

Neural Map

Structured Memory for Deep RL

Structured Memory for Deep RL

Background

Neural Map: Location-Aware Memory

Incorporating Prior Knowledge with Memory

Background

Supervised Learning

- Most deep learning problems are posed as supervised learning problems: mapping an input to an output
- Environment is typically **static**
- Typically, outputs are assumed to be **independent** of each other

Environments for RL

- **Environments are dynamic** and change over time
- **Actions can affect the environment** with arbitrary time lags
- **Labels can be expensive** or difficult to obtain

Reinforcement Learning

- Instead of a label, the agent is provided with a **reward signal**:

- High reward == good behavior

- RL produces policies
 - Map observations to actions
 - Maximize long-term reward

- Allows learning purposeful behaviors in dynamic environments

Deep Reinforcement Learning

- Use a deep network to parameterize the policy
- Adapt parameters to maximize reward using:
 - Q-learning
 - Actor-Critic
 - Evolution Strategies

**Learning 3-D game
without memory**

Chaplot, Lample, AAAI 2017

Reinforcement Learning: an Introduction, Sutton and Barto, 2014
Deep Q-Networks, Mnih et al., 2013, Nature, 2015;
Asynchronous Methods for Deep RL, Mnih et al., ICML 2016
Evolution Strategies, Salimans et al., 2017
Playing FPS games with deep RL, Chaplot & Lample, AAAI 2017

Deep Reinforcement Learning with Memory

- Can we learn an agent with a more advanced external memory?
 - Neural Turing Machines (Graves et al., 2014)
 - Differential Neural Computers (Graves et al., 2016)
- **Challenge:** Memory systems are difficult to train, especially using RL

Why is Memory Challenging?

- Suppose an agent is in a simple random maze:
 - Agent starts at top of map
 - An agent is shown an indicator near its initial state
 - The color of the indicator determines what the correct goal is

Why is Memory Challenging?

- Suppose an agent is in a simple random maze:
 - Agent starts at top of map
 - An agent is shown an indicator near its initial state
 - The color of the indicator determines what the correct goal is

Why is Memory Challenging?

- At the start, **no a priori knowledge** to store color into memory
- The following must hold:
 - Write color to memory at the start of maze
 - Never overwrite memory of the color over T time steps
 - Find and enter the goal
- **Solution:** Write everything into memory

Neural Turing Machines (Graves et al., 2014)

- Basic Idea: Turn neural networks into ‘differentiable computers’ by giving them read-write access to external memory

Architecture (Graves et al., 2014)

Everything is
differentiable

- The Controller is a neural network (recurrent or feedforward)
- The Heads select portions of the memory and read or write to them
- The Memory is a real-valued matrix

Differentiable Neural Computer, Graves et al., Nature, 2016;
Neural Turing Machine, Graves et al., 2014

Selective Attention

- Want to focus on the parts of memory the network will read and write to: need an attention model
- Use the controller outputs to parameterize a distribution (**weighting**) over the rows (**locations**) in the memory matrix
- The weighting defines content-based attention mechanism.

Addressing by Content

- A key vector \mathbf{k} is emitted by the controller and compared to
 - content of each memory location $\mathbf{M}[i]$
 - using a similarity measure $S(.,.)$, e.g. cosine distance
 - then normalized with a softmax
- A 'sharpness' parameter is used to narrow the focus:
 - Finds the memories "closest" to the key

$$\mathbf{w}[i] = \frac{\exp(\beta S(\mathbf{k}, \mathbf{M}[i]))}{\sum_j \exp(\beta S(\mathbf{k}, \mathbf{M}[j]))}$$

Addressing by Content

- Once the weightings are defined, each read head returns a read vector r as input to the controller at the next time step

$$\mathbf{r} = \sum_i \mathbf{w}[i] \mathbf{M}[i]$$

- Each write head receives an erase vector e and adds vector a from the controller - and then writes to modify the memory (like LSTM)

$$\mathbf{M}[i] \leftarrow \mathbf{M}[i] (1 - \mathbf{w}[i] \mathbf{e}) + \mathbf{w}[i] \mathbf{a}$$

