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Statistical Generative Models

Training Model Samples (Karras et.al.,
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Conditional Generation

» Conditional generative model P(zebra images| horse images)

Input Image Monet Van Gogh
Zhou el al., Cycle GAN 2017
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Conditional Generation

» Conditional generative model P(zebra images| horse images)

Zhou el al., Cycle GAN 2017
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Helmholtz Machines

Helmholtz Machine Deep Belief Network
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Deep Directed Generative Models

Code Z » Latent Variable Models

A
» Recognition » Generative
» Bottom-up » Top-Down
> Q(z[x) » P(x|2) log po(x) =log/p9(x,z)dz

» Conditional distributions
are parameterized by deep
neural networks

D real
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Directed Deep Generative Models

» Directed Latent Variable Models with Inference Network

» Maximum log-likelihood objective
|
max »  logpy(x)

qy(z(x) x€D

Po(x|2)
» Marginal log-likelihood is intractable:

log 90 (x) = 1og [ pa(x,2)dz

» Key idea: Approximate true posterior p(z|x) with a simple,
tractable distribution q(z|x) (inference/recognition network).

Grover and Ermon, DGM Tutorial
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Variational Autoencoders (VAES)

» Single stochastic (Gaussian) layer, followed by many
deterministic layers

z p(z) = N(0,1)

pH(X|Z) — N(N(Zv 8)7 Z(Zv 9))

N/

Deep neural network
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parameterized by 6.

(Can use different noise models)

4s(z[x) = N (pu(x, ¢), X(x, ¢))

Deep neural network
parameterized by ¢.



Approximate Inference

* When using probabilistic graphical models, we will be interested in evaluating the
posterior distribution p(Z|X) of the latent variables Z given the observed data X.

e For example, in the EM algorithm, we need to evaluate the expectation of the
complete-data log-likelihood with respect to the posterior distribution over the latent
variables.

e For more complex models, it may be infeasible to evaluate the posterior
distribution, or compute expectations with respect to this distribution.

* This typically occurs when working with high-dimensional latent spaces, or when
the posterior distribution has a complex form, for which expectations are not
analytically tractable (e.g. Boltzmann machines).
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Probabilistic Model

 The model may have latent variables and parameters, and we will denote the
set of all latent variables and parameters by Z.

» We will also denote the set of all observed variables by X.

» For example, we may be given a set of N i.i.d data points, so that X ={x,,...,X\}
and Z = {z,,...,zy} (as we saw in our previous class).

» Our probabilistic model specifies the joint distribution P(X,Z).

e Our goal is to find approximate posterior distribution P(Z|X) and the model
evidence p(X).
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Variational Bound

e Given a joint distribution p(Z,X|#) over observed and latent variables
governed by parameters 6, the goal is to maximize the likelihood function
p(X|#) with respect to 6.

p(X|6) = Zp X, Z|6).

* We will assume that Z is discrete, although derivations are identical if Z
contains continuous, or a combination of discrete and continuous
variables.

e For any distribution q(Z) over latent variables we can derive the
following variational lower bound:

In p(X|6) zanp(X,ZW anq X ZW)

Jensen’s

inequality > Zq X( Z)\H) L(q,0).
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Variational Bound

e Variational lower-bound:
X Z 0
In p(X16) zanp(X,ZW anq ’ )

>Zq XZ)|9>

1
—Zq )Inp(X, Z|0) —|—Zq ln@

=Eyz) | Inp(X, Z|0)] + H(a(Z)) = L(q,0).

/ / \

Expected complete  Entropy functional. Variational lower-
|Og-|ike|ih00d bound
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probabilities

Entropy

* For a discrete random variable X, where P(X=x,) = p(x;), the entropy of a

random variable is:
H(p) = — ZP(%> log p(z;).

e Distributions that are sharply picked around a few values will have a
relatively low entropy, whereas those that are spread more evenly across
many values will have higher entropy

0.5 0.5

» Histograms of two probability
distributions over 30 bins.

H=177 H =3.09

025t 025t

* The largest entropy will arise
from a uniform distribution

_rl- ]—L M = -In(1/30) = 3.40.

0

probabilities

» For a density defined over continuous random variable, the differential
entropy is given by: H(p) = — /p(:c) log p(x)dz. 15



Variational Bound

* We saw:
Inp(X|0) > Eyz) | Inp(X, Z[0)] + H(q(Z)) = L(g,9).

* We also note that the following decomposition holds:

Inp(X|0) = L(q,0) + KL(q|[p),

where Variational lower-
«— bound
p(X, Z|6
£(g,6) =) q¢(Z)In ( (Z)| ),

Z q Kullback-Leibler
Z\X 0) +«— (KL) divergence.

Q\ |p Z q(Z : Also known as
> Relative Entropy.

e KL divergence is not symmetrlc.
* KL(q||p) > 0 with equality iff p(x) = q(x).
e Intuitively, it measures the “distance” between the two distributions. 16



Variational Bound

e | et us derive that:
logp(X|8) = L(q,0) + KL(q||p),

* We can write:
Inp(X,Z|0) = Inp(Z|X, 0) + In p(X|0),

and plugging into the definition of £(q, 8), gives the desired result.

