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Sparse Coding



Neural Networks Online Course

e Disclaimer: Much of the material and slides for this lecture were
borrowed from Hugo Larochelle’s class on Neural Networks:

* Hugo’s class covers http://info.usherbrooke.ca/hlarochelle/neural_networks
many other topics:

convolutional networks, : e —
neural language model, RESTRICTED BOLTZMANN MACHINE

Boltzmann machines,

Topics: RBM, visible layer; hidden layer, energy function
autoencoders, sparse OBHOOO0) h-
coding, etc.
g o\ et
CBOO0) x+

* We will use his
material for some ofthe
other lectures.
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> Sparse Coding
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Unsupervised Learning

e Unsupervised learning: we only use the inputs X(t)for learning

> automatically extract meaningful features for your data
> leverage the availability of unlabeled data

> add a data-dependent regularizer to training ( — logp(x(t)))

* We will consider 3 models for unsupervised learning that will
form the basic building blocks for deeper models:

> Restricted Boltzmann Machines
> Autoencoders

>  Sparse coding models



Sparse Coding

e Sparse coding (Olshausen & Field, 1996). Originally developed to
explain early visual processing in the brain (edge detection).

» For each input x(*) find a latent representation h(*) such that:

> it is sparse: the vector h(*) has many zeros

> we can good reconstruct the original input x(t)
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Sparse Coding

e For eachx'? find a latent representation h®such that:

> itis sparse: the vector h(*) has many zeros

> we can good reconstruct the original input X(t)

e |In other words:

~ Sparsity vs.
Reconstruction: X(t> P y i
reconstruction control

) \ l
1 1
min — mm—HX(t) D h®|2 + A||[b®|,
D T — h®

Reconstruction error Sparsity penalty



Sparse Coding

e For eachx'? find a latent representation h®such that:

> itis sparse: the vector h(*) has many zeros

> we can good reconstruct the original input X(t)

e |In other words:

1 < 1

win 7 2 in 5l = D RO + AR

» we also constrain the columns of D to be of norm 1
> otherwise, D could grow big while h becomes small to satisfy the

L1 constraint



Sparse Coding

e For eachx'? find a latent representation h®such that:

> itis sparse: the vector h(*) has many zeros

> we can good reconstruct the original input x(*)

e |In other words:

1 < 1

o “1x®) — ()]2 (t)
g D min X~ DO+ A

> D is equivalent to the autoencoder output weight matrix
> However, h(x!)) is now a complicated function of x(t)

> Encoder is the minimization problem:

1
h(X(t)) — arg min §Hx(t) —D h(t)H% + )\Hh(t)Hl

h(t)



Interpreting Sparse Coding

| — 1
e 7 2 i 5 = D RO+ ARy
Sparse features h
00000000 [©OO000000)
§o Fow o,
[OOOOO] Decoding [OOOOO] encoding

» Sparse, over-complete representation h.
* Encoding h = f(x) is implicit and nonlinear function of x.

* Reconstruction (or decoding) x’ = Dh is linear and explicit.



Sparse Coding

e \We can also write:

>
>
>

%) — D h(x®) =

7 =1 " | +1

+1

2

k s.t.
h(x()) e

D. ;. h(x (t))k

+1

/X

+1

+1

+ 0.8 + 0.8

D is often referred to as Dictionary

In certain applications, we know what dictionary matrix to use

In many cases, we have to learn it
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Sparse Coding

Natural Images Learned bases: “Edges”

New example

=0.8% gy T 03*% @y FTO5*

0,0, ..0.8, ..., 0.3, .. 0.5, ...] = coefficients (feature representation)
Slide Credit: Hongl1a1k Lee



Inference

e Given dictionary D , how do we compute h(x(V)?

> We need to optimize:

1
2

I(x") = S|Ix!Y =D h||3 + A||h®]];

> This is Lasso.

> We could use a gradient descent method:
Vo l(x) =DT(D h® — x®) + X\ sign(h®)



Inference

e For a single hidden unit:
0

O\ _ T ¢ t ° (t)
ah;’f)l(x( )= (D.x)"(DhY —xB) 4 Xsign(h,”)

» issue: L1 norm not differentiable at 0
> very unlikely for gradient descent to “land” on h\"” = 0 (even if it's

the solution)

e Solution: if h,gt>changes sign because of L1 norm gradient,
clamp to O.



Inference

e For a single hidden unit:
0

t)\ _ T t / . (t)
ah;’f)l(x( )= (D.x)"(DhY —xD) 1 Asign(h;”)

e Solution: if h,(f)changes sign because of L1 norm gradient,
clamp to O.

e Each hidden unit update would be performed as follows:

Update from
reconstruction

> hl(f) = h,(f) —a(D. ;)" (D h® —x®) «
> f Sign(h,(:)) + Sign(h,(f) —a A sign(h,(f))) then hl(f) — ()
» Else h,g) = h,(f) —a A Sign(hg)) .

