

4.2 Object Collection

In this scenario, the agent receives a reward for picking up objects. Different types of objects carry
different rewards: +6 for a weapon, +2 for ammo and +10% of health increased (for different sizes
of health packs). The agent’s health is set to 50% and inventory is cleared at every time step to
ensure that the agent always receives a reward when it walks over an object. A negative reward, or
decreasing health, is also incorporated for walking on lava. A lava texture was only replaced by other
lava or acid textures during both training and testing so that the agent can distinguish between lava
and floor. Figure 2(b) shows the optimal path in the object collection scenario.

Similar to the navigation task, we use 60 seconds episodes on the set of training and test maps with
random textures. The appearance and location of different objects in each map is also randomized.

4.3 Deathmatch

In the deathmatch scenario, the agent plays against built-in Doom bots on the same map with the
objective to frag as many enemies as possible within a fixed time limit. When an agent dies, it
immediately respawns on the same map at a different location. We used a +50 reward for a frag, -50
for a death and -100 for a suicide. We define the final score as the kill to death ratio of the agent.
Figure 2(c) shows the optimal set of actions in the deathmatch scenario.

4.4 Self-localization

In the self-localization scenario, the objective is to navigate to a unique location in an ambiguous
environment in order to localize. We created a simple square map for this task, containing a blue
and a red door, as shown in Figure 1(b). All the other walls have the same texture, which makes the
location ambiguous given just the current frame. The agent needs to navigate to the blue or the red
door in order to self-localize. As opposed to navigation or object collection, this task requires some
degree of high-level planning. The set of possible actions contains “Move Forward”, “Turn Right”,
“Turn Left” and “No Action”.



Figure 4: Examples of random textures

Since the objective is to localize, some information about the map is required by the agent. We
provide 96 images of the visuals (100 x 75 images) seen by the agent at 24 locations evenly placed
around the map in 4 orientations: North, South, East and West. This includes few images of both
the blue and red doors. We augment the vanilla Deep Q-Network [10] with cosine similarity of the
current screen features with each of the 96 “memory” image features, as shown in Figure 3. The
features for the current screen are obtained by passing them through the 2 convolutional layers in the
Q-network. The convolutional features for the images in the memory are fixed and updated based on
the Q-network after every 10 episodes.

The episodes have a fixed length of 30 seconds. At the end of the episode, the agent needs to
self-localize, or navigate to the blue or the red door (see Figure 1b). In our setting, the location
prediction is the location of the image in the memory which has the highest similarity with the
screen visible to the agent at the end of the episode. The agent receives a positive reward for correct
predictions (correct location on the map) and a negative reward for incorrect ones. This means that
the agent only receives a single reward in the whole episode, leading to a delayed reward and a sparse
replay table with respect to non-zero rewards. This makes the task very challenging as it is difficult to
learn what actions are responsible for which reward.

The self-localization scenario is similar to the target-driven navigation scenario considered by [ 18],
who introduced a deep siamese actor-critic network for this task. This network learns a general
embedding given the current screen and the target image and then learns scene or map specific layers
to capture the layout and object arrangements in a given scene. Unlike the target-driven navigation
where the target is given as input to the network, in the self-localization task the agent needs to
learn to find a unique target. However, no other information about the map is given as input in the
deep siamese network, while self-localization network requires a few images from the map. Our
architecture for self-localization can potentially be generalized to unknown maps, while deep siamese
networks need to learn a scene-specific layer for new scenes.

4.5 Hyper-parameters

We used the same architecture as the vanilla DQN [10] for all scenarios except self-localization. All
networks were trained using the RMSProp algorithm and mini-batches of size 32. Network weights
were updated every 4 steps, so experiences were sampled 8 times on average during the training
[15]. The size of the replay memory was set to 1, 000, 000. The discount factor was set to v = 0.99.
We used an e-greedy policy during the training, where € was linearly decreased from 1 to 0.1 over
the first million steps, and then fixed to 0.1. We also used the frame-skip technique of [1]. In this
approach, the agent only receives a screen input every k + 1 frames, where k is the number of frames
skipped between each step. The action decided by the network is then repeated over all the skipped
frames. A higher frame-skip rate accelerates the training, but can hurt the performance. We use a
screen resolution of 320 x 240 in the game, resize it to 100 x 75 and stack the last 5 frames before
passing them to the network.

5 Results

5.1 Navigation in Unknown Maps

We used a vanilla DQNJ10] for training the agent in the Navigation scenario. Figure 5a shows the
plot of the average reward as a function of the training time. Note that all the plots in Figure 5 are
smoothed with a Gaussian kernel for better visibility. The network was evaluated every 5 minutes of
training time and each evaluation consisted of 50 episodes on the test maps.
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Figure 5: Plots of Average Score vs. Training time (hours) in: (a) Navigation task and Transfer Learning in 3
scenarios: (b) Object Collection, (c¢) Deathmatches, and (d) Self-localization

Random Textures. The navigation network was able to generalize to unknown maps containing
unseen textures without any finetuning. This was achieved by a simple trick of training the network
using random textures. Figure 4 shows some examples of using random textures in the same frame.
We observed that this simple trick improved the performance of the network on the test maps by over
300% as compared to network trained without random textures, while the training performance was
comparable. This navigation network is also a part of the Action-Navigation Architecture introduced
by [6] to play deathmatches in Doom.

