

10707

Deep Learning

Russ Salakhutdinov

Machine Learning Department
rsalakhu@cs.cmu.edu
<http://www.cs.cmu.edu/~rsalakhu/10707/>

Sparse Coding

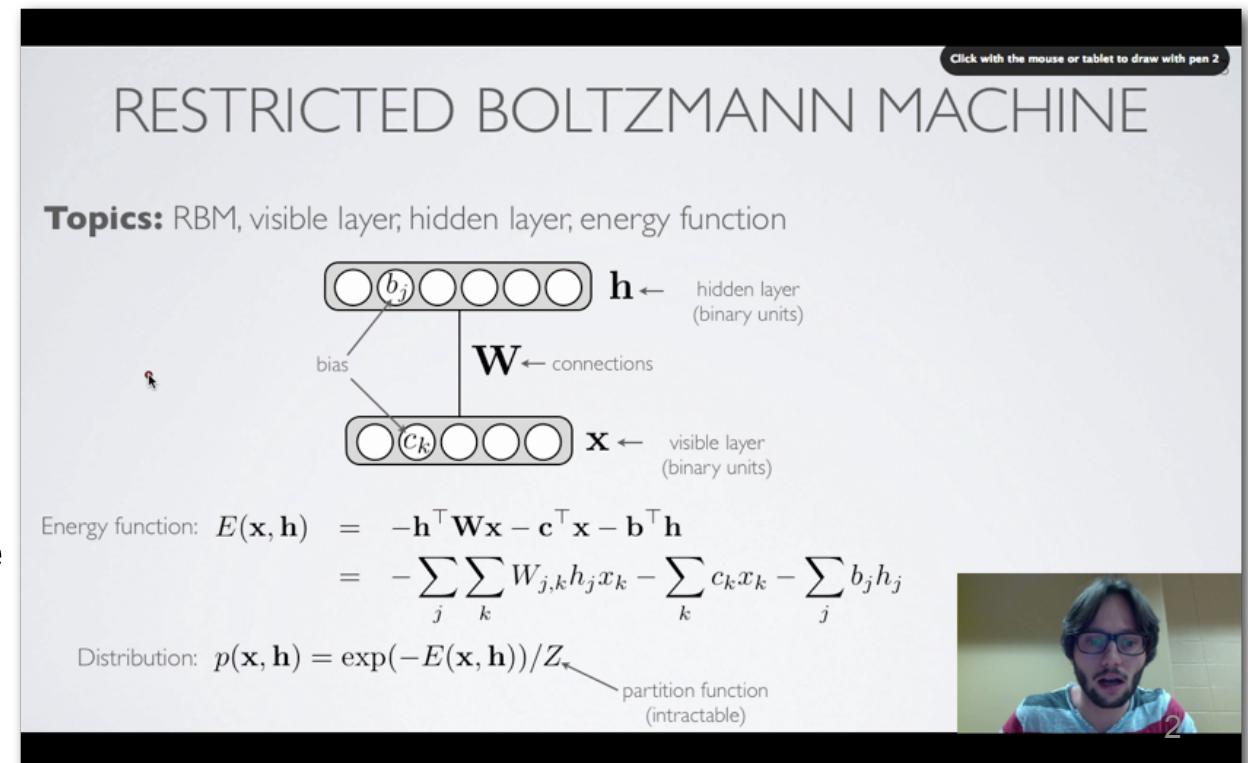
Neural Networks Online Course

- **Disclaimer:** Much of the material and slides for this lecture were borrowed from Hugo Larochelle's class on Neural Networks:

- Hugo's class covers many other topics: convolutional networks, neural language model, Boltzmann machines, autoencoders, sparse coding, etc.

- We will use his material for some of the other lectures.

http://info.usherbrooke.ca/hlarochelle/neural_networks



Unsupervised Learning

Non-probabilistic Models

- Sparse Coding
- Autoencoders
- Others (e.g. k-means)

Probabilistic (Generative) Models

Tractable Models

- Fully observed Belief Nets
- NADE
- PixelRNN

Non-Tractable Models

- Boltzmann Machines
- Variational Autoencoders
- Helmholtz Machines
- Many others...

- Generative Adversarial Networks
- Moment Matching Networks

Explicit Density $p(x)$

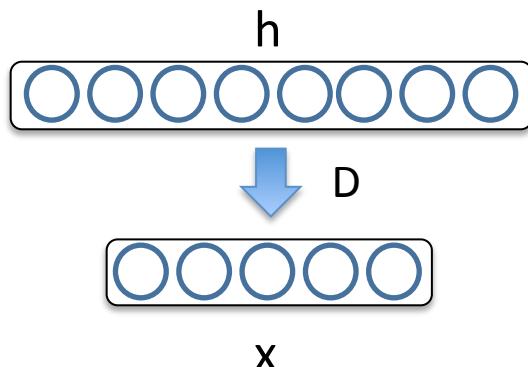
Implicit Density

Unsupervised Learning

- Unsupervised learning: we only use the inputs $\mathbf{x}^{(t)}$ for learning
 - automatically extract meaningful features for your data
 - leverage the availability of unlabeled data
 - add a data-dependent regularizer to training ($-\log p(\mathbf{x}^{(t)})$)
- We will consider 3 models for unsupervised learning that will form the basic building blocks for deeper models:
 - Restricted Boltzmann Machines
 - Autoencoders
 - Sparse coding models

Sparse Coding

- Sparse coding (Olshausen & Field, 1996). Originally developed to explain early visual processing in the brain (edge detection).
- For each input $\mathbf{x}^{(t)}$ find a latent representation $\mathbf{h}^{(t)}$ such that:
 - **it is sparse**: the vector $\mathbf{h}^{(t)}$ has many zeros
 - we can good **reconstruct** the original input $\mathbf{x}^{(t)}$



Sparse Coding

- For each $\mathbf{x}^{(t)}$ find a latent representation $\mathbf{h}^{(t)}$ such that:
 - it is sparse: the vector $\mathbf{h}^{(t)}$ has many zeros
 - we can good reconstruct the original input $\mathbf{x}^{(t)}$

- In other words:

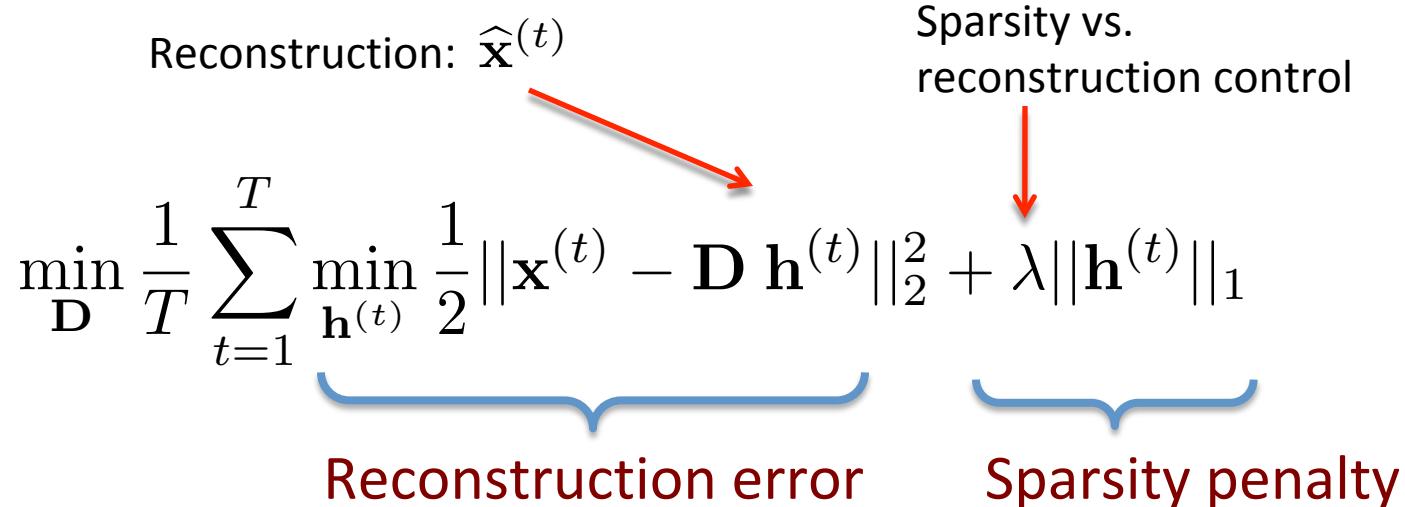
$$\min_{\mathbf{D}} \frac{1}{T} \sum_{t=1}^T \min_{\mathbf{h}^{(t)}} \frac{1}{2} \|\mathbf{x}^{(t)} - \mathbf{D} \mathbf{h}^{(t)}\|_2^2 + \lambda \|\mathbf{h}^{(t)}\|_1$$