Update sparsity
term



ISTA Algorithm

e This process corresponds to the ISTA (lterative Shrinkage and
Thresholding) Algorithm:

ShI;iCIlk(ai, bz)

> Initializeh (for example to 0)

>  While h® has not converged |
h®) «e—h® — o DT(Dh® —x®) = —
h(® <= shrink(h®, o \)

Where “1R20 =15 -10 -05 5.0 0.5 1.0 15 J'rja
1

shrink(a,b) = [...,sign(a;) max(|a;| — b;,0),...]
o Will converge if é is bigger than the largest eigenvalue of D' D
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ISTA Algorithm

e |ISTA updates all hidden units simultaneously

> this is wasteful if many hidden units have already converged

e |dea: update only the “most promising” hidden unit

> see coordinate descent algorithm in Learning Fast Approximations
of Sparse Coding (Gregor and Lecun, 2010).

> this algorithm has the advantage of not requiring a learning rate «x



Dictionary Learning |

« Remember our optimization problem:

1 T T

1 1
in — ' )Y — min — “Ix® — OMIP: (t)
min 7: 3 minl(x") = ngn 737 51 = D b + M)l

e Let us first assume that h(x")) does not depend on D

>  We then minimize:
1 <1
min — ) 5||x<t> — D h(x®)||?

D T
t=1

> we must also constrain the columns of D to be of unit norm



Dictionary Learning |

e \We can use projected gradient descent algorithm.

* While D has not converged:

> Perform gradient update of D

T
1
_ (t) _ (t) (T

D<:D+04T;(X D h(x®)) h(x™®)
» Renormalize the columns of D
» For each column of D:
D.,j
D ;]2

D.,j o
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Dictionary Learning |l

 An alternative method is to solve for each column D. ; in cycle.

» setting the gradient for D. ; to zero, we have

T
0 = Z ® — D h(x®)) h(X(t))j

t:1

0 = > (x“) (ZD h(x) )D.,j h(x“))j) n(x"),

i#]

ZT:D.,jh(x(t))? = ZT:(X (ZD  h(x™) )) h(x");

17

D. j = X(t) — D.,Z' h X(t) 7 h X(t) j

> Note that we don’t need to specify a learning rate to update D.




Dictionary Learning |l

 An alternative method is to solve for each column D. ; in cycle.

(x@) - (Z D.; h(x(t))Z)) h(x®),
7]

>  We can rewrite
1

T
D i1 (X(t))i

D, =

zmﬂ

7

Zt 1 (X(t)
1
= (B —D A ;+D. ;4;;)
757

> this way, we only need to store:
A =3 h(x") h(x®)T
B— Y  x®nx®)T

(Zx(t)h > ZDZ (ih(x(“)ih(x“))



Dictionary Learning |l

 This leads to the following algorithm

* While D has not converged:

» for each column D. ; perform updates

1
D.’j < — (B.)j — D A.)j + D.J‘ Aj,j)
Aj.j
D..

D. ., «— ’
? 1D ;2

e This is referred to as a block-coordinate descent algorithm

> a different block of variables are updated at each step

» the “blocks™ are the columns D. ;



Learning Sparse Coding Model

 Putting it all together, we have the following algorithm, where
learning alternates between inference and dictionary learning.

* While D has not converged:

> find the sparse codes h(x)) for all x(*) in the
training set with ISTA
> Update the dictionary:

A=Y x®nx®)T

B <, h(x) h(x®)T
>  run block-coordinate descent algorithm to update D

e Similar in spirit to EM algorithm



Online Learning

 This algorithm is “batch” (i.e. not online)

> single update of the dictionary per pass on the training set

> for large datasets, we’d like to update D after visiting each x*)

» Solution: for each input x(*)

> perform inference of h(x (")) for the current input

> update running averages of the quantities required to update D:
B<= 3B+ (1-0)x"% h(x®)T
A<= A+ (1-8)h(x")hx")"

> use current value of D as “warm start” to block-coordinate

descent



Online Learning

e While D has not converged:
e For eachx(?)

> Infer code h(x")

> Update the dictionary:
A—pBA+(1-p8)hExTT) )T
B« 3B+ (1-p3)xY hx)T

> while D hasn’t converged

- for each column of D perform gradient update

1
D;j<—-—(B.,;-DA ;+D. ;A4;,)
Ajj

D.
D.,j a—— >J

Mairal, Bach, Ponce and Sapiro, 2009.

