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Neural Networks Online Course

e Disclaimer: Much of the material and slides for this lecture were
borrowed from Hugo Larochelle’s class on Neural Networks:
https://sites.google.com/site/deeplearningsummerschool2016/

http://info.usherbrooke.ca/hlarochelle/neural _networks

e Hugo’s class covers

many other topics: x o
convolutional networks, RESTRICTED BOLTZMANN MACHINE

neural language model,

_ Topics: RBM, visible layer; hidden layer, energy function
Boltzmann machines, OO0 h-
autoencoders, sparse —
. &
coding, etc.
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Feedforward Neural Networks

» How neural networks predict f(x) given an input x:
- Forward propagation
- Types of units
- Capacity of neural networks

» How to train neural nets:
- Loss function

- Backpropagation with gradient descent

» More recent techniques:
- Dropout

- Batch normalization

- Unsupervised Pre-training
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Artificial Neuron

* Neuron pre-activation (or input activation):

a(x)=b+ > wir;=b+w'x

e Neuron output activation:

h(x) = gla(x)) = g(b+ >, wix;)

where
W are the weights (parameters)
b is the bias term
9() is called the activation function



Artificial Neuron

e Output activation of the neuron:

Range is
determined

by g(-
( ) Bias only changes

the position of the
riff

(from Pascal Vincent's slides)



Activation Function

e | inear activation function:

gla) =a

>  No nonlinear transformation

>  No input squashing




Activation Function

e Sigmoid activation function:

> Squashes the neuron’s 9(a) = sigm(a) = 1—i—ex§)(—a)
output between 0 and 1

>  Always positive NI

> Bounded i':f:,“

>  Strictly Increasing o |




Activation Function

* Hyperbolic tangent (“tanh™) activation function:

g(a) = tanh(a) =

> Squashes the neuron’s

activation between -1 _ exp(a)—exp(—a) _ exp(2a)—1
and 1 exp(a)+exp(—a) exp(2a)+1
> Can be positive or wr =T |
negative sl z
> Bounded //
00
»  Strictly increasing /
05} /
(wrong plot) //
-1.0 —1—’—‘7_”’/ i




Activation Function

 Rectified linear (ReLU) activation function:

> Bounded below by 0

(always non-negative) g(a) = reclin(a) = max(0, )

3.0

» Tends to produce units
with sparse activities

| I e

>  Not upper bounded

0.0

> Strictly increasing o N N A

_30_



Decision Boundary of a Neuron

 Binary classification:

- With sigmoid, one can interpret neuron as estimating p(y =1 |X)

Interpret as a logistic classifier

Decision boundary

- If activation is greater than %
0.5, predict 1 \
- Otherwise predict 0 % é

. : (from Pascal Vincent's slides)
Same idea can be applied

to a tanh activation



Capacity of a Single Neuron

e Can solve linearly separable problems.




Capacity of a Single Neuron

e Can not solve non-linearly separable problems.

XOR (x1, x2) XOR (1, 2)
A |’a A
| A (@) %iﬁl N A
a2 N
0 o A % 0 o A
> B A
0 | 0 I
L1 AND (58_1, 5132)

e Need to transform the input into a better representation.
« Remember basis functions!



Single Hidden Layer Neural Net

e Hidden layer pre-activation:
a(x) =bM) + Wibx
(a(x); =07 + 52, wiYay)
e Hidden layer activation:
h(x) = g(a(x))

e Output layer activation:

f(x) = o (b@) n W<2>Th<1>x)

Output activation
function



Softmax Activation Function

» Remember multi-way classification:
- We need multiple outputs (1 output per class)
- We need to estimate conditional probability: p(y — C‘X)
- Discriminative Learning

» Softmax activation function at the output

— <oft _ exp(ai) exp(ac) T
o(a) = softmax(a) S oxpla) T S oep(ac)

- strictly positive

- sums to one

» Predict class with the highest estimated class conditional
probability.



Multilayer Neural Net

e Consider a network with L hidden layers.

