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Variational Inference	



Statistical Generative Models  

2!

Grover and Ermon, DGM Tutorial 

Prior Knowledge!

+!

Learning!Data!
!

Sampling from p(x) generates 
new images:!

Image x! probability p(x)!
A probability 
distribution!

p(x)!

Model family, loss function, 
optimization algorithm, etc.!



Statistical Generative Models  

3!

Training 
Data(CelebA)!
!

Model Samples (Karras et.al., 
2018)!
!

4 years of progression on Faces!
!

Brundage et al., 
2017!
!

(Goodfellow 2018)

Generative Modeling: 
Sample Generation

Training Data Sample Generator
(CelebA) (Karras et al, 2017)

(Goodfellow 2018)

3.5 Years of Progress on Faces

2014 2015 2016 2017

(Brundage et al, 2018)



Conditional Generation  
�  Conditional generative model P(zebra images| horse images)!

4!

Zhou el al., Cycle GAN 2017 

�   Style Transfer!

Monet Input Image Van Gogh 



Conditional Generation  
�  Conditional generative model P(zebra images| horse images)!

5!

�  Failure Case!

Zhou el al., Cycle GAN 2017 



Helmholtz Machines 

6!

�  Hinton, G. E., Dayan, P., Frey, B. J. and Neal, R., Science 
1995!

�  Kingma & Welling, 2014!
�  Rezende, Mohamed, Daan, 

2014!
�  Mnih & Gregor, 2014 !
�  Bornschein & Bengio, 2015!
�  Tang & Salakhutdinov, 2013  !

Input data!
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Generative 
Process!

Approximate 
Inference!



Helmholtz Machines 
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Input data!
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Approximate 
Inference!
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Deep Directed Generative Models 

8!

Code Z �  Latent Variable Models!

�  Conditional distributions 
are parameterized by deep 
neural networks!

Dreal 

�  Generative!
�  Top-Down!
�  P(x|z)!

�  Recognition!
�  Bottom-up!
�  Q(z|x)!



Directed Deep Generative Models  

�  Directed Latent Variable Models with Inference Network!

9!

�  Maximum log-likelihood objective!

�  Marginal log-likelihood is intractable:!

�  Key idea: Approximate true posterior p(z|x) with a simple, 
tractable distribution q(z|x) (inference/recognition network). !

Grover and Ermon, DGM Tutorial 



Variational Autoencoders (VAEs) 

�  Single stochastic (Gaussian) layer, followed by many 
deterministic layers!

!

10!

Deep neural network 
parameterized by θ.
(Can use different noise models)

Deep neural network 
parameterized by φ.

z !



Approximate Inference 
•  When using probabilistic graphical models, we will be interested in evaluating the 
posterior distribution p(Z|X) of the latent variables Z given the observed data X.  

•  For example, in the EM algorithm, we need to evaluate the expectation of the 
complete-data log-likelihood with respect to the posterior distribution over the latent 
variables.  

•  For more complex models, it may be infeasible to evaluate the posterior 
distribution, or compute expectations with respect to this distribution.   

•  This typically occurs when working with high-dimensional latent spaces, or when 
the posterior distribution has a complex form, for which expectations are not 
analytically tractable (e.g. Boltzmann machines).  

11 



Probabilistic Model 

•  The model may have latent variables and parameters, and we will denote the 
set of all latent variables and parameters by Z.  

•  We will also denote the set of all observed variables by X.  

•  For example, we may be given a set of N i.i.d data points, so that X ={x1,…,xN} 
and Z = {z1,…,zN} (as we saw in our previous class).  

•  Our probabilistic model specifies the joint distribution P(X,Z).  

•  Our goal is to find approximate posterior distribution P(Z|X) and the model 
evidence p(X).  

12 



Variational Bound  
•  Given a joint distribution p(Z,X|µ) over observed and latent variables 
governed by parameters µ, the goal is to maximize the likelihood function 
p(X|µ) with respect to µ: 

•  For any distribution q(Z) over latent variables we can derive the 
following variational lower bound:   

Jensen’s 
inequality 

•  We will assume that Z is discrete, although derivations are identical if Z 
contains continuous, or a combination of discrete and continuous 
variables.  