Reconstruction: $\hat{\mathbf{x}}^{(t)}$

Sparsity vs.
reconstruction control

Reconstruction error

Sparsity penalty



Sparse Coding

- For each $\mathbf{x}^{(t)}$ find a latent representation $\mathbf{h}^{(t)}$ such that:
 - it is sparse: the vector $\mathbf{h}^{(t)}$ has many zeros
 - we can good reconstruct the original input $\mathbf{x}^{(t)}$
- In other words:
$$\min_{\mathbf{D}} \frac{1}{T} \sum_{t=1}^T \min_{\mathbf{h}^{(t)}} \frac{1}{2} \|\mathbf{x}^{(t)} - \mathbf{D} \mathbf{h}^{(t)}\|_2^2 + \lambda \|\mathbf{h}^{(t)}\|_1$$
 - we also constrain the columns of \mathbf{D} to be of norm 1
 - otherwise, \mathbf{D} could grow big while \mathbf{h} becomes small to satisfy the L1 constraint

Sparse Coding

- For each $\mathbf{x}^{(t)}$ find a latent representation $\mathbf{h}^{(t)}$ such that:
 - it is sparse: the vector $\mathbf{h}^{(t)}$ has many zeros
 - we can good reconstruct the original input $\mathbf{x}^{(t)}$

- In other words:

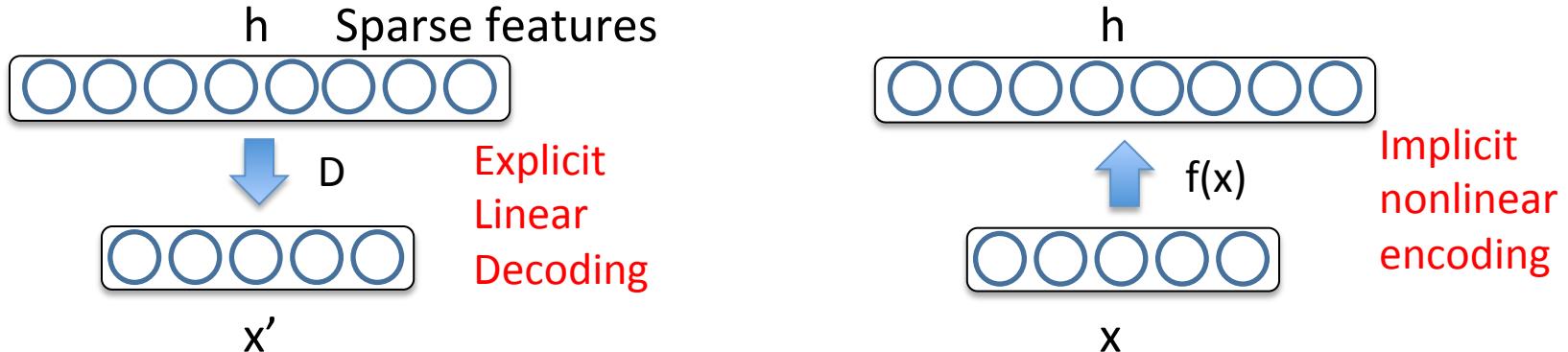
$$\min_{\mathbf{D}} \frac{1}{T} \sum_{t=1}^T \min_{\mathbf{h}^{(t)}} \frac{1}{2} \|\mathbf{x}^{(t)} - \mathbf{D} \mathbf{h}^{(t)}\|_2^2 + \lambda \|\mathbf{h}^{(t)}\|_1$$

- \mathbf{D} is equivalent to the **autoencoder output weight matrix**
- However, $\mathbf{h}(\mathbf{x}^{(t)})$ is now a complicated function of $\mathbf{x}^{(t)}$
- Encoder is the **minimization problem**:

$$\mathbf{h}(\mathbf{x}^{(t)}) = \arg \min_{\mathbf{h}^{(t)}} \frac{1}{2} \|\mathbf{x}^{(t)} - \mathbf{D} \mathbf{h}^{(t)}\|_2^2 + \lambda \|\mathbf{h}^{(t)}\|_1$$

Interpreting Sparse Coding

$$\min_{\mathbf{D}} \frac{1}{T} \sum_{t=1}^T \min_{\mathbf{h}^{(t)}} \frac{1}{2} \|\mathbf{x}^{(t)} - \mathbf{D} \mathbf{h}^{(t)}\|_2^2 + \lambda \|\mathbf{h}^{(t)}\|_1$$

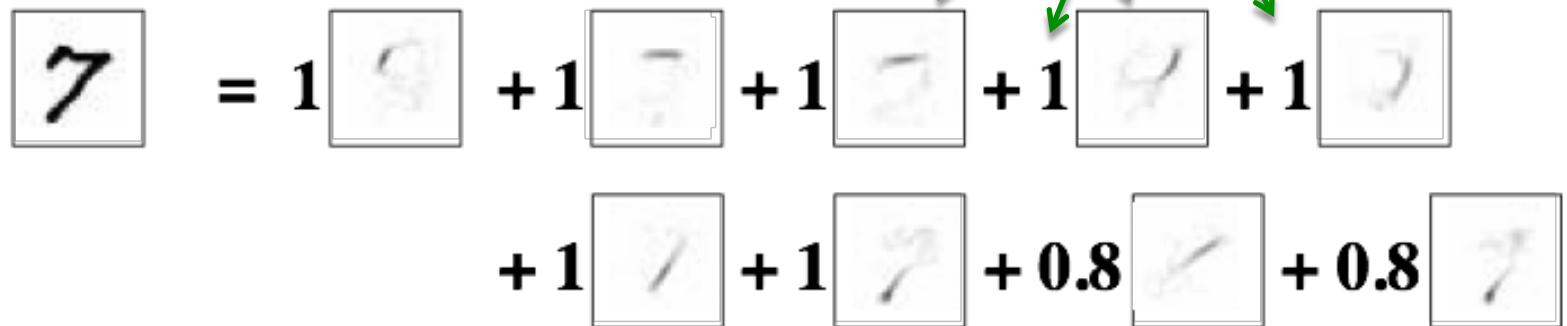


- Sparse, over-complete representation \mathbf{h} .
- Encoding $\mathbf{h} = f(\mathbf{x})$ is implicit and nonlinear function of \mathbf{x} .
- Reconstruction (or decoding) $\mathbf{x}' = \mathbf{D}\mathbf{h}$ is linear and explicit.

Sparse Coding

- We can also write:

$$\hat{\mathbf{x}}^{(t)} = \mathbf{D} \mathbf{h}(\mathbf{x}^{(t)}) = \sum_{\substack{k \text{ s.t.} \\ h(\mathbf{x}^{(t)})_k \neq 0}} \mathbf{D}_{\cdot, k} h(\mathbf{x}^{(t)})_k$$

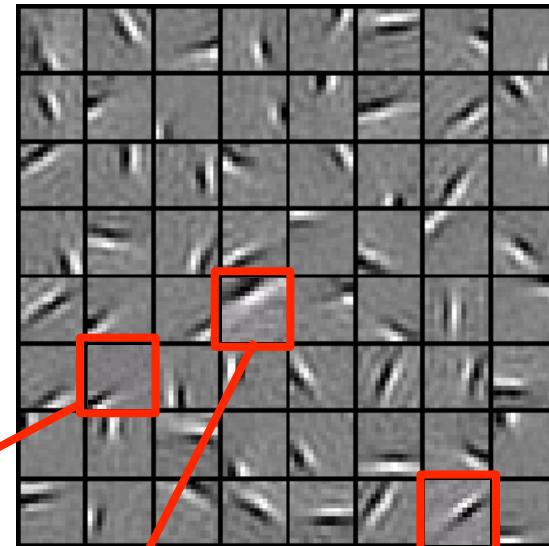


- D is often referred to as **Dictionary**
- In certain applications, we know what dictionary matrix to use
- In many cases, we have to learn it

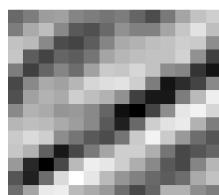
Sparse Coding

Natural Images

Learned bases: “Edges”

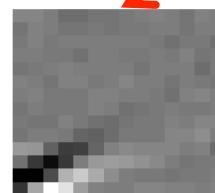


New example

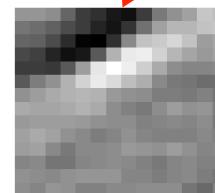


x

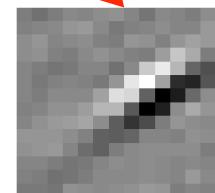
$= 0.8 *$



$+ 0.3 *$



$+ 0.5 *$



ϕ_{36}

ϕ_{42}

ϕ_{65}

[0, 0, ... 0.8, ..., 0.3, ..., 0.5, ...] = coefficients (feature representation)

