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Background



Supervised Learning

* Most deep learning problems are posed as supervised learning problems:

mapping and input to an output

e Environment is typically static

 Typically, outputs are assumed to be
independent of each other
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Environments for RL

 Environments are dynamic and change over time

« Actions can affect the environment with arbitrary time lags

e Labels can be expensive or difficult to obtain



Reinforcement Learning

e Instead of a label, the agent is provided with a reward signal:

- High reward == good behavior

e RL produces policies
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* Allows learning purposeful behaviors in dynamic environments



Deep Reinforcement Learning

e Use a deep network to parameterize the policy
« Adapt parameters to maximize reward using:
- Q-learning
- Actor-Ciritic
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- Evolution Strategies
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Reinforcement Learning: an Introduction, Sutton and Barto,2014
Chaplot, Lample, AAAI 2017 Deep Q-Networks, Mnih et al., 2013, Nature, 2015;
Asynchronous Methods for Deep RL, Mnih et al., ICML 2016
Evolution Strategies, Salimans et al., 2017
Playing FPS games with deep RL, Chaplot & Lample, AAAI 2017







Deep Reinforcement Learning with Memory

e Can we learn an agent with a more advanced external memory?

- Neural Turing Machines (Graves et al., 2014)
- Differential Neural Computers (Graves et al., 2016)

e Challenge: Memory systems are difficult to train, especially using RL
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Why is Memory Challenging?

e SUppoOse an agent is in a simple random maze:

- Agent starts at top of map
- An agent Is shown an indicator near its initial state

- The color of the indicator determines what the correct goal is

,‘:

LI,

Oh et al, Control of Memory, Active Perception, and
Action in Minecraft, ICML 2016
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Why is Memory Challenging?

e At the start, no a priori knowledge to store color into memory
 The following must hold:

- Write color to memory at the start of maze

- Never overwrite memory of the color over T time steps

- Find and enter the goal

e Solution: Write everything into memory




Neural Turing Machines (Graves et al., 2014)

e Basic Idea: Turn neural networks into ‘differentiable computers’ by giving them
read-write access to external memory

computer that learns programs
from examples

(neural net that separates
computation from memory)

Differentiable Neural Computer, Graves et al., Nature, 2016;
Neural Turing Machine, Graves et al., 2014



Architecture (Graves et al., 2014)

External Input External Output

Controller
Everything is

/7 N\ differentiable

Read Heads Write Heads
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« The Controller is a neural network (recurrent or feedforward)

 The Heads select portions of the memory and read or write to them

* The Memory IS a real—valued matrix Differentiable Neural Computer, Graves et al., Nature, 2016;

Neural Turing Machine, Graves et al., 2014



Selective Attention

« \Want to focus on the parts of memory the network will read and write to:
need an attention model

e Use the controller outputs to parameterize a distribution ( ) over
the rows ( ) In the memory matrix

e The weighting defines content-based attention mechanism.



Addressing by Content

» A key vector k is emitted by the controller and compared to

- content of each memory location MIi]
- using a similarity measure S(.,.), e.g. cosine distance

- then normalized with a softmax

* A ‘sharpness’ parameter is used to narrow the focus:

- Finds the memories “closest” to the key




Addressing by Content

« Once the weightings are defined, each read head returns a read vector r
as input to the controller at the next time step

e Each write head receives an erase vector e and adds vector a from the controller

- and then writes to modify the memory (like LSTM)

Mi| « MJi](1 — wlile) + wli]a



The NTM Copy Algorithm

Outputs
initialize: move head to start location

while input delimiter not seen do
receive input vector

T write input to head location
e VECTOrsS . :
al o e - C L increment head location by 1

end while

return head to start location

while true do
read output vector from head location
emit output

increment head location by 1
Time ——» Time ——» end while
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NTM Generalization: length 10 to 120
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Copy N Times
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Memory Networks

e Store (key, value) representations for the last M frames

e At each time step:
- Perform a read operation over their memory database

- Write the latest percept into memory

Weston et al, Memory Networks, ICLR 2015

Miller et al, Key-Value Memory Networks., EMNLP 2016
Oh et al, Control of Memory, Active Perception, and
Action in Minecraft, ICML 2016



Memory Networks

e Easy to learn: Just store as much as possible!
« Can be inefficient:

- We need M > time horizon of the task (can’t know this a priori)
- We might store a lot of useless/redundant data

e Time/space requirements increase with M

Weston et al, Memory Networks, ICLR 2015

Miller et al, Key-Value Memory Networks., EMNLP 2016
Oh et al, Control of Memory, Active Perception, and
Action in Minecraft, ICML 2016