- layer pre-activation for k>0

a® (x) = b®) + WERE-1) (x)

- hidden layer activation

' - (2)
from 1 to L: w® ’ b

h®)(x) = g(a®) (x) 000

- output layer activation (k=L+1):

h(E+1) (x) = o(a D (x)) = f(x) (h(®(x) = x)



Capacity of Neural Nets

e Consider a single layer neural network

(from Pascal Vincent'’s slides)
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Capacity of Neural Nets

e Consider a single layer neural network

»_x]

(from Pascal Vincent'’s slides)



Universal Approximation

e Universal Approximation Theorem (Hornik, 1991):

- “a single hidden layer neural network with a linear output
unit can approximate any continuous function arbitrarily well,
given enough hidden units”

 This applies for sigmoid, tanh and many other activation
functions.

* However, this does not mean that there is learning algorithm that
can find the necessary parameter values.



Feedforward Neural Networks

» How neural networks predict f(x) given an input x:
- Forward propagation
- Types of units
- Capacity of neural networks

» How to train neural nets:
- Loss function

- Backpropagation with gradient descent

» More recent techniques:
- Dropout

- Batch normalization

- Unsupervised Pre-training



Training

e Empirical Risk Minimization:

1
arg min > U1 6),5M) + A(8)
T

Y o~

Loss function Regularizer

e Learning is cast as optimization.

» For classification problems, we would like to minimize
classification error.

> Loss function can sometimes be viewed as a surrogate for
what we want to optimize (e.g. upper bound)



Stochastic Gradient Descend

e Perform updates after seeing each example:
- Initialize: = {WW b .  WEFD [+
- For t=1:T

— for each training example (X(t),y(t)) )
Training epoch

A = =Vol(f(x;0),yV) — AVeQ(8) =

0 —0-+aA lteration of all examples
J

e To train a neural net, we need:

> Loss function: [(f(x(!); 6), yV)) ‘

> A procedure to compute gradients: Vgl (f(x(!); 8),y®)
» Regularizer and its gradient: 2(0),V£2(0)



Loss Function

e et us start by considering a classification problem with a
softmax output layer.

« We need to estimate: f(x). = p(y = ¢|x)

— We can maximize the log-probability of the correct class given
an input: log p(yY = ¢|z®)

o Alternatively, we can minimize the negative log-likelihood:

[(f(x),y) = — Zc 1(y:c) log f(x). = —log f(X)y

* As seen before, this is also known as a cross-entropy entropy
function for multi-class classification problem.



Stochastic Gradient Descend

e Perform updates after seeing each example:
- Initialize: = {WW b .  WEFD [+
- For t=1:T

— for each training example (X(t),y(t)) )
Training epoch

A = =Vol(f(x;0),yV) — AVeQ(8) =

0 —0-+aA lteration of all examples
J

e To train a neural net, we need:

> Loss function: l(f(x(t); 0). y(t))

> A procedure to compute gradients: Vgl(f(x(!); ), y(*) ‘

» Regularizer and its gradient: 2(0),V£2(0)



Multilayer Neural Net: Reminder

e Consider a network with L hidden layers.

- layer pre-activation for k>0

a® (x) = b®) + WERE-1) (x)

- hidden layer activation
from 1 to L:

h"(x) = g(a™(x))

- output layer activation (k=L+1):

h(E+D) (x) = o(aE+) (x)) = £(x)

Softmax activation
function



Gradient Computation

e Loss gradient at output

— Partial derivative:

o0 . _1( =c)
af(x). —log f(x)y, = .

— Gradient:

Vi) — log f(x),
1(y=0)

_ 1(:yZC—l) i

f(X)y \ Indicator

function
Remember: f(x). =p(y = c/x)



Gradient Computation

e Loss gradient at output pre-activation -

— Partial derivative:

0
Pl (), 108/ Xy

= —(Iy=o — f(x)c)

— Gradient:

Va1 (x) — log f(x)y
= —(e(y) —f(x))

Indicator function




Derivation

0

dalL+1)(x),

—1 9,
f(x)y 9allHD (x),

-1 0
f(x)y dalttD(x),

—1 s, exp(a**tY(x),)
f(x)y allt(x)c 37, exp(al D (x))

_1 ((%(Lﬂ)(x) exp(aF*tY(x),) exp(aFt1(x),) <8a(+1)(x)c > exp(altth) <X)C’)> )

—log f(x)y

ORT _dg(x) 1 glx) Oha)
Ox Or h(x) h(x)? Ox

f(x)y

softmax(a'LY (x)),

exp(aZ+D) (x) ) (Zc’ exp(a(L+1)(x)c,))2
—1 1(y ¢ exp(alFH) (x )y) B exp(a**tY(x),) exp(aXTD(x),)
F(x)y o exp(aFth(x)e) 3o explallt(x)e) 3o, expalt)(x)e)
_1) (1(y cysoftmax( (aFt(x)), — softmax(al ™V (x)), softmax(a(LH)(x))C)
(%)y
—1

)y (1(y c) f(x)c)

(yC) C)



Gradient Computation

 Loss gradient for hidden layers

— This is getting complicated!




