
Neural Map
Structured Memory for Deep RL

Structured Memory for Deep RL

Background
Neural Map: Location-Aware Memory
Incorporating Prior Knowledge with Memory

Background

Supervised Learning
•Most deep learning problems are posed as supervised learning problems:
mapping and input to an output

•Environment is typically static

•Typically, outputs are assumed to be
independent of each other

Observation

W1

v

W2

W3

h3

h2

h1

Output

Environments for RL
•Environments are dynamic and change over time

•Actions can affect the environment with arbitrary time lags

•Labels can be expensive or difficult to obtain

•Instead of a label, the agent is provided with a reward signal:
-High reward == good behavior

Reinforcement Learning

at

ot

rt

action

reward

observation / state

•RL produces policies

-Map observations to actions
-Maximize long-term reward

•Allows learning purposeful behaviors in dynamic environments

Deep Reinforcement Learning
•Use a deep network to parameterize the policy

•Adapt parameters to maximize reward using:

-Q-learning
-Actor-Critic
- Evolution Strategies

at

ot

rt

action

reward

observation / state

W1

v

W2

W3
h3

h2

h1

Reinforcement Learning: an Introduction, Sutton and Barto,2014
Deep Q-Networks, Mnih et al., 2013, Nature, 2015;
Asynchronous Methods for Deep RL, Mnih et al., ICML 2016
Evolution Strategies, Salimans et al., 2017
Playing FPS games with deep RL, Chaplot & Lample, AAAI 2017

Learning 3-D game
without memory

Chaplot, Lample, AAAI 2017

Deep Reinforcement Learning with Memory

at

ot

rt

action

reward

observation / state

W1

v

W2

W3
h3

h2

h1

•Can we learn an agent with a more advanced external memory?

-Neural Turing Machines (Graves et al., 2014)
-Differential Neural Computers (Graves et al., 2016)

•Challenge: Memory systems are difficult to train, especially using RL

Learned
External
Memory

write

read

Why is Memory Challenging?
•Suppose an agent is in a simple random maze:

-Agent starts at top of map
-An agent is shown an indicator near its initial state
-The color of the indicator determines what the correct goal is

Oh et al, Control of Memory, Active Perception, and
Action in Minecraft, ICML 2016

Why is Memory Challenging?
•Suppose an agent is in a simple random maze:

-Agent starts at top of map
-An agent is shown an indicator near its initial state
-The color of the indicator determines what the correct goal is

Oh et al, Control of Memory, Active Perception, and
Action in Minecraft, ICML 2016

Why is Memory Challenging?
•At the start, no a priori knowledge to store color into memory

•The following must hold:

-Write color to memory at the start of maze
-Never overwrite memory of the color over T time steps
- Find and enter the goal

•Solution: Write everything into memory

Neural Turing Machines (Graves et al., 2014)

• Basic Idea: Turn neural networks into ‘differentiable computers’ by giving them
read-write access to external memory

computer that learns programs
from examples

(neural net that separates
computation from memory)

=

Differentiable Neural Computer, Graves et al., Nature, 2016;
Neural Turing Machine, Graves et al., 2014

Architecture (Graves et al., 2014)

• The Controller is a neural network (recurrent or feedforward)

• The Heads select portions of the memory and read or write to them

• The Memory is a real-valued matrix  

Everything is
differentiable

Differentiable Neural Computer, Graves et al., Nature, 2016;
Neural Turing Machine, Graves et al., 2014

Selective Attention

• Want to focus on the parts of memory the network will read and write to:
need an attention model

• Use the controller outputs to parameterize a distribution (weighting) over
the rows (locations) in the memory matrix

• The weighting defines content-based attention mechanism.