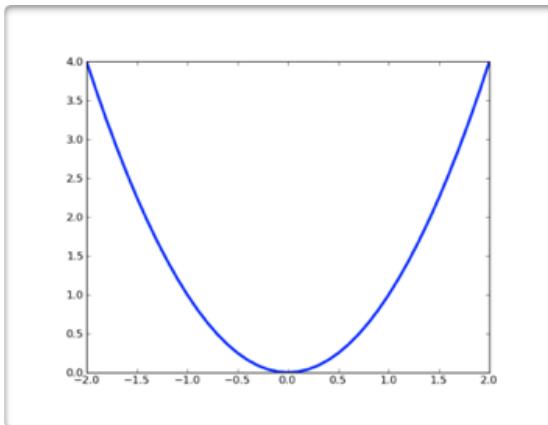
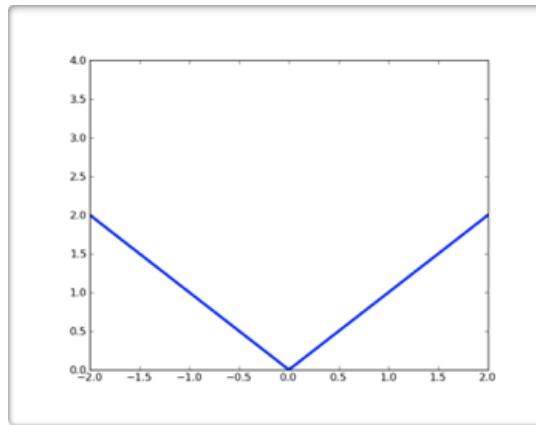
Inference

- Given dictionary D , how do we compute $h(x^{(t)})$?

- We need to optimize:

$$l(x^{(t)}) = \frac{1}{2} \|x^{(t)} - D h^{(t)}\|_2^2 + \lambda \|h^{(t)}\|_1$$

- This is Lasso.



- We could use a **gradient descent** method:

$$\nabla_{h^{(t)}} l(x^{(t)}) = D^\top (D h^{(t)} - x^{(t)}) + \lambda \text{sign}(h^{(t)})$$

Inference

- For a single hidden unit:

$$\frac{\partial}{\partial h_k^{(t)}} l(\mathbf{x}^{(t)}) = (\mathbf{D}_{\cdot, k})^\top (\mathbf{D} \mathbf{h}^{(t)} - \mathbf{x}^{(t)}) + \lambda \operatorname{sign}(h_k^{(t)})$$

- **issue:** L1 norm **not differentiable** at 0
- very unlikely for gradient descent to “land” on $h_k^{(t)} = 0$ (even if it’s the solution)
- **Solution:** if $h_k^{(t)}$ changes sign because of L1 norm gradient, clamp to 0.

Inference

- For a single hidden unit:

$$\frac{\partial}{\partial h_k^{(t)}} l(\mathbf{x}^{(t)}) = (\mathbf{D}_{\cdot, k})^\top (\mathbf{D} \mathbf{h}^{(t)} - \mathbf{x}^{(t)}) + \lambda \operatorname{sign}(h_k^{(t)})$$

- **Solution:** if $h_k^{(t)}$ changes sign because of L1 norm gradient, clamp to 0.
- Each hidden unit update would be performed as follows:

- $h_k^{(t)} \leftarrow h_k^{(t)} - \alpha (\mathbf{D}_{\cdot, k})^\top (\mathbf{D} \mathbf{h}^{(t)} - \mathbf{x}^{(t)})$ Update from reconstruction
- If $\operatorname{sign}(h_k^{(t)}) \neq \operatorname{sign}(h_k^{(t)} - \alpha \lambda \operatorname{sign}(h_k^{(t)}))$ then $h_k^{(t)} \leftarrow 0$
- Else $h_k^{(t)} \leftarrow h_k^{(t)} - \alpha \lambda \operatorname{sign}(h_k^{(t)})$ Update sparsity term

ISTA Algorithm

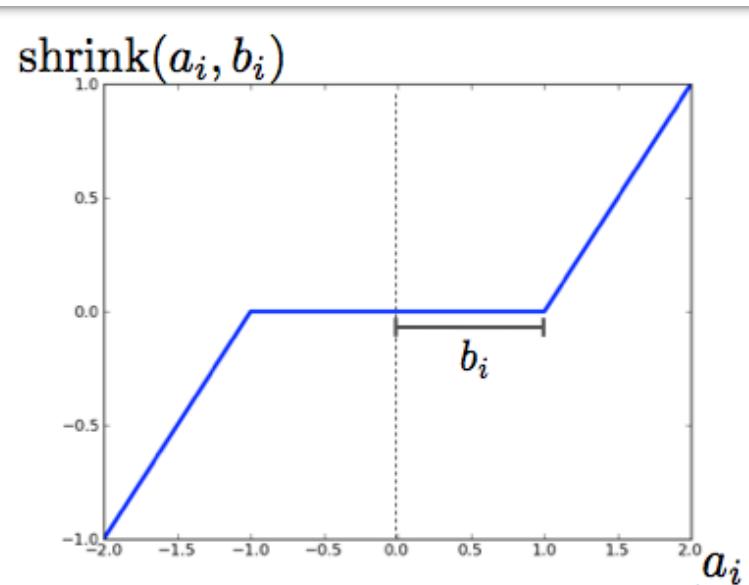
- This process corresponds to the **ISTA** (Iterative Shrinkage and Thresholding) Algorithm:

- Initialize $\mathbf{h}^{(t)}$ (for example to 0)
- While $\mathbf{h}^{(t)}$ has not converged

$$\mathbf{h}^{(t)} \leftarrow \mathbf{h}^{(t)} - \alpha \mathbf{D}^\top (\mathbf{D} \mathbf{h}^{(t)} - \mathbf{x}^{(t)})$$

$$\mathbf{h}^{(t)} \leftarrow \text{shrink}(\mathbf{h}^{(t)}, \alpha \lambda)$$

where



$$\text{shrink}(\mathbf{a}, \mathbf{b}) = [\dots, \text{sign}(a_i) \max(|a_i| - b_i, 0), \dots]$$

- Will converge if $\frac{1}{\alpha}$ is bigger than the largest eigenvalue of $\mathbf{D}^\top \mathbf{D}$

ISTA Algorithm

- ISTA updates all hidden units simultaneously
 - this is wasteful if many hidden units have already converged
- **Idea**: update only the “most promising” hidden unit
 - see coordinate descent algorithm in Learning Fast Approximations of Sparse Coding (Gregor and Lecun, 2010).
 - this algorithm has the advantage of not requiring a learning rate α

Dictionary Learning I

- Remember our **optimization problem**:

$$\min_{\mathbf{D}} \frac{1}{T} \sum_{t=1}^T \min_{\mathbf{h}^{(t)}} l(\mathbf{x}^{(t)}) = \min_{\mathbf{D}} \frac{1}{T} \sum_{t=1}^T \frac{1}{2} \|\mathbf{x}^{(t)} - \mathbf{D} \mathbf{h}(\mathbf{x}^{(t)})\|_2^2 + \lambda \|\mathbf{h}(\mathbf{x}^{(t)})\|_1$$

- Let us first assume that $\mathbf{h}(\mathbf{x}^{(t)})$ does not depend on \mathbf{D}

- We then minimize:

$$\min_{\mathbf{D}} \frac{1}{T} \sum_{t=1}^T \frac{1}{2} \|\mathbf{x}^{(t)} - \mathbf{D} \mathbf{h}(\mathbf{x}^{(t)})\|_2^2$$

- we must also constrain the columns of \mathbf{D} to be of unit norm

Dictionary Learning I

- We can use projected gradient descent algorithm.