The NTM Copy Algorithm


```
initialize: move head to start location
while input delimiter not seen do
    receive input vector
    write input to head location
    increment head location by 1
end while
return head to start location
while true do
    read output vector from head location
    emit output
    increment head location by 1
end while
```

NTM Generalization: length 10 to 120

Copy N Times

- Learning For Loop using content to jump, iteration to step, and a variable to count to N

Memory Networks

- Store $(key, value)$ representations for the last M frames
- At each time step:
 - Perform a read operation over their memory database
 - Write the latest percept into memory

Weston et al, Memory Networks, ICLR 2015
Miller et al, Key-Value Memory Networks., EMNLP 2016
Oh et al, Control of Memory, Active Perception, and Action in Minecraft, ICML 2016

Memory Networks

- Easy to learn: Just store as much as possible!
- Can be inefficient:
 - We need $M >$ time horizon of the task (can't know this *a priori*)
 - We might store a lot of useless/redundant data
- Time/space requirements increase with M

Weston et al, Memory Networks, ICLR 2015
Miller et al, Key-Value Memory Networks., EMNLP 2016
Oh et al, Control of Memory, Active Perception, and Action in Minecraft, ICML 2016

Neural Map: Location-Aware Memory

Neural Map (Location-Aware Memory)

- Writable memory with a specific inductive bias:
 - Structure memory into $W \times W$ grid of K -dim cells
 - For every (x, y) position, write to (x', y') in the $W \times W$ grid

Neural Map (Location-Aware Memory)

- Acts as a map that the agent fills out as it explores
- **Sparse Write:**
 - Inductive bias prevents the agent from overwriting its memory too often
 - Allow easier credit assignment over time

Neural Map (Location-Aware Memory)

Neural Map: Operations

- Two read operations:
 - Global summarization
 - Context-based retrieval
- Sparse write only to agent position
- Both read and write vectors are used to compute policy

$$r_t = \text{read}(M_t)$$

$$c_t = \text{context}(M_t, s_t, r_t)$$

$$w_{t+1}^{(x_t, y_t)} = \text{write}(s_t, r_t, c_t, M_t^{(x_t, y_t)})$$

$$M_{t+1} = \text{update}(M_t, w_{t+1}^{(x_t, y_t)})$$

$$o_t = [r_t, c_t, w_{t+1}^{(x_t, y_t)}]$$

$$\pi_t(a|s) = \text{Softmax}(f(o_t))$$

Neural Map: Global Read

- Reads from the entire neural map using a deep convolutional net
- Produces a vector that provides a global summary

$$r_t = \text{read}(M_t)$$

$$c_t = \text{context}(M_t, s_t, r_t)$$

$$w_{t+1}^{(x_t, y_t)} = \text{write}(s_t, r_t, c_t, M_t^{(x_t, y_t)})$$

$$M_{t+1} = \text{update}(M_t, w_{t+1}^{(x_t, y_t)})$$

$$o_t = [r_t, c_t, w_{t+1}^{(x_t, y_t)}]$$

$$\pi_t(a|s) = \text{Softmax}(f(o_t))$$

Neural Map: Context Read

- Read operation using attention

$$q_t = W[s_r, r_t]$$

$$a_t^{(x,y)} = q_t \cdot M_t^{(x,y)}$$

$$\alpha_t^{(x,y)} = \frac{e^{a_t^{x,y}}}{\sum_{(w,z)} e^{a_t^{(w,z)}}}$$

$$c_t = \sum_{(x,y)} \alpha_t^{(x,y)} M_t^{(x,y)}$$

$$r_t = \text{read}(M_t)$$

$$c_t = \text{context}(M_t, s_t, r_t)$$

$$w_{t+1}^{(x_t, y_t)} = \text{write}(s_t, r_t, c_t, M_t^{(x_t, y_t)})$$

$$M_{t+1} = \text{update}(M_t, w_{t+1}^{(x_t, y_t)})$$

$$o_t = [r_t, c_t, w_{t+1}^{(x_t, y_t)}]$$

$$\pi_t(a|s) = \text{Softmax}(f(o_t))$$

Bahdanau et al., Neural Machine Translation by Jointly Learning to Align and Translate, ICLR 2015
Xu et al., Caption Generation with Visual Attention, ICML 2015