* Note that variational bound becomes tight iff q(Z) = p(Z | X,0).

* [n other words the distribution q(Z) is equal to the true posterior
distribution over the latent variables, so that KL(q||p) = 0.

* As KL(q||p) > 0, it immediately follows that:
Inp(X|0) > L(q,0),

which also showed using Jensen'’s inequality.
17



Decomposition

e lllustration of the decomposition which holds for any distribution q(Z).

In p(X][0) = L(q,0) + KL(q||p),

L(q,0) In p(X|0)
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Variational Bound

* We can decompose the marginal log-probability as:

log p(X) = L(q) + KL(q||p),

where
B p(X,Z)
waifazmaq@)dz
_ | PUZ|X)
KL(q||p) = /Q(Z)l «(Z) dZ.

« We can maximize the variational lower bound £(q) with respect to the
distribution q(Z), which is equivalent to minimizing the KL divergence.

e |f we allow any possible choice of q(Z), then the maximum of the lower bound

occurs when:
q(Z) = p(Z|X).

In this case KL divergence becomes zero. 19



Variational Bound

e As in our previous lecture, we can decompose the marginal log-probability as:
log p(X) = L(q) + KL(¢||p),

* We will assume that the true posterior distribution is intractable.

» We can consider a restricted family of distributions q(Z) and then find the
member of this family for which KL is minimized.

e Our goal is to restrict the family of distributions so that it contains only tractable
distributions.

» At the same time, we want to allow the family to be sufficiently rich and flexible,
so that it can provide a good approximation to the posterior.

* One option is to use parametric distributions q(Z|w), governed by parameters w.

* The lower bound then becomes a function of w, and we can optimize the lower-
bound to determine the optimal values for the parameters.

20



Example
e One option is to use parametric distributions q(Z|w), governed by parameters w.
log p(X) = L(q) + KL(¢||p),

e Here is an example, in which the variational distribution is Gaussian. We can
optimize with respect to its mean and variance.

The original distribution (yellow), along
with Laplace (red), and variational
(green) approximations.

21



Mean-Field

* We now consider restricting the family of distributions.
* Partition the elements of Z into M disjoint groups, denoted by Z;, i=1,...,M.

» We assume that the q distribution factorizes with respect to these groups:
M
0(Z) =] a:(Z).
i=1

* Note that we place no restrictions on the functional form of the individual factors
g; (we will often denote q(Z;) as simply q;).

 This approximation framework, developed in physics, is called mean-field
theory.
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Factorized Distributions

 Among all factorized distributions, we look for a distribution for which the
variational lower bound is maximized.

» Denoting qi(Z;) as simply q;, we have:

£o) = [ az) w70

/qullnp Zln%]dz

177
/QJ Inp(X,Z,) dZ; /qj Ing; dZ; + const

where we denote a new distribution:

(X, Z;) = Eix;[Inp(X, Z)] 4 const.

dZ
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Factorized Distributions

 Among all factorized distributions, we look for a distribution for which the
variational lower bound is maximized.

» Denoting qi(Z;) as simply q;, we have:

p(X,Z)
q(Z)

— /qj Inp(X,Z;)dZ; — /qj Ing; dZ; + const

dZ

L) = / 2(Z)n

where
lnﬁ(X, ZJ> — ErL#] [lnp(X, Z)] -+ const.

e Here we take an expectation with respect to the q distribution over all variables
Z. for i= j, so that:

Eiz;[lnp(X, Z)] = / np(X,Z) | [ ¢ dZ:.
7]
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Maximizing Lower Bound

* Now suppose that we keep {Qi;éj}fixed, and optimize the lower bound with
respect to all possible forms of the distribution q;(Z;).

 This optimization is easily done by recognizing that:

L(q) = /qj Inp(X,Z;)dZ; — /qj In q; dZ,; 4+ const

constant: does not

= —KL(g;(Z;)|[5(X, Z;) + const, s

n L(q) = log p(X) — KL(q||p)
so the minimum occurs when

q;(Zj) = p(X,Z), or  Ing;(Z;) = Eirj|lnp(X, Z)] + const.

* Observe: the log of the optimum solution for factor q; is given by:
- Considering the log of the joint distribution over all hidden and visible
variables
- Taking the expectation with respect to all other factors {q;} for i = |.

25



Maximizing Lower Bound

e Exponentiating and normalizing, we obtain:

) _exp (Eig[Inp(X, Z)))
G(25) = Forn (B I p(X. 2))) EZ,

» The set of these equations for j=1,...,M represent the set of consistency
conditions for the maximum of the lower bound subject to factorization constraint.

 To obtain a solution, we initialize all of the factors and then cycle through factors,
replacing each in tern with a revised estimate.

e Convergence is guaranteed because the bound is convex with respect to each
of the individual factors.

26



Factroized Gaussian

e Consider a problem of approximating a general distribution by a factorized
distribution.

» To get some insight, let us look at the problem of approximating a Gaussian
distribution using a factorized Gaussian distribution.

