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Background



Supervised Learning
•Most deep learning problems are posed as supervised learning problems: 
mapping and input to an output 

•Environment is typically static 

•Typically, outputs are assumed to be                                                                                                                    
independent of each other
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Environments for RL
•Environments are dynamic and change over time 

•Actions can affect the environment with arbitrary time lags 

•Labels can be expensive or difficult to obtain



•Instead of a label, the agent is provided with a reward signal: 
-High reward == good behavior

Reinforcement Learning
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•RL produces policies 

-Map observations to actions 
-Maximize long-term reward 

•Allows learning purposeful behaviors in dynamic environments



Deep Reinforcement Learning
•Use a deep network to parameterize the policy 

•Adapt parameters to maximize reward using: 

-Q-learning 
-Actor-Critic 
- Evolution Strategies
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Reinforcement Learning: an Introduction, Sutton and Barto,2014 
Deep Q-Networks, Mnih et al., 2013, Nature, 2015;  
Asynchronous Methods for Deep RL, Mnih et al., ICML 2016 
Evolution Strategies, Salimans et al., 2017 
Playing FPS games with deep RL, Chaplot & Lample, AAAI 2017

Learning 3-D game 
without memory 

Chaplot, Lample, AAAI 2017





Deep Reinforcement Learning with Memory
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•Can we learn an agent with a more advanced external memory? 

-Neural Turing Machines (Graves et al., 2014) 
-Differential Neural Computers (Graves et al., 2016) 

•Challenge: Memory systems are difficult to train, especially using RL
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Why is Memory Challenging?
•Suppose an agent is in a simple random maze: 

-Agent starts at top of map 
-An agent is shown an indicator near its initial state 
-The color of the indicator determines what the correct goal is

Oh et al, Control of Memory, Active Perception, and 
Action in Minecraft, ICML 2016
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Why is Memory Challenging?
•At the start, no a priori knowledge to store color into memory 

•The following must hold: 

-Write color to memory at the start of maze 
-Never overwrite memory of the color over T time steps  
- Find and enter the goal 

•Solution: Write everything into memory 



Neural Turing Machines (Graves et al., 2014)

• Basic Idea: Turn neural networks into ‘differentiable computers’ by giving them 
read-write access to external memory 

computer that learns programs 
from examples  

(neural net that separates 
computation from memory) 

= 

Differentiable Neural Computer, Graves et al., Nature, 2016; 
Neural Turing Machine, Graves et al., 2014 



Architecture (Graves et al., 2014)

•  The Controller is a neural network (recurrent or feedforward)  

•  The Heads select portions of the memory and read or write to them  

•  The Memory is a real-valued matrix  

Everything is 
differentiable 

Differentiable Neural Computer, Graves et al., Nature, 2016; 
Neural Turing Machine, Graves et al., 2014 



Selective Attention

• Want to focus on the parts of memory the network will read and write to: 
need an attention model  

• Use the controller outputs to parameterize a distribution (weighting) over 
the rows (locations) in the memory matrix  

• The weighting defines content-based attention mechanism.



Addressing by Content
•A key vector k is emitted by the controller and compared to  
- content of each memory location M[i]  
- using a similarity measure S(.,.), e.g. cosine distance  
- then normalized with a softmax

• A ‘sharpness’ parameter is used to narrow the focus:  
- Finds the memories “closest” to the key 



Addressing by Content
• Once the weightings are defined, each read head returns a read vector r 
as input to the controller at the next time step 

• Each write head receives an erase vector e and adds vector a from the controller 
- and then writes to modify the memory (like LSTM) 



The NTM Copy Algorithm 



NTM Generalization: length 10 to 120



Copy N Times

• Learning For Loop using content to jump, iteration to step, and a variable to 
count to N 



Memory Networks
•Store (key, value) representations for the last M frames 

•At each time step: 

-Perform a read operation over their memory database 
-Write the latest percept into memory

Weston et al, Memory Networks, ICLR 2015 
Miller et al, Key-Value Memory Networks., EMNLP 2016 
Oh et al, Control of Memory, Active Perception, and 
Action in Minecraft, ICML 2016



Memory Networks
•Easy to learn: Just store as much as possible! 

•Can be inefficient: 

-We need M > time horizon of the task (can’t know this a priori) 
-We might store a lot of useless/redundant data  

•Time/space requirements increase with M

Weston et al, Memory Networks, ICLR 2015 
Miller et al, Key-Value Memory Networks., EMNLP 2016 
Oh et al, Control of Memory, Active Perception, and 
Action in Minecraft, ICML 2016



Neural Map: Location-Aware 
Memory



Neural Map (Location-Aware Memory)
•Writable memory with a specific inductive bias: 

-Structure memory into               grid of K-dim cells 
- For every (x, y) position, write to (x’, y’) in the               grid
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Parisotto, Salakhutdinov, ICLR 2018



Neural Map (Location-Aware Memory)
•Acts as a map that the agent fills out as it explores 

•Sparse Write: 
- Inductive bias prevents the agent from overwriting its memory too often 
-Allow easier credit assignment over time
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Parisotto, Salakhutdinov, ICLR 2018