ID-;l[2 Online Dictionary Learning for Sparse Coding.
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ZCA Preprocessing

e Before running a sparse coding algorithm, it is beneficial to remove
“obvious” structure from the data
> normalize such that mean is 0 and covariance is the identity
(whitening)

>  this will remove 1st and 2nd order statistical structure

e ZCA preprocessing

> let the empirical mean be gt and the empirical covariance matrix
be 3 = UAU '(in its eigenvalue/eigenvector representation)

» ZCA transforms each input as follows:

x<—=UA2U"(x— 1)



ZCA Preprocessing

e After this transformation

> the empirical mean is O

_ZUA xt) — )

(i) 5

= UA U (i—p)
= 0



ZCA Preprocessing

e After this transformation

> the empirical covariance matrix is the identity

1 T

— (U A3 UT(x® - ﬁ)) (U A3 UT(x® - ﬁ))
t

.
1 1 1
— UA2UT <T1 > (x — ) (x® - ﬁ)) UA2UT

t
— UA:UTITUA:=UT
— UA U UAUTUA:=UT
— ]



Feature Learning

e A sparse coding model can be used to extract features

vV VWV V V

given a labeled training set {(x"),y")}
train sparse coding dictionary only on training inputs{X(t)}
this yields a dictionary h(x®)) from which to infer sparse codes

train your favorite classifier on transformed training set
{(h(x"),y")}

* When classifying test input x

>
>

infer its sparse representation: h(x)

feed it to the classifier



Image Classification
Evaluated on Caltech101 object category dataset.

Learned

Features (coefficients) g images, 101 classes

Input Image bases
Algorithm Accuracy
Baseline (Fei-Fei et al., 2004) 16%
PCA 37%
Sparse Coding 47%

Classification
Algorithm
(SVM)

- . I [Vovin Bachall Bare
5 r‘( S
—— - " 2T 4 .
" % Nt ﬁ :
. ™ e e

Lee et al.. NIPS 2006



Feature Learning

e Learned features on MNIST handwritten digits:

Self-taught Learning: Transfer Learning from
Unlabeled DataRaina, Battle, Lee, Packer and Ng.



Self-Taught Learning

e Self-taught learning: when features trained on different input
distribution

e Example:

> train sparse coding dictionary on handwritten digits

> use codes (features) to classify handwritten characters

Digits — English handwritten characters

Training set size Raw PCA Sparse coding
100 39.8% 25.3% 39.7%
500 54.8%  54.8% 58.5%
1000 61.9%  64.5% 65.3%

Self-taught Learning: Transfer Learning from
Unlabeled DataRaina, Battle, Lee, Packer and Ng.



Interpreting Sparse Coding

N K 2 N K
min X, — Z An ks Dy Z Z ank|
¢ 3 k=1 2 n=1k=1
a  Sparse features a
(eleloleolo0l0l0) OO0000000)
B oo oo tw
OOOOO)]  Dpecoding OOOOQ)  encoding

* Sparse, over-complete representation a.
* Encoding a = f(x) is implicit and nonlinear function of x.

e Reconstruction (or decoding) x’ = g(a) is linear and explicit.
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Autoencoder

Feature Representation

U

]

Feed-forward,
bottom-up

Feed-back, N 4 ™\
generative,
top-down Decoder Encoder
N\ / N\ /
U 1]
[ Input Image

1

e Details of what goes insider the encoder and decoder matter!

* Need constraints to avoid learning an identity.



Autoencoder

Binary Features z

U

]

Decoder Encoder
fiters D [~ N 4 N filters W.
Linear Dz Z=G(WX) Sigmoid
function Y, \_ _/ function
1

7 ﬁ " e

Input Image x

1




Predictive Sparse Decomposition

K Binary Features z }

6_1 Sparsity} @ ﬁ Encoder

filters W.
Decoder [ Dz } [ £= G(WX) } Sigmoid

filters D @ ﬁ function

[ Real-valued Input x }

At training - Dz — x|12 £ )\ Wx) — z||2
ALUBINING. amin || Dz —x|[3 + M|y + [|o(Wx) — |3

Decoder Encoder
Kavukcuoglu et al., ‘09



Stacked Sparse Coding?

[ Class Labels ]
-

[ Decoder }
N

[ Features

T

[ Sparsity } [ Decoder}
N

[ Features

|_|

[ Sparsity } [ Dec{c;der}

[ Input x




Modeling Image Patches

e Natural image patches:

> small image regions extracted from an image of nature (forest,

grass, ...)

Image taken from:

Emergence of complex cell properties

by learning to generalize in natural scenes.
Karklin and Lewicki, 2009 37



Relationship to V1

* When trained on natural image patches

>

the dictionary columns
(“atoms”) look like edge

detectors

each atom is tuned to a
particular position,
orientation and spatial
frequency

V1 neurons in the
mammalian brain have a

similar behavior

SNSEEENSRSPENREAE

.
. » N
»
.
-~ ”~
.
-
4

Emergence of simple-cell receptive field
properties by learning a sparse code of natural
images.Olshausen and Field, 1996. 38



Relationship to V1

e Suggests that the brain might be learning a sparse code of visual

stimulus , ‘
SNRETENMERNPEREZR
» Sincethen, manyother [HIBBBNENEREERERE
models have been shown BB EERZEEEREVEE
to learn similar features NNEUNREZNZERE S

= 27 7 I I ) D 2
S X5 57 7 A I 2 o A
- they usuallyall 5 2 O S
incorporate a notion of | g g g KN 2 2 I A S
. -
sparsity IS 1 S T

.
»
’

Emergence of simple-cell receptive field
properties by learning a sparse code of natural
images.Olshausen and Field, 1996. 39