Addressing by Content
•A key vector k is emitted by the controller and compared to
- content of each memory location M[i]
- using a similarity measure S(.,.), e.g. cosine distance
- then normalized with a softmax

• A ‘sharpness’ parameter is used to narrow the focus:
- Finds the memories “closest” to the key

Addressing by Content
• Once the weightings are defined, each read head returns a read vector r
as input to the controller at the next time step

• Each write head receives an erase vector e and adds vector a from the controller
- and then writes to modify the memory (like LSTM)

The NTM Copy Algorithm

NTM Generalization: length 10 to 120

Copy N Times

• Learning For Loop using content to jump, iteration to step, and a variable to
count to N

Memory Networks
•Store (key, value) representations for the last M frames

•At each time step:

-Perform a read operation over their memory database
-Write the latest percept into memory

Weston et al, Memory Networks, ICLR 2015
Miller et al, Key-Value Memory Networks., EMNLP 2016
Oh et al, Control of Memory, Active Perception, and
Action in Minecraft, ICML 2016

Memory Networks
•Easy to learn: Just store as much as possible!

•Can be inefficient:

-We need M > time horizon of the task (can’t know this a priori)
-We might store a lot of useless/redundant data

•Time/space requirements increase with M

Weston et al, Memory Networks, ICLR 2015
Miller et al, Key-Value Memory Networks., EMNLP 2016
Oh et al, Control of Memory, Active Perception, and
Action in Minecraft, ICML 2016

Neural Map: Location-Aware
Memory

Neural Map (Location-Aware Memory)
•Writable memory with a specific inductive bias:

-Structure memory into grid of K-dim cells
- For every (x, y) position, write to (x’, y’) in the grid

W ⇥W

W ⇥W

W
W

K

Mt

Mt Mt

Parisotto, Salakhutdinov, ICLR 2018

Neural Map (Location-Aware Memory)
•Acts as a map that the agent fills out as it explores

•Sparse Write:
- Inductive bias prevents the agent from overwriting its memory too often
-Allow easier credit assignment over time

W
W

K

Mt

Mt Mt

Parisotto, Salakhutdinov, ICLR 2018

Neural Map (Location-Aware Memory)

wt

Mt+1

st st+1

wt+1

write

Mt

write

read with
attention

at+1at

Parisotto, Salakhutdinov, ICLR 2018

Neural Map: Operations
•Two read operations:

-Global summarization
-Context-based retrieval

•Sparse write only to agent position

•Both read and write vectors are
used to compute policy

rt = read(Mt)

ct = context(Mt, st, rt)

w(xt,yt)
t+1 = write(st, rt, ct,M

(xt,yt)
t)

Mt+1 = update(Mt, w
(xt,yt)
t+1)

ot = [rt, ct, w
(xt,yt)
t+1]

⇡t(a|s) = Softmax(f(ot))

Neural Map: Global Read
•Reads from the entire neural map using
a deep convolutional net

•Produces a vector that provides a
global summary

rt = read(Mt)

ct = context(Mt, st, rt)

w(xt,yt)
t+1 = write(st, rt, ct,M

(xt,yt)
t)

Mt+1 = update(Mt, w
(xt,yt)
t+1)

ot = [rt, ct, w
(xt,yt)
t+1]

⇡t(a|s) = Softmax(f(ot))

W
W

K

Mt

rt

Neural Map: Context Read
•Read operation using attention

rt = read(Mt)

ct = context(Mt, st, rt)

w(xt,yt)
t+1 = write(st, rt, ct,M

(xt,yt)
t)

Mt+1 = update(Mt, w
(xt,yt)
t+1)

ot = [rt, ct, w
(xt,yt)
t+1]

⇡t(a|s) = Softmax(f(ot))

qt = W [sr, rt]

a(x,y)t = qt ·M (x,y)
t

↵(x,y)
t =

ea
x,y
t

P
(w,z) e

a(w,z)
t

ct =
X

(x,y)

↵(x,y)
t M (x,y)

t

Bahdanau et al., Neural Machine Translation by Jointly
Learning to Align and Translate, ICLR 2015
Xu et al., Caption Generation with Visual Attention, ICML 2015