- While D has not converged:

- Perform gradient update of D

$$D \leftarrow D + \alpha \frac{1}{T} \sum_{t=1}^T (\mathbf{x}^{(t)} - D \mathbf{h}(\mathbf{x}^{(t)})) \mathbf{h}(\mathbf{x}^{(t)})^\top$$

- Renormalize the columns of D

- For each column of D :

$$D_{\cdot, j} \leftarrow \frac{\mathbf{D}_{\cdot, j}}{\|\mathbf{D}_{\cdot, j}\|_2}$$

Dictionary Learning II

- An alternative method is to solve for each column $\mathbf{D}_{\cdot,j}$ in cycle.
 - setting the gradient for $\mathbf{D}_{\cdot,j}$ to zero, we have

$$\begin{aligned} 0 &= \frac{1}{T} \sum_{t=1}^T (\mathbf{x}^{(t)} - \mathbf{D} \mathbf{h}(\mathbf{x}^{(t)})) h(\mathbf{x}^{(t)})_j \\ 0 &= \sum_{t=1}^T \left(\mathbf{x}^{(t)} - \left(\sum_{i \neq j} \mathbf{D}_{\cdot,i} h(\mathbf{x}^{(t)})_i \right) - \mathbf{D}_{\cdot,j} h(\mathbf{x}^{(t)})_j \right) h(\mathbf{x}^{(t)})_j \\ \sum_{t=1}^T \mathbf{D}_{\cdot,j} h(\mathbf{x}^{(t)})_j^2 &= \sum_{t=1}^T \left(\mathbf{x}^{(t)} - \left(\sum_{i \neq j} \mathbf{D}_{\cdot,i} h(\mathbf{x}^{(t)})_i \right) \right) h(\mathbf{x}^{(t)})_j \\ \mathbf{D}_{\cdot,j} &= \frac{1}{\sum_{t=1}^T h(\mathbf{x}^{(t)})_j^2} \sum_{t=1}^T \left(\mathbf{x}^{(t)} - \left(\sum_{i \neq j} \mathbf{D}_{\cdot,i} h(\mathbf{x}^{(t)})_i \right) \right) h(\mathbf{x}^{(t)})_j \end{aligned}$$

- Note that we don't need to specify a learning rate to update \mathbf{D} .

Dictionary Learning II

- An alternative method is to solve for each column $\mathbf{D}_{\cdot,j}$ in cycle.

- We can rewrite

$$\begin{aligned}\mathbf{D}_{\cdot,j} &= \frac{1}{\sum_{t=1}^T h(\mathbf{x}^{(t)})_j^2} \sum_{t=1}^T \left(\mathbf{x}^{(t)} - \left(\sum_{i \neq j} \mathbf{D}_{\cdot,i} h(\mathbf{x}^{(t)})_i \right) \right) h(\mathbf{x}^{(t)})_j \\ &= \frac{1}{\sum_{t=1}^T h(\mathbf{x}^{(t)})_j^2} \left(\left(\sum_{t=1}^T \mathbf{x}^{(t)} h(\mathbf{x}^{(t)})_j \right) - \sum_{i \neq j} \mathbf{D}_{\cdot,i} \left(\sum_{t=1}^T h(\mathbf{x}^{(t)})_i h(\mathbf{x}^{(t)})_j \right) \right) \\ &= \frac{1}{A_{j,j}} (\mathbf{B}_{\cdot,j} - \mathbf{D} \mathbf{A}_{\cdot,j} + \mathbf{D}_{\cdot,j} A_{j,j})\end{aligned}$$

- this way, we only need to store:

$$\mathbf{A} \Leftarrow \sum_{t=1}^T \mathbf{h}(\mathbf{x}^{(t)}) \mathbf{h}(\mathbf{x}^{(t)})^\top$$

$$\mathbf{B} \Leftarrow \sum_{t=1}^T \mathbf{x}^{(t)} \mathbf{h}(\mathbf{x}^{(t)})^\top$$

Dictionary Learning II

- This leads to the following algorithm

- While D has not converged:

- for each column $D_{\cdot, j}$ perform updates

$$D_{\cdot, j} \leftarrow \frac{1}{A_{j,j}} (B_{\cdot, j} - D A_{\cdot, j} + D_{\cdot, j} A_{j,j})$$

$$D_{\cdot, j} \leftarrow \frac{D_{\cdot, j}}{\|D_{\cdot, j}\|_2}$$

- This is referred to as a **block-coordinate descent algorithm**
 - a different block of variables are updated at each step
 - the “blocks” are the columns $D_{\cdot, j}$

Learning Sparse Coding Model

- Putting it all together, we have the following algorithm, where learning alternates between **inference** and **dictionary learning**.

- While D has not converged:
 - find the sparse codes $\mathbf{h}(\mathbf{x}^{(t)})$ for all $\mathbf{x}^{(t)}$ in the training set with ISTA
 - Update the dictionary:
$$\mathbf{A} \Leftarrow \sum_{t=1}^T \mathbf{x}^{(t)} \mathbf{h}(\mathbf{x}^{(t)})^\top$$
$$\mathbf{B} \Leftarrow \sum_{t=1}^T \mathbf{h}(\mathbf{x}^{(t)}) \mathbf{h}(\mathbf{x}^{(t)})^\top$$
 - run block-coordinate descent algorithm to update D

- Similar in spirit to **EM algorithm**

Online Learning

- This algorithm is “batch” (i.e. not online)
 - single update of the dictionary per pass on the training set
 - for large datasets, we’d like to update D after visiting each $\mathbf{x}^{(t)}$
- **Solution:** for each input $\mathbf{x}^{(t)}$
 - perform inference of $\mathbf{h}(\mathbf{x}^{(t)})$ for the current input
 - update running averages of the quantities required to update D:
$$\mathbf{B} \leftarrow \beta \mathbf{B} + (1 - \beta) \mathbf{x}^{(t)} \mathbf{h}(\mathbf{x}^{(t)})^\top$$
$$\mathbf{A} \leftarrow \beta \mathbf{A} + (1 - \beta) \mathbf{h}(\mathbf{x}^{(t)}) \mathbf{h}(\mathbf{x}^{(t)})^\top$$
 - use current value of D as “warm start” to block-coordinate descent

Online Learning

- While D has not converged:

- For each $\mathbf{x}^{(t)}$

- Infer code $\mathbf{h}(\mathbf{x}^{(t)})$

- Update the dictionary:

$$\mathbf{A} \leftarrow \beta \mathbf{A} + (1 - \beta) \mathbf{h}(\mathbf{x}^{(T+1)}) \mathbf{h}(\mathbf{x}^{(T+1)})^\top$$

$$\mathbf{B} \leftarrow \beta \mathbf{B} + (1 - \beta) \mathbf{x}^{(t)} \mathbf{h}(\mathbf{x}^{(t)})^\top$$

- while D hasn't converged

- for each column of D perform gradient update

$$\mathbf{D}_{\cdot,j} \leftarrow \frac{1}{A_{j,j}} (\mathbf{B}_{\cdot,j} - \mathbf{D} \mathbf{A}_{\cdot,j} + \mathbf{D}_{\cdot,j} A_{j,j})$$

$$\mathbf{D}_{\cdot,j} \leftarrow \frac{\mathbf{D}_{\cdot,j}}{\|\mathbf{D}_{\cdot,j}\|_2}$$

Online Dictionary Learning for Sparse Coding.
Mairal, Bach, Ponce and Sapiro, 2009.

ZCA Preprocessing

- Before running a sparse coding algorithm, it is beneficial to remove “obvious” structure from the data
 - normalize such that mean is 0 and covariance is the identity (whitening)
 - this will remove 1st and 2nd order statistical structure
- ZCA preprocessing
 - let the empirical mean be $\hat{\mu}$ and the empirical covariance matrix be $\hat{\Sigma} = \mathbf{U}\Lambda\mathbf{U}^\top$ (in its eigenvalue/eigenvector representation)
 - ZCA transforms each input as follows:

$$\mathbf{x} \leftarrow \mathbf{U} \Lambda^{-\frac{1}{2}} \mathbf{U}^\top (\mathbf{x} - \hat{\mu})$$

ZCA Preprocessing

- After this transformation
 - the empirical mean is 0

$$\begin{aligned} & \frac{1}{T} \sum_t \mathbf{U} \Lambda^{-\frac{1}{2}} \mathbf{U}^\top (\mathbf{x}^{(t)} - \hat{\boldsymbol{\mu}}) \\ &= \mathbf{U} \Lambda^{-\frac{1}{2}} \mathbf{U}^\top \left(\left(\frac{1}{T} \sum_t \mathbf{x}^{(t)} \right) - \hat{\boldsymbol{\mu}} \right) \\ &= \mathbf{U} \Lambda^{-\frac{1}{2}} \mathbf{U}^\top (\hat{\boldsymbol{\mu}} - \hat{\boldsymbol{\mu}}) \\ &= 0 \end{aligned}$$