« Consider a Gaussian distribution over two correlated variables z = (z,,z,).

p(z) = N(z|p, A7),
_ (1 (B B2
B= (MQ) A= <512 522-)

* et us approximate this distribution using a factorized Gaussian of the form:

Q(Z) — Q1(Z1)QQ(22)-

27



Factroized Gaussian

* Remember:

Ing;(Z;) = Eiz;[In p(X, Z)| + const.

» Consider an expression for the optimal factor q:
In gy (21) = Eg,(2,) Inp(z)] + const

= By (z2) | — @(Zl — p1)? = Pra(z1 — p1) (22 — pa) | + const

2
o 511 2 E
= —72’1 + Br1z1p1 — 51221( [2’2] — ,u2) -+ const.

* Note that we have a quadratic function of z,, and so we can identify q,(z,) as a
Gaussian distribution:

¢ (z1) = N(z1|m1, By'), mi=p

28



Factroized Gaussian

* By symmetry, we also obtain:

0H(z1) = N(zalma, B), mn = s — %(E[ZQ] )
0(2) = N (2alma, B5))), o = pis — %(E[zﬂ ).

e There are two observations to make:

- We did not assume that q;k(Zz) is Gaussian, but rather we derived this
result by optimizing variational bound over all possible distributions.

- The solutions are coupled. The optimal QT(Z1) depends on expectation
computed with respect to g5 (22).

* One option is to cycle through the variables in turn and update them until
convergence.

29



Factroized Gaussian

* By symmetry, we also obtain:

0H(z1) = N(zalma, B), mn = s — %(E[ZQ] ).
0(2) = N (2alma, B5))), o = pis — %(E[zﬂ )

« However, in our case, E[21] = p1, E|z2] = po.

* The green contours correspond to 1,2, and 3
standard deviations of the correlated Gaussian. Z
2
e The red contours correspond to the factorial
approximation q(z) over the same two variables. 0.5}

e Observe that a factorized variational
approximation tends to give approximations g
that are too compact. oL— . 30




Alternative Form of KL Divergence

* We have looked at the variational approximation that minimizes KL(q||p).
* For comparison, suppose that we were minimizing KL(p]|q).

KLGllg) = — [ p(z)n 2200z,

p(Z)
M
1
KL(p|lq) = — /p(z) [Zln Qi(zi)] dZ + /p(z) In ZTZ)dZ
i=1
constant: does not
* |t is easy to show that: depend on q.
¢ (Z,; / H dZ; =
7]

» The optimal factor is given by the marginal distribution of p(Z).

31



Comparison of two KLs

» Comparison of two the alternative forms for the KL divergence.

KL(al|p)

Approximation is too compact.

Approximation is too spread.

32



Comparison of two KLs

* The difference between these two approximations can be understood as follows:

p(Z) KL(qllp)

KL(q|lp) = — / o(2)n 274z 1

e There is a large positive contribution to the KL
divergence from regions of Z space in which:

Z9

0.5¢
- p(Z) is near zero,
- unless q(2) is also close to zero.
O L
 Minimizing KL(q||p) leads to distributions q(Z) that 0 0.5 =z 1
avoid regions in which p(Z) is small. (a)
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Comparison of two KLs

e Similar arguments apply for the alternative KL divergence:

_ q(Z)
KL(pll9) = - [ p(@)In Lz

e There is a large positive contribution to the KL
divergence from regions of Z space in which:

- g(£) is near zero,
- unless p(2) is also close to zero.

* Minimizing KL(p||q) leads to distributions q(Z) that
are nonzero in regions where p(Z) is nonzero.

KL(pl|a)

34



Approximating Multimodal Distribution

e Consider approximating multimodal distribution with a unimodal one.

 Blue contours show bimodal distribution p(Z), red contours show a single
Gaussian distribution that best approximates q(Z) that best approximates p(Z).

©)
=

KL(pl|q) KL(q[|p) KL(q[|p)

e In practice, the true posterior will often be mutlimodal.
» KL(q||p) will tend to find a single mode, whereas KL(p||q) will average across all
of the modes. 35



Alpha-family of Divergences

* The two forms of KL are members of the alpha-family divergences:

4
1 — o2 (1 - /p(x)(Ha)/QQ(x)(l_a)/de), —00 < a < 0.

* Observe three points:

D (pllg) =

- KL(p]|q) corresponds to the limit o — 1.
- KL(ql|p) corresponds to the limit o — -1.
- D,(plla) > 0O, for all o, and D ,(p||9)=0 iff q(x) = p(x).

e Suppose p(x) is fixed and we minimize D_(p||q) with respect to q distribution.

e For a < -1, the divergence is zero-forcing: q(x) will underestimate the
support of p(x).

e For a > 1, the divergence is zero-avoiding: q(x) will stretch to cover all of p(x).

e For a = 0, we obtain a symmetric divergence which is related to Hellinger
Distance: 1

Dy (pllg) = 5/ (p(ﬂfi)l/2 — Q(w)1/2>2d$- 36