13 



Variational Bound  
•  Variational lower-bound: 

Expected complete 
log-likelihood 

Entropy functional. Variational lower-
bound 

14 



Entropy 
•  For a discrete random variable X, where P(X=xi) = p(xi), the entropy of a 
random variable is: 

•  Distributions that are sharply picked around a few values will have a 
relatively low entropy, whereas those that are spread more evenly across 
many values will have higher entropy  

•  The largest entropy will arise 
from a uniform distribution      
H = -ln(1/30) = 3.40.   

•  Histograms of two probability 
distributions over 30 bins.  

•  For a density defined over continuous random variable, the differential 
entropy is given by:  15 



Variational Bound 
•  We saw: 

•  We also note that the following decomposition holds: 

where Variational lower-
bound  

Kullback-Leibler 
(KL) divergence. 

Also known as 
Relative Entropy. 

•  KL divergence is not symmetric.  
•  KL(q||p) ¸ 0 with equality iff p(x) = q(x).   
•  Intuitively, it measures the “distance” between the two distributions.  16 



Variational Bound 
•  Let us derive that: 

and plugging into the definition of               gives the desired result.  

•  Note that variational bound becomes tight iff q(Z) = p(Z | X,µ).  

•  In other words the distribution q(Z) is equal to the true posterior 
distribution over the latent variables, so that KL(q||p) = 0.  

•  As KL(q||p) ¸ 0, it immediately follows that:  

which also showed using Jensen’s inequality.  

•  We can write: 
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Decomposition 
•  Illustration of the decomposition which holds for any distribution q(Z).  
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Variational Bound  
•  We can decompose the marginal log-probability as: 

where 

•  If we allow any possible choice of q(Z), then the maximum of the lower bound 
occurs when:   

•  We can maximize the variational lower bound           with respect to the 
distribution q(Z), which is equivalent to minimizing the KL divergence.  

In this case KL divergence becomes zero.  19 



Variational Bound  
•  As in our previous lecture, we can decompose the marginal log-probability as: 

•  We will assume that the true posterior distribution is intractable.   

•  We can consider a restricted family of distributions q(Z) and then find the 
member of this family for which KL is minimized.  

•  Our goal is to restrict the family of distributions so that it contains only tractable 
distributions.  

•  At the same time, we want to allow the family to be sufficiently rich and flexible, 
so that it can provide a good approximation to the posterior.  

•  One option is to use parametric distributions q(Z|!), governed by parameters !. 

•  The lower bound then becomes a function of !, and we can optimize the lower-
bound to determine the optimal values for the parameters. 

20 



Example 
•   One option is to use parametric distributions q(Z|!), governed by parameters !. 

•  Here is an example, in which the variational distribution is Gaussian. We can 
optimize with respect to its mean and variance.  

The original distribution (yellow), along 
with Laplace (red), and variational 
(green) approximations.  

21 



Mean-Field 
•  We now consider restricting the family of distributions.   

•  Partition the elements of Z into M disjoint groups, denoted by Zi, i=1,…,M.  

•  We assume that the q distribution factorizes with respect to these groups: 

•  Note that we place no restrictions on the functional form of the individual factors 
qi (we will often denote qi(Zi) as simply qi).  

•  This approximation framework, developed in physics, is called mean-field 
theory.  

22 



Factorized Distributions 
•  Among all factorized distributions, we look for a distribution for which the 
variational lower bound is maximized.  

•  Denoting qi(Zi) as simply qi, we have:  

where we denote a new distribution: 
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Factorized Distributions 
•  Among all factorized distributions, we look for a distribution for which the 
variational lower bound is maximized.  

•  Denoting qi(Zi) as simply qi, we have:  

where 

•  Here we take an expectation with respect to the q distribution over all variables 
Zi for i≠ j, so that: 
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Maximizing Lower Bound 
•  Now suppose that we keep             fixed, and optimize the lower bound with 
respect to all possible forms of the distribution qj(Zj). 

•  Observe: the log of the optimum solution for factor qj is given by: 
-  Considering the log of the joint distribution over all hidden and visible 

variables  
-  Taking the expectation with respect to all other factors {qi} for i ≠ j.     

so the minimum occurs when   

or 

•  This optimization is easily done by recognizing that: 

constant: does not 
depend on q.  
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Maximizing Lower Bound 
•  Exponentiating and normalizing, we obtain: 

•  The set of these equations for j=1,…,M represent the set of consistency 
conditions for the maximum of the lower bound subject to factorization constraint.   