ZCA Preprocessing

- After this transformation
 - the empirical covariance matrix is the identity

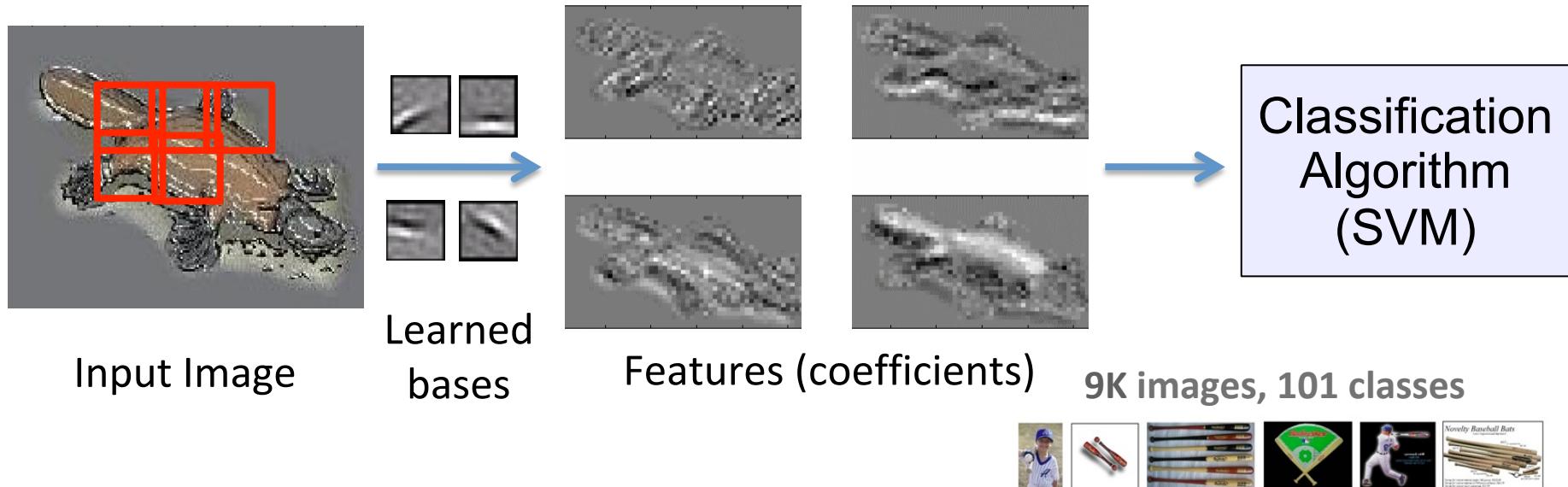
$$\begin{aligned} & \frac{1}{T-1} \sum_t \left(\mathbf{U} \Lambda^{-\frac{1}{2}} \mathbf{U}^\top (\mathbf{x}^{(t)} - \hat{\boldsymbol{\mu}}) \right) \left(\mathbf{U} \Lambda^{-\frac{1}{2}} \mathbf{U}^\top (\mathbf{x}^{(t)} - \hat{\boldsymbol{\mu}}) \right)^\top \\ &= \mathbf{U} \Lambda^{-\frac{1}{2}} \mathbf{U}^\top \left(\frac{1}{T-1} \sum_t (\mathbf{x}^{(t)} - \hat{\boldsymbol{\mu}})(\mathbf{x}^{(t)} - \hat{\boldsymbol{\mu}})^\top \right)^\top \mathbf{U} \Lambda^{-\frac{1}{2}} \mathbf{U}^\top \\ &= \mathbf{U} \Lambda^{-\frac{1}{2}} \mathbf{U}^\top \hat{\boldsymbol{\Sigma}} \mathbf{U} \Lambda^{-\frac{1}{2}} \mathbf{U}^\top \\ &= \mathbf{U} \Lambda^{-\frac{1}{2}} \mathbf{U}^\top \mathbf{U} \Lambda \mathbf{U}^\top \mathbf{U} \Lambda^{-\frac{1}{2}} \mathbf{U}^\top \\ &= \mathbf{I} \end{aligned}$$

Feature Learning

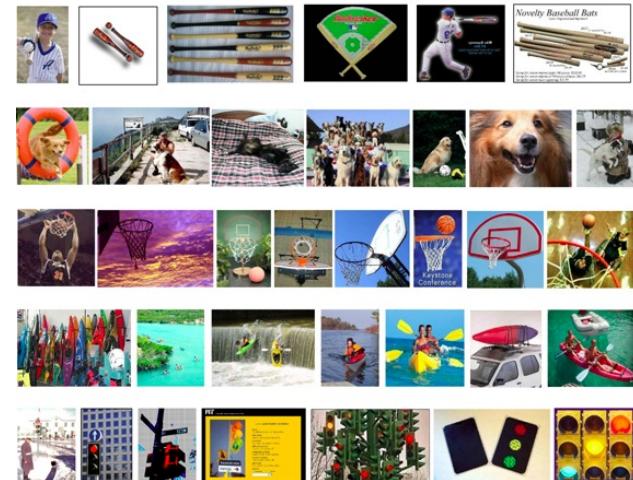
- A sparse coding model can be used to extract features
 - given a **labeled** training set $\{(\mathbf{x}^{(t)}, y^{(t)})\}$
 - train sparse coding dictionary only on training inputs $\{\mathbf{x}^{(t)}\}$
 - this yields a **dictionary** $\mathbf{h}(\mathbf{x}^{(t)})$ from which to infer sparse codes
 - train your favorite classifier on transformed training set $\{(\mathbf{h}(\mathbf{x}^{(t)}), y^{(t)})\}$
- When classifying test input \mathbf{x}
 - infer its sparse representation: $\mathbf{h}(\mathbf{x})$
 - feed it to the classifier

Image Classification

Evaluated on Caltech101 object category dataset.

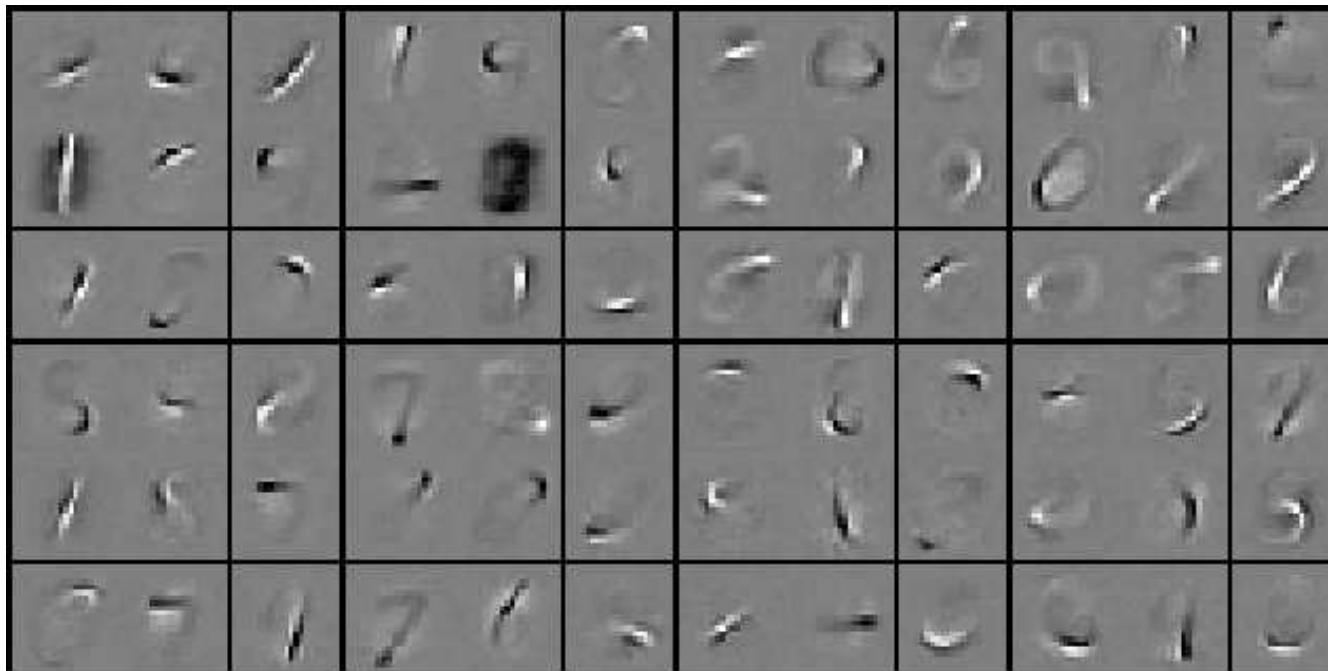


Algorithm	Accuracy
Baseline (Fei-Fei et al., 2004)	16%
PCA	37%
Sparse Coding	47%



Feature Learning

- Learned features on MNIST handwritten digits:



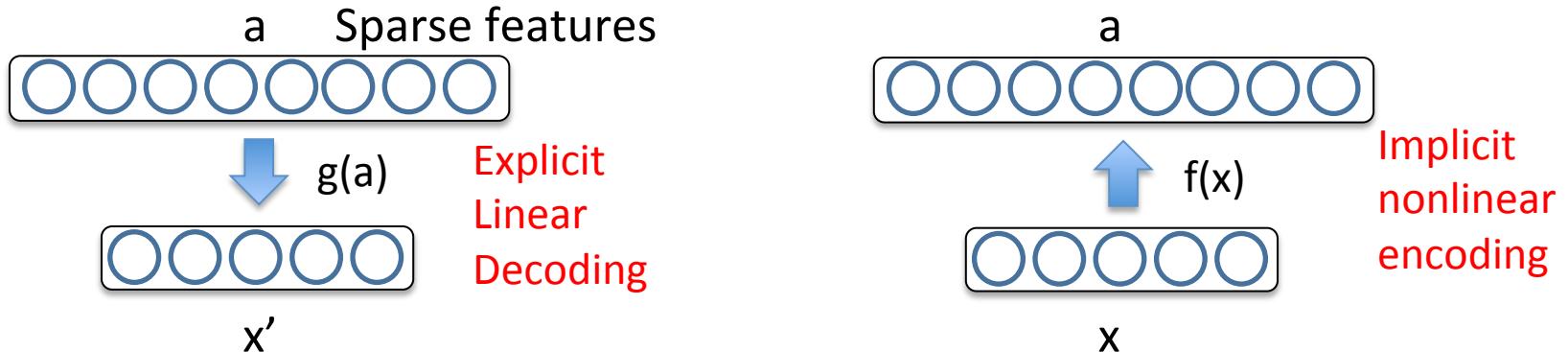
Self-Taught Learning

- **Self-taught learning:** when features trained on different input distribution
- Example:
 - train sparse coding dictionary on handwritten digits
 - use codes (features) to classify handwritten characters

Digits → English handwritten characters			
Training set size	Raw	PCA	Sparse coding
100	39.8%	25.3%	39.7%
500	54.8%	54.8%	58.5%
1000	61.9%	64.5%	65.3%

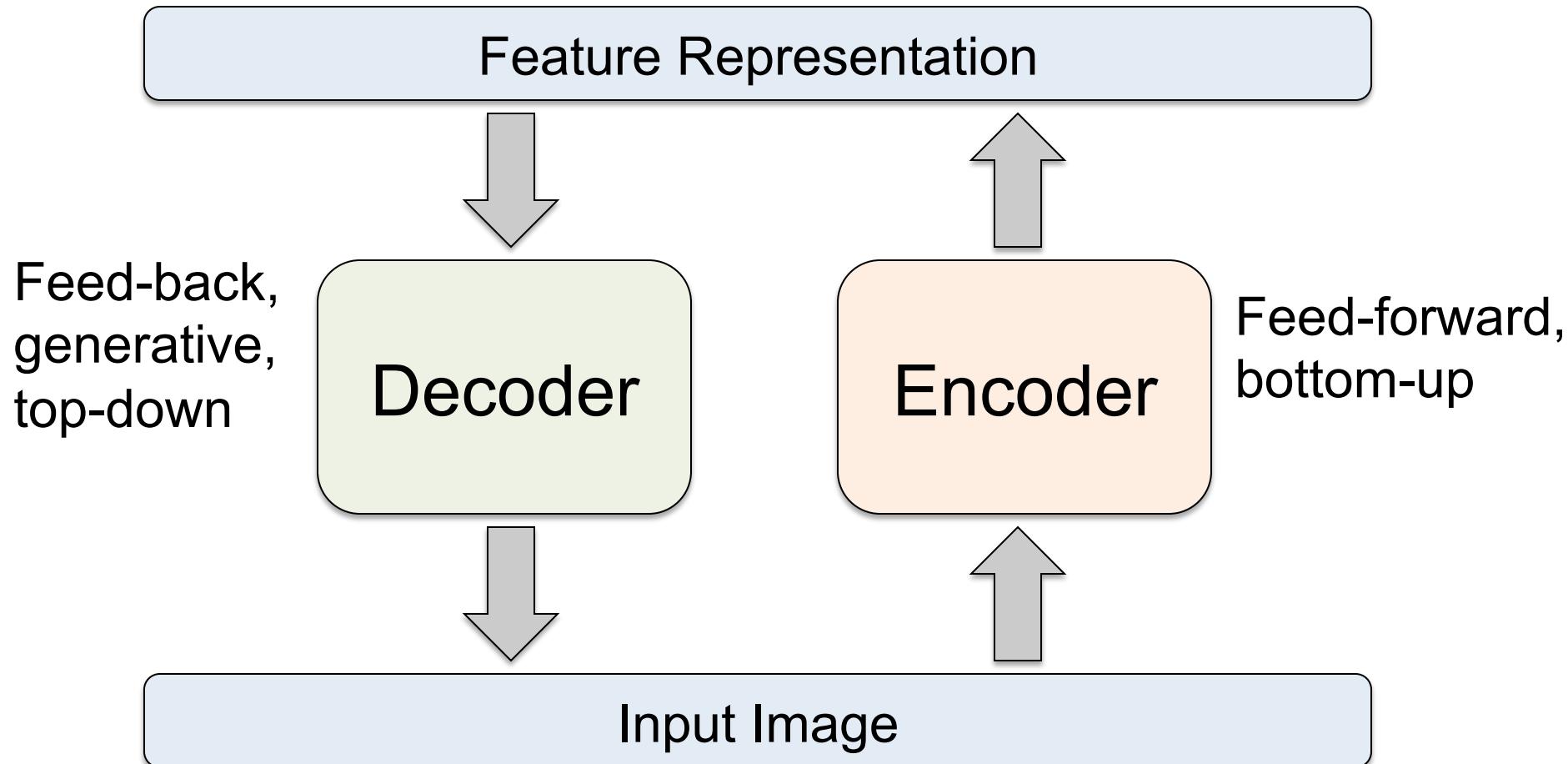
Interpreting Sparse Coding

$$\min_{\mathbf{a}, \boldsymbol{\phi}} \sum_{n=1}^N \left\| \mathbf{x}_n - \sum_{k=1}^K a_{nk} \boldsymbol{\phi}_k \right\|_2^2 + \lambda \sum_{n=1}^N \sum_{k=1}^K |a_{nk}|$$



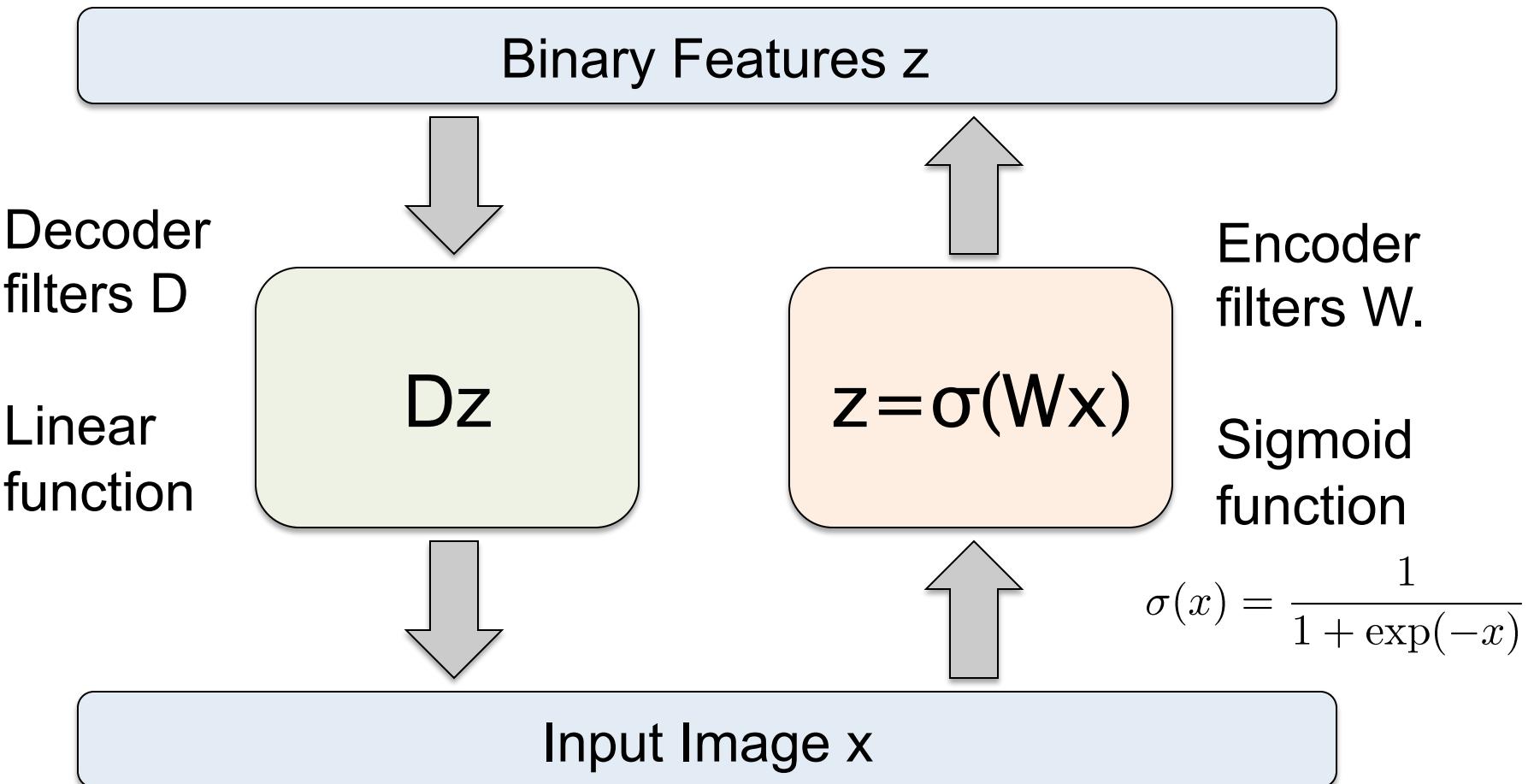
- Sparse, over-complete representation \mathbf{a} .
- Encoding $\mathbf{a} = f(\mathbf{x})$ is implicit and nonlinear function of \mathbf{x} .
- Reconstruction (or decoding) $\mathbf{x}' = g(\mathbf{a})$ is linear and explicit.