In the next section, we analyze the filters learned by this network and show that the network is able to
detect depth as well as textures in any given given frame.

5.2 Transfer Learning

We now study the transfer of the navigation network to other scenarios in 3D environments, by simply
initializing the weights of the target task network with the navigation network weights. Table 1 shows
a summary of results of transfer learning on various scenarios, which we discuss in the following
subsections.

Navigation to Object Collection

Figure 5(b) compares the performance of a Deep Q-Network for object collection pretrained with
navigation network vs. two randomly initialised Deep Q-Networks. All networks are evaluated
for 50 episodes every 5 minutes of training. The plot shows that the pretrained network performs
significantly better than randomly initialized networks, while maintaining a transfer ratio of around
2 until 8 hours of training. The final object collection network pretrained with the navigation
network weights is effective at collecting objects in unknown maps as shown in the demo video at
https://youtu.be/8IjAT-tEG-E.


https://youtu.be/8IjAT-tEG-E

Object Collection Deathmatch Self-Localization

Score Random Pretrained Random Pretrained Random Pretrained
Jumpstart 4.8 11.9 0 -0.08 7.2 12.2
Final Score 8.0 15.2 -0.21 0.44 7.4 17.8
Transfer Ratio 1.9 - 2.4

Table 1: Results of transfer learning in various scenarios.

Navigation to Deathmatch

In Figure 5(c), we compare the performance of a network initialized with the Navigation filters to
a randomly initialized network on the deathmatch task. The network is evaluated for 15 mins of
simulated game time after every 20 minutes of real time training. The superior performance of the
pretrained network indicates some positive transfer between the tasks, however the final network after
20 hours of training is not as effective as Action-Navigation Model [6]. The network struggles to
recognize, aim, and shoot enemies accurately, which indicates that the knowledge of navigation is not
sufficient for effectively learning to play deathmatches.

Navigation to Self-localization

Since the architecture of the self-localization network is slightly different from the vanilla DQN, we
simply initialize the convolutional layers of the self-localization network with the navigation network.
Figure 5(d) compares the average score of the pretrained network with two randomly initialized
networks as a function of training time. All networks are evaluated for 50 episodes every 5 minutes.
The best pretrained network can predict the location at the end of the episode with 94% accuracy.
Visualizing the performance of the agent shows that it mostly follows the shortest path to the blue
door and stays there in each episode’ (see demo at https://youtu.be/pzWSjE68hRU).

6 Analysis

We now analyze the convolutional filters learned by the navigation network and discuss the reasons
behind effective generalization to unknown maps and transfer to new scenarios. The convolutional
filters indicated that the last frame is most important for the scenarios considered in this paper.
Figure 6 compares some of the convolutional features learnt by the navigation, object collection,
and self-localization networks corresponding to the RGB layers of the last frame. Even though both
the object collection and self-localization models were initialized with the navigation network, the
similarity of the fine-tuned features indicates that the filters learnt by the navigation network are
extremely useful for object collection and self-localization tasks.

We also analyze the similarity of features for different images in the self-localization scenario. We
took 500 images in random orientations at random locations in the self-localization map. We then
compared the similarity of different frames with these 500 images by plotting them as a heatmap
according to their x-y coordinates as shown in Figure 7. The frame containing a long corridor
is similar to the images from locations that have long corridors, while the frame where the agent
is facing a wall is similar to the images that face the wall. The figure also shows that the frame
containing the blue door is only similar to images containing blue doors.

We further observed that the agent exploring with a randomly initialized network, spends most of its
time facing the wall and is therefore not able to learn much. In contrast, the agent pretrained with
a navigation network is much more efficient at exploring the environment and finding objects or
blue/red doors, which substantially improves the learning speed.

!The agent does not tend to go to the red door a lot perhaps because it is easier to disambiguate the blue door
from the brown walls as compared to the red door.
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Figure 6: Visualization of the (subset of the) first convolutional layer filters for the RGB layers (right to left) of
the last frame in (a) Navigation network (b) Object Collection network and (c) Self-localization network. Note
that the filters are very similar in all the scenarios which may explain the effectiveness of transfer learning.

Figure 7: Visualization of the heatmap (on the left) of the cosine similarity of the given input frame (on the
right) with 96 images in the memory in the north orientation, plotted according to their x-y coordinates on the
map (Figure 1(b) shows the self-localisation map). The heatmap indicates that the navigation network is able to
differentiate between images containing a long corridor vs. images that face a wall, and between images having
different textures.

7 Conclusion & Future Work

We showed that we can train a robust network for navigation in 3D environments by training on
multiple maps with random textures. We demonstrated that this navigation network is able to
generalize to unknown maps with unseen textures.The features learnt by this navigation network
are shown to be effective in a diverse set of tasks, including object collection, deathmatch, and
self-localization. In our future work, we plan to estimate the distance travelled using just the change
in visuals seen by the agent rather than extracting this information from the game engine, in order to
make the learning process robust to applications where this information is not available. We further
plan to expand the self-localization scenario to handle multiple maps and generalize to new unknown
maps, as current experiments used only a single map.
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