Neural Map (Location-Aware Memory)
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Parisotto, Salakhutdinov, ICLR 2018



Neural Map: Operations
•Two read operations: 

-Global summarization 
-Context-based retrieval 

•Sparse write only to agent position 

•Both read and write vectors are 
used to compute policy

rt = read(Mt)

ct = context(Mt, st, rt)

w(xt,yt)
t+1 = write(st, rt, ct,M

(xt,yt)
t )

Mt+1 = update(Mt, w
(xt,yt)
t+1 )

ot = [rt, ct, w
(xt,yt)
t+1 ]

⇡t(a|s) = Softmax(f(ot))



Neural Map: Global Read
•Reads from the entire neural map using 
a deep convolutional net 

•Produces a vector that provides a 
global summary

rt = read(Mt)

ct = context(Mt, st, rt)

w(xt,yt)
t+1 = write(st, rt, ct,M

(xt,yt)
t )

Mt+1 = update(Mt, w
(xt,yt)
t+1 )

ot = [rt, ct, w
(xt,yt)
t+1 ]

⇡t(a|s) = Softmax(f(ot))
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Neural Map: Context Read
•Read operation using attention

rt = read(Mt)

ct = context(Mt, st, rt)

w(xt,yt)
t+1 = write(st, rt, ct,M

(xt,yt)
t )

Mt+1 = update(Mt, w
(xt,yt)
t+1 )

ot = [rt, ct, w
(xt,yt)
t+1 ]

⇡t(a|s) = Softmax(f(ot))

qt = W [sr, rt]

a(x,y)t = qt ·M (x,y)
t
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Bahdanau et al., Neural Machine Translation by Jointly 
Learning to Align and Translate, ICLR 2015 
Xu et al., Caption Generation with Visual Attention, ICML 2015 



Neural Map: Context Read
•Read operation using attention

(st, rt)

qt

Mt

•Simple 2x2 memory Mt 

•Obtain query vector qt from state st 
and global read rt 



Neural Map: Context Read
•Read operation using attention
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Neural Map: Context Read
•Read operation using attention
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•Element-wise product between 
query similarities αt and memory 
cells Mt
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Neural Map: Context Read
•Read operation using attention

X
ct

•Sum over all positions to obtain 
context read vector ct 

•Intuition: Return vector ct in 
memory Mt closest to the query qt
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wt+1 write

update

Neural Map: Write
•Creates a new k-dim vector to write to 
the current position in the map 

•Update the neural map at the current 
position with this new vector

Mt

rt = read(Mt)

ct = context(Mt, st, rt)

w(xt,yt)
t+1 = write(st, rt, ct,M

(xt,yt)
t )

Mt+1 = update(Mt, w
(xt,yt)
t+1 )

ot = [rt, ct, w
(xt,yt)
t+1 ]

⇡t(a|s) = Softmax(f(ot))

Mt+1



Neural Map: GRU Write Update

rt = read(Mt)

ct = context(Mt, st, rt)

w(xt,yt)
t+1 = write(st, rt, ct,M

(xt,yt)
t )

Mt+1 = update(Mt, w
(xt,yt)
t+1 )

ot = [rt, ct, w
(xt,yt)
t+1 ]

⇡t(a|s) = Softmax(f(ot))

•Creates a new k-dim vector to write to 
the current position in the map 

•Update the neural map at the current 
position with this new vector

wt+1 write

Mt

Mt+1

gating
�

Chung et al.,Gated Recurrent  Neural Networks , 2014



Neural Map: Output

rt = read(Mt)

ct = context(Mt, st, rt)

w(xt,yt)
t+1 = write(st, rt, ct,M

(xt,yt)
t )

Mt+1 = update(Mt, w
(xt,yt)
t+1 )

ot = [rt, ct, w
(xt,yt)
t+1 ]

⇡t(a|s) = Softmax(f(ot))

•Output the read vectors and what we wrote 

•Use those features to compute a policy



Random Maze with Indicator
•Results are robust with respect to small noise in the (x, y)-position of the agent

complete map 
(not visible)

input state 
(partially observable)





Random Maze with Indicator



Egocentric Neural Map
• Problem with Neural Map: it requires mapping from (x,y) to (x’,y’) 

-  We need to have already solved localization 

•  Obtain a map which is egocentric: 

-  The agent always writes to the center of the map 
-  When the agent moves, the entire map moves by the opposite amount



Intelligent Agents
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Learning to Execute Instructions

Chaplot et al., Gated-Attention Architectures for 
Task-oriented Language Grounding, AAAI 2017
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Active Neural Localization 

Chaplot, Parisotto, Salakhutdinov, ICLR 2018



Discussion
•Can we extend to multi-agent domains? 

-  Multiple agents communicating through shared memory. 

•Can we train an agent to learn how to simultaneously localize and map its 
environment using the Neural Map? 

-  Solves problem of needing an oracle to supply (x, y) position 

•Can we structure neural maps into a multi-scale hierarchy?  

-  Each scale will incorporate longer range information



Thank you