•  To obtain a solution, we initialize all of the factors and then cycle through factors, 
replacing each in tern with a revised estimate.  

•  Convergence is guaranteed because the bound is convex with respect to each 
of the individual factors.  

26 



Factroized Gaussian 
•  Consider a problem of approximating a general distribution by a factorized 
distribution.  

•  To get some insight, let us look at the problem of approximating a Gaussian 
distribution using a factorized Gaussian distribution.   

•  Consider a Gaussian distribution over two correlated variables z = (z1,z2). 

•  Let us approximate this distribution using a factorized Gaussian of the form: 

27 



Factroized Gaussian 
•  Remember: 

•  Consider an expression for the optimal factor q1: 

•  Note that we have a quadratic function of z1, and so we can identify q1(z1) as a 
Gaussian distribution:  

28 



Factroized Gaussian 
•  By symmetry, we also obtain: 

•  There are two observations to make: 

-  We did not assume that             is Gaussian, but rather we derived this 
result by optimizing variational bound over all possible distributions.  

-  The solutions are coupled. The optimal              depends on expectation 
computed with respect to    

•  One option is to cycle through the variables in turn and update them until 
convergence.  

29 



Factroized Gaussian 
•  By symmetry, we also obtain: 

•  However, in our case, 

•  The green contours correspond to 1,2, and 3 
standard deviations of the correlated Gaussian. 

•  The red contours correspond to the factorial 
approximation q(z) over the same two variables.  

•  Observe that a factorized variational 
approximation tends to give approximations 
that are too compact.  30 



Alternative Form of KL Divergence 
•  We have looked at the variational approximation that minimizes KL(q||p).  
•  For comparison, suppose that we were minimizing KL(p||q).  

constant: does not 
depend on q.  •  It is easy to show that:  

•  The optimal factor is given by the marginal distribution of p(Z).  

31 



Comparison of two KLs 
•  Comparison of two the alternative forms for the KL divergence.   

KL(q||p) KL(p||q) 

Approximation is too compact.  Approximation is too spread.  

32 



Comparison of two KLs 
•  The difference between these two approximations can be understood as follows: 

KL(q||p) 

•  There is a large positive contribution to the KL 
divergence from regions of Z space in which:  

-  p(Z) is near zero, 
-  unless q(Z) is also close to zero.  

•  Minimizing KL(q||p) leads to distributions q(Z) that 
avoid regions in which p(Z) is small.  

33 



Comparison of two KLs 
•  Similar arguments apply for the alternative KL divergence: 

KL(p||q) 

•  There is a large positive contribution to the KL 
divergence from regions of Z space in which:  

-  q(Z) is near zero, 
-  unless p(Z) is also close to zero.  

•  Minimizing KL(p||q) leads to distributions q(Z) that 
are nonzero in regions where p(Z) is nonzero.  

34 



Approximating Multimodal Distribution 
•  Consider approximating multimodal distribution with a unimodal one. 
•  Blue contours show bimodal distribution p(Z), red contours show a single 
Gaussian distribution that best approximates q(Z) that best approximates p(Z).  

KL(p||q) KL(q||p) KL(q||p) 

•  In practice, the true posterior will often be mutlimodal.  
•  KL(q||p) will tend to find a single mode, whereas KL(p||q) will average across all 
of the modes.  35 



Alpha-family of Divergences 
•  The two forms of KL are members of the alpha-family divergences:  

•  Observe three points: 

-  KL(p||q) corresponds to the limit ® ! 1.  
-  KL(q||p) corresponds to the limit ® ! -1.  
-  D®(p||q) ¸ 0, for all ®, and D®(p||q)=0 iff q(x) = p(x).   

•  For ® < -1, the divergence is zero-forcing: q(x) will underestimate the 
support of p(x).  

•  Suppose p(x) is fixed and we minimize D®(p||q) with respect to q distribution.  

•  For ® > 1, the divergence is zero-avoiding: q(x) will stretch to cover all of p(x).  

•  For ® = 0, we obtain a symmetric divergence which is related to Hellinger 
Distance: 

36 