Neural Map: Context Read

- Read operation using attention
- Simple 2x2 memory M_t
- Obtain query vector q_t from state s_t and global read r_t

Neural Map: Context Read

- Read operation using attention
 - Dot product between query vector q_t and every memory cell
 - Produces a similarity α_t

Neural Map: Context Read

- Read operation using attention

- Dot product between query vector q_t and every memory cell
- Produces a similarity α_t

Neural Map: Context Read

- Read operation using attention

- Dot product between query vector q_t and every memory cell
- Produces a similarity α_t

Neural Map: Context Read

- Read operation using attention

- Dot product between query vector q_t and every memory cell
- Produces a similarity α_t

Neural Map: Context Read

- Read operation using attention
- Element-wise product between query similarities α_t and memory cells M_t

Neural Map: Context Read

- Read operation using attention
- Sum over all positions to obtain context read vector c_t
- **Intuition:** Return vector c_t in memory M_t closest to the query q_t

Neural Map: Write

- Creates a new k -dim vector to write to the current position in the map
- Update the neural map at the current position with this new vector

$$r_t = \text{read}(M_t)$$

$$c_t = \text{context}(M_t, s_t, r_t)$$

$$w_{t+1}^{(x_t, y_t)} = \text{write}(s_t, r_t, c_t, M_t^{(x_t, y_t)})$$

$$M_{t+1} = \text{update}(M_t, w_{t+1}^{(x_t, y_t)})$$

$$o_t = [r_t, c_t, w_{t+1}^{(x_t, y_t)}]$$

$$\pi_t(a|s) = \text{Softmax}(f(o_t))$$

Neural Map: GRU Write Update

- Creates a new k -dim vector to write to the current position in the map
- Update the neural map at the current position with this new vector

$$\begin{aligned} r_t &= \text{read}(M_t) \\ c_t &= \text{context}(M_t, s_t, r_t) \\ w_{t+1}^{(x_t, y_t)} &= \text{write}(s_t, r_t, c_t, M_t^{(x_t, y_t)}) \\ M_{t+1} &= \text{update}(M_t, w_{t+1}^{(x_t, y_t)}) \\ o_t &= [r_t, c_t, w_{t+1}^{(x_t, y_t)}] \\ \pi_t(a|s) &= \text{Softmax}(f(o_t)) \end{aligned}$$

Neural Map: Output

- Output the read vectors and what we wrote
- Use those features to compute a policy

$$r_t = \text{read}(M_t)$$

$$c_t = \text{context}(M_t, s_t, r_t)$$

$$w_{t+1}^{(x_t, y_t)} = \text{write}(s_t, r_t, c_t, M_t^{(x_t, y_t)})$$

$$M_{t+1} = \text{update}(M_t, w_{t+1}^{(x_t, y_t)})$$

$$o_t = [r_t, c_t, w_{t+1}^{(x_t, y_t)}]$$

$$\pi_t(a|s) = \text{Softmax}(f(o_t))$$

Random Maze with Indicator

- Results are robust with respect to small noise in the (x, y) -position of the agent

Random Maze with Indicator

Egocentric Neural Map

- Problem with Neural Map: it requires mapping from (x, y) to (x', y')
 - We need to have already solved localization
- Obtain a map which is egocentric:
 - The agent always writes to the center of the map
 - When the agent moves, the entire map moves by the opposite amount

Intelligent Agents

Go to the red short torch

Learning to Execute Instructions

Chaplot et al., Gated-Attention Architectures for Task-oriented Language Grounding, AAAI 2017

Hermann et al., Grounded Language Learning in a Simulated 3-D world, 2017

Active Neural Localization

Discussion

- Can we extend to multi-agent domains?
 - Multiple agents communicating through shared memory.
- Can we train an agent to learn how to simultaneously localize and map its environment using the Neural Map?
 - Solves problem of needing an oracle to supply (x, y) position
- Can we structure neural maps into a multi-scale hierarchy?
 - Each scale will incorporate longer range information

Thank you