Autoencoder

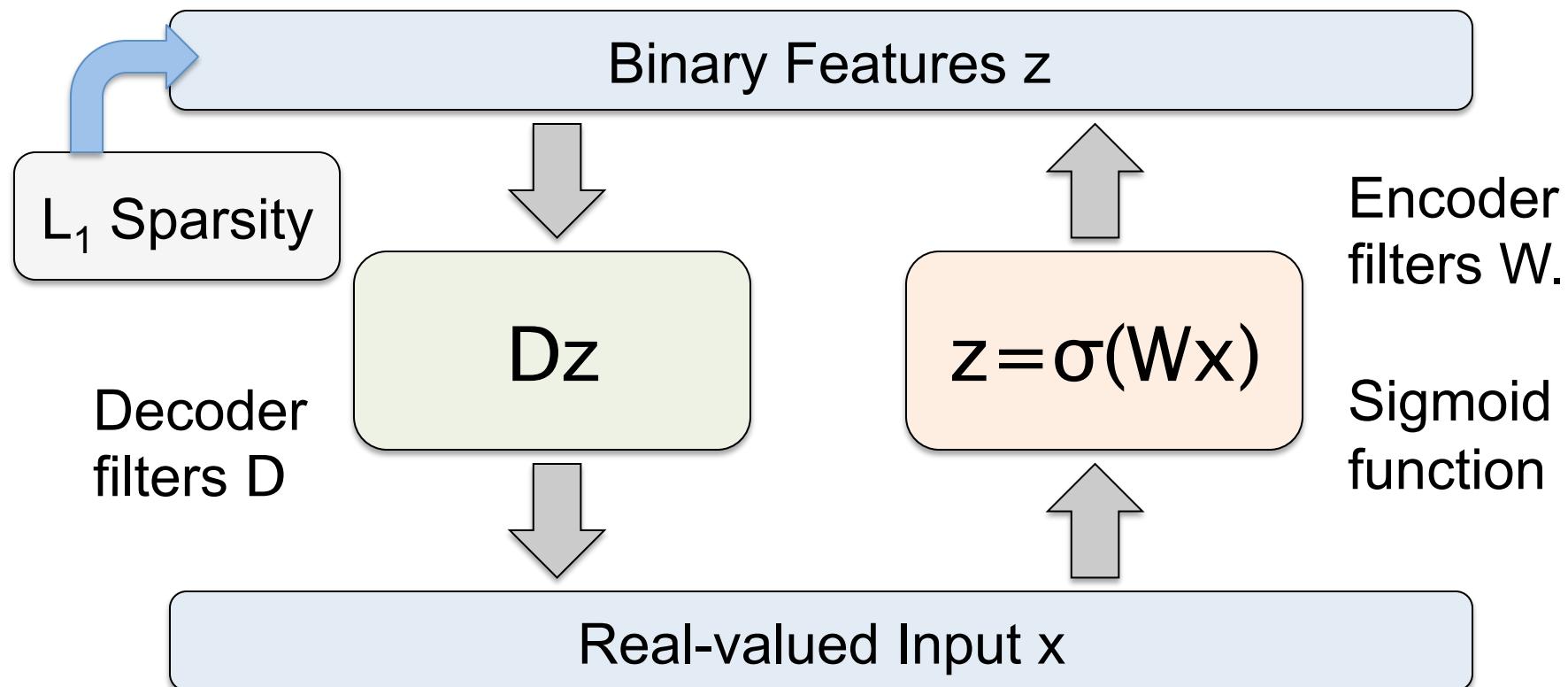


- Details of what goes inside the encoder and decoder matter!
- Need constraints to avoid learning an identity.

Autoencoder



Predictive Sparse Decomposition



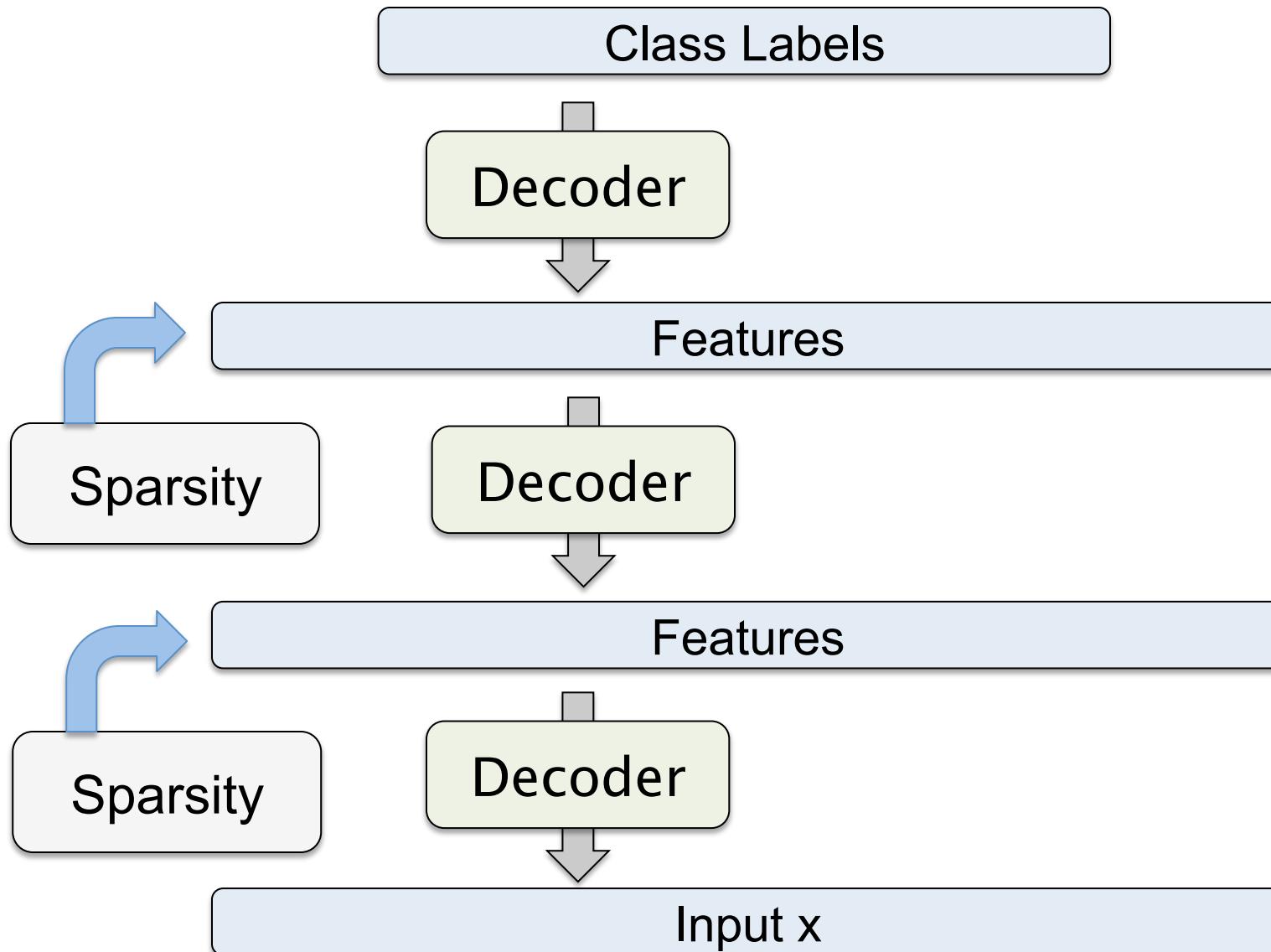
At training time

$$\min_{D, W, z} \underbrace{\|Dz - x\|_2^2 + \lambda|z|_1}_{\text{Decoder}} + \underbrace{\|\sigma(Wx) - z\|_2^2}_{\text{Encoder}}$$

Encoder

Kavukcuoglu et al., '09

Stacked Sparse Coding?