Neural Map: Context Read
•Read operation using attention

(st, rt)

qt

Mt

•Simple 2x2 memory Mt

•Obtain query vector qt from state st
and global read rt

Neural Map: Context Read
•Read operation using attention

↵t

Mt

•Dot product between query vector
qt and every memory cell

•Produces a similarity αt

qt

�

↵t

Neural Map: Context Read
•Read operation using attention

↵t

Mt

•Dot product between query vector
qt and every memory cell

•Produces a similarity αt

qt

�

↵t

Neural Map: Context Read
•Read operation using attention

↵t

Mt

•Dot product between query vector
qt and every memory cell

•Produces a similarity αt

qt

�

↵t

Neural Map: Context Read
•Read operation using attention

↵t

Mt

•Dot product between query vector
qt and every memory cell

•Produces a similarity αt

qt

�

Neural Map: Context Read
•Read operation using attention

↵t

⇤

Mt

•Element-wise product between
query similarities αt and memory
cells Mt

↵t �Mt

↵t

(st, rt)

qt

Neural Map: Context Read
•Read operation using attention

X
ct

•Sum over all positions to obtain
context read vector ct

•Intuition: Return vector ct in
memory Mt closest to the query qt

↵t

⇤

Mt

↵t

↵t �Mt

(st, rt)

qt

wt+1 write

update

Neural Map: Write
•Creates a new k-dim vector to write to
the current position in the map

•Update the neural map at the current
position with this new vector

Mt

rt = read(Mt)

ct = context(Mt, st, rt)

w(xt,yt)
t+1 = write(st, rt, ct,M

(xt,yt)
t)

Mt+1 = update(Mt, w
(xt,yt)
t+1)

ot = [rt, ct, w
(xt,yt)
t+1]

⇡t(a|s) = Softmax(f(ot))

Mt+1

Neural Map: GRU Write Update

rt = read(Mt)

ct = context(Mt, st, rt)

w(xt,yt)
t+1 = write(st, rt, ct,M

(xt,yt)
t)

Mt+1 = update(Mt, w
(xt,yt)
t+1)

ot = [rt, ct, w
(xt,yt)
t+1]

⇡t(a|s) = Softmax(f(ot))

•Creates a new k-dim vector to write to
the current position in the map

•Update the neural map at the current
position with this new vector

wt+1 write

Mt

Mt+1

gating
�

Chung et al.,Gated Recurrent Neural Networks , 2014

Neural Map: Output

rt = read(Mt)

ct = context(Mt, st, rt)

w(xt,yt)
t+1 = write(st, rt, ct,M

(xt,yt)
t)

Mt+1 = update(Mt, w
(xt,yt)
t+1)

ot = [rt, ct, w
(xt,yt)
t+1]

⇡t(a|s) = Softmax(f(ot))

•Output the read vectors and what we wrote

•Use those features to compute a policy

Random Maze with Indicator
•Results are robust with respect to small noise in the (x, y)-position of the agent

complete map
(not visible)

input state
(partially observable)

Random Maze with Indicator

Egocentric Neural Map
• Problem with Neural Map: it requires mapping from (x,y) to (x’,y’)

- We need to have already solved localization

• Obtain a map which is egocentric:

- The agent always writes to the center of the map
- When the agent moves, the entire map moves by the opposite amount

Intelligent Agents

at

ot

rt

action

reward

observation / state

Learned
External
Memory write

read

reason
communicate

Knowledge
Base

Learning to Execute Instructions

Chaplot et al., Gated-Attention Architectures for
Task-oriented Language Grounding, AAAI 2017

Image ()It

Go to the
green torch

GRU Network
g(L; ✓GRU)

Conv Network
f(lt; ✓conv)

L
Multimodal
Fusion
()M

Policy
Learning
Module

Y
(a|lt, L)M(xL, xl)

xl = f(lt; ✓conv)

xL = f(L; ✓gru)

Natural Language
Instruction ()

Policy
State

Representation

Instruction
Representation

Image
Representation

Hermann et al., Grounded Language Learning in a
Simulated 3-D world, 2017

Active Neural Localization

Chaplot, Parisotto, Salakhutdinov, ICLR 2018

Discussion
•Can we extend to multi-agent domains?

- Multiple agents communicating through shared memory.

•Can we train an agent to learn how to simultaneously localize and map its
environment using the Neural Map?

- Solves problem of needing an oracle to supply (x, y) position

•Can we structure neural maps into a multi-scale hierarchy?

- Each scale will incorporate longer range information

Thank you