Neural Map: Location-Aware
Memory




Neural Map (Location-Aware Memory)

« Writable memory with a specific inductive bias:

- Structure memory into W x W grid of K-dim cells

- For every (x, y) position, write to (x’, y) inthe w x w grid
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Parisotto, Salakhutdinov, ICLR 2018



Neural Map (Location-Aware Memory)

e Acts as a map that the agent fills out as it explores

e Sparse Write:
- Inductive bias prevents the agent from overwriting its memory too often

- Allow easier credit assignment over time
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Neural Map (Location-Aware Memory)
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Neural Map: Operations

* Two read operations:

- Global summarization

- Context-based retrieval

e Sparse write only to agent position

e Both read and write vectors are

used to compute policy

ry = read(My)

¢y = context( My, s¢, 1)

(T¢,Y¢) _ - (T¢,yt)
w77 = write(sg, e, ¢, M, )

M1 = update( My, wigitfyt))

S (xtayt>
Ot = [Ttactawt_|_1 ]

m(als) = Softmax(f(o;))



Neural Map: Global Read

e Reads from the entire neural map using
a deep convolutional net ry = read(M)

e Produces a vector that provides a
global summary




Neural Map: Context Read

« Read operation using attention

g = Wls,, ] ¢y = context( My, s¢, 1)
(w,y) — q, M(fv,y)
g:c,y) edt’’ _
2 (w,z) €
¢, = Z atm,y)Mt(w,y)

(z,y)

Bahdanau et al., Neural Machine Translation by Jointly
Learning to Align and Translate, ICLR 2015
Xu et al., Caption Generation with Visual Attention, ICML 2015



Neural Map: Context Read

« Read operation using attention e Simple 2x2 memory M;

« Obtain query vector qg: from state s;
and global read r:




Neural Map: Context Read

« Read operation using attention e Dot product between query vector
g: and every memory cell

a . e Produces a similarity ax
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Neural Map: Context Read

« Read operation using attention e Dot product between query vector
g: and every memory cell

e Produces a similarity a;




Neural Map: Context Read

« Read operation using attention e Element-wise product between
qguery similarities a:and memory
cells M;




Neural Map: Context Read

« Read operation using attention e Sum over all positions to obtain
context read vector ct

e Intuition: Return vector c:in
memory M;closest to the query g:
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Neural Map: Write
e Creates a new k-dim vector to write to
the current position in the map

e Update the neural map at the current
position with this new vector

(Tt,yt) _ - (Tt,yt)
w77 = write(sg, e, ¢, M, )

M1 = update( My, wt(itfyt))

M4




Neural Map: GRU Write Update

e Creates a new k-dim vector to write to
the current position in the map

e Update the neural map at the current
position with this new vector

(xt,yt)

M(xtayt)

w77 = write(sg, e, ¢, M, )

]MQ+4_::qquaie(ﬂ4gyuéﬁﬁ¥“))

M4

gating

Wi+1 write

Chung et al.,Gated Recurrent Neural Networks , 2014



Neural Map: Output

e Output the read vectors and what we wrote

e Use those features to compute a policy

S (xtayt>
Ot = [Ttactawt_|_1 ]

m(als) = Softmax(f(o;))




Random Maze with Indicator

e Results are robust with respect to small noise in the (X, y)-position of the agent

Input state
(partially observable)

complete map
(not visible)
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Random Maze with Indicator




Egocentric Neural Map

e Problem with Neural Map: it requires mapping from (x,y) to (x,y’)
- We need to have already solved localization

e Obtain a map which is egocentric:
- The agent always writes to the center of the map

- When the agent moves, the entire map moves by the opposite amount




Intelligent Agents

Learned
External
Memory action
erte a
read reward
II  J |
00
/ | observation / state |
Knowledge reason

Base communicate




the red short torch




Learning to Execute Instructions
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Chaplot et al., Gated-Attention Architectures for
Task-oriented Language Grounding, AAAI 2017

Hermann et al., Grounded Language Learning in a

Simulated 3-D world, 2017



Active Neural Localization

t=1

Belief Ground Truth

Chaplot, Parisotto, Salakhutdinov, ICLR 2018



Discussion

e Can we extend to multi-agent domains?

- Multiple agents communicating through shared memory.

« Can we train an agent to learn how to simultaneously localize and map its
environment using the Neural Map?

- Solves problem of needing an oracle to supply (X, y) position

e Can we structure neural maps into a multi-scale hierarchy?

- Each scale will incorporate longer range information



Thank you