Modeling Image Patches

- Natural image patches:
 - small **image regions** extracted from an image of nature (forest, grass, ...)

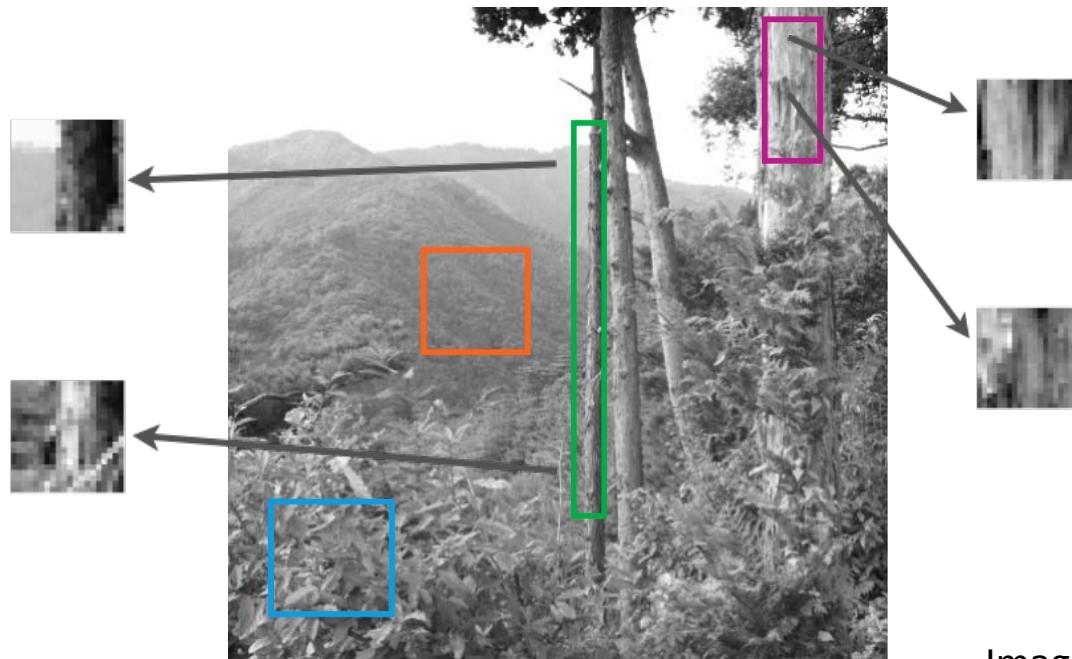
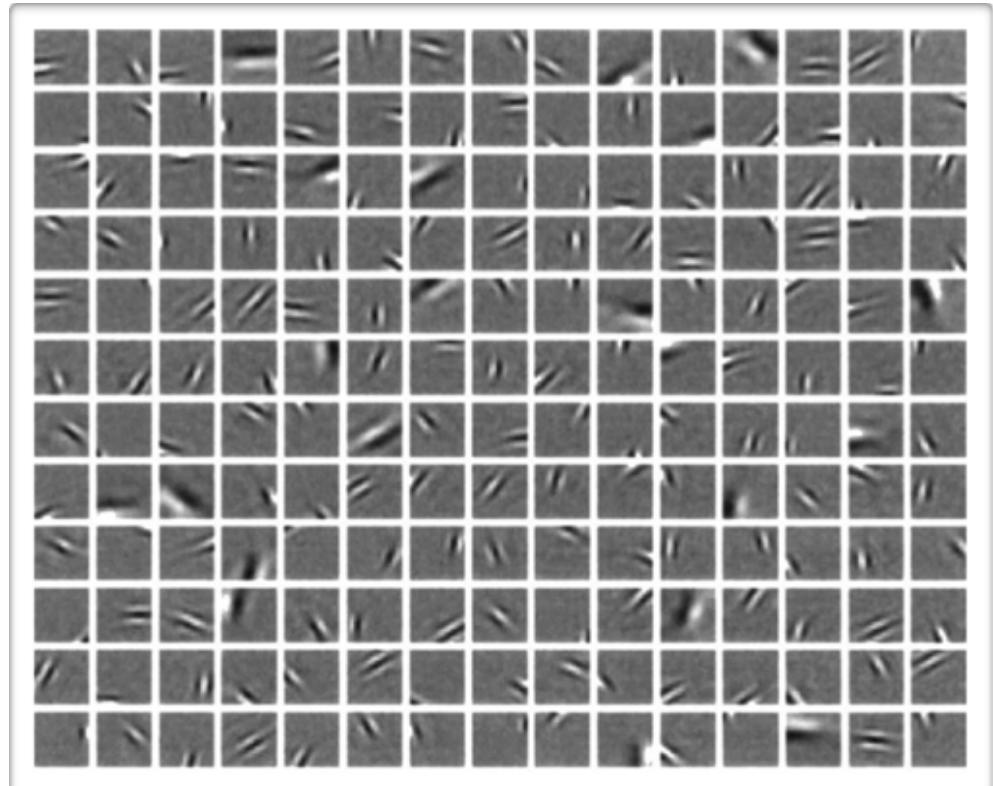


Image taken from:
Emergence of complex cell properties
by learning to generalize in natural scenes.
Karklin and Lewicki, 2009

Relationship to V1

- When trained on natural image patches

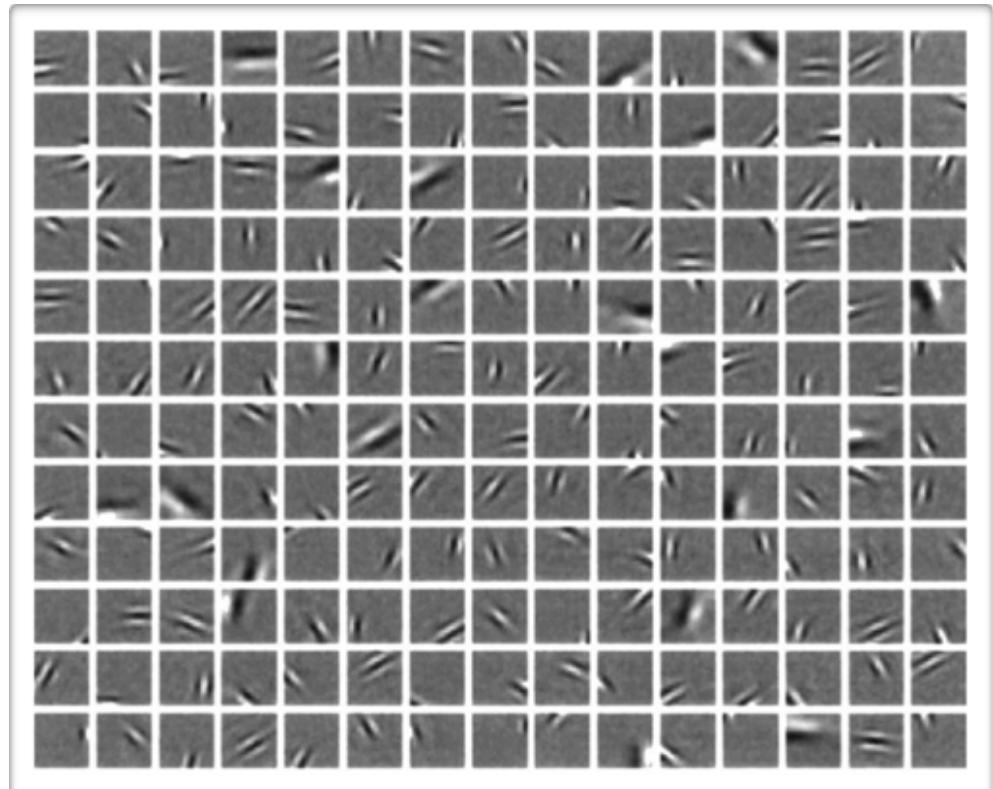
- the dictionary columns (“atoms”) look like **edge detectors**
- each atom is tuned to a particular **position**, **orientation** and **spatial frequency**
- V1 neurons in the mammalian brain have a similar behavior



Emergence of simple-cell receptive field properties by learning a sparse code of natural images. Olshausen and Field, 1996.

Relationship to V1

- Suggests that the brain might be learning a sparse code of visual stimulus
 - Since then, many other models have been shown to learn similar features
 - they usually all incorporate a notion of sparsity



Emergence of simple-cell receptive field properties by learning a sparse code of natural images. Olshausen and Field, 1996.