Gradient Computation

e Chain Rule: Assume that a function -

p(a)can be written as a function of
intermediate results ¢;(a), then:

* WWe can invoke it by setting:

- a be a hidden unit

- ¢;(a) be a pre-activation in
the layer above

- p(a) be the loss function




Gradient Computation

 Loss gradient at hidden layers -

— Partial derivative:

0 — log f(x), \f /

Oh(k) (X)j W) \\ NG)
Z 0 —log f(x), 0a*+1)(x); N
=B, 0w (O (7
~ Qalkt)(x), "/

Remember:
k k _
a® (x); = b + 30, Wiy b D (),




Gradient Computation

 Loss gradient at hidden layers -

- Gradient
Vi ()~ log f(x)y R )
T w®) \\ b3
W(k—l—l) (Va(k+1)(x) — log f(X)y) | \
¢ ~ . , —~
We already know
how to compute
that
Remember:

a® (x); = b + 50, W Rk (x),




Gradient Computation

 Loss gradient at hidden layers -

(pre-activation)

— Partial derivative:

0
8a(k) (X)j o lOg f(X)y
0 — log f(x), Oh¥) (x),
Oh(F)(x);  dalF)(x);

0 —log f(x), |,
8h<k§{><()j) g'(a™ (x);)

Remember:
M (x); = g(a®(x);)




Gradient Computation

 Loss gradient at hidden layers

re-activation
(P Ivation) Let’s look at the gradients

- Gradient: of activation functions.

va_(k) (x) T log f( )y
= (Vo (x) — log f(x
= (Vo (x) — log f(x

) Va0 h™ (x)
) O g (@ (x);),...]
\

Gradient of the
activation function

)
)

Remember:
M (x); = g(a™(x);)




Linear Activation Function Gradient

e | inear activation function:

gla) =a
— Partial derivative

g'(a) =1




Sigmoid Activation Function Gradient
e Sigmoid activation function:

g(a) = sigm(a) = 1+6X;(_a)

— Partial derivative

g@=ga-g@) T




Tanh Activation Function Gradient

e Hyperbolic tangent (“tanh”) activation function:

g(a) = tanh(a) =

- Partial derivative __exp(a)—exp(—a) __ exp(2a)-—1

/( ) ( )2 — exp(a)texp(—a)  exp(2a)+1
gla)=1—-gla




Tanh Activation Function Gradient

 Rectified linear (ReLU) activation function:

— Partial derivative g(a) = reclin(a) = max(0, a)

g/(CL) = la>o0




Stochastic Gradient Descend

e Perform updates after seeing each example:
- Initialize: = {WW b .  WEFD [+
- For t=1:T

— for each training example (X(t),y(t)) )
Training epoch

A = =Vol(f(x;0),yV) — AVeQ(8) =

0 —0-+aA lteration of all examples
J

e To train a neural net, we need:

> Loss function: l(f(x(t); 0). y(t))

> A procedure to compute gradients: Vgl(f(x(!); ), y(*) ‘

» Regularizer and its gradient: 2(0),V£2(0)



Gradient Computation

e Loss gradient of parameters

- Partial derivative (weights):
0
(Z¥)
0 —log f(x), 0a'*) (x);
dal®)(x); oWk

0 —log f(X)y , (k—1)
da®) (x); h; (x)

Remember:
k k _
a®(x); = b7(l '+ Zj Wi(,j)h(k D (x);




Gradient Computation

e Loss gradient of parameters

- Gradient (weights):
Vw —log f(x),
= (Vam(x —log f(x),) h* ()T

Remember:
k k _
a®(x); = bz( '+ Zj Wi(,j)h(k D (x);




Gradient Computation

e Loss gradient of parameters -

- Partial derivative (biases):
0
ab(k) o log f(X>y
0 —log f(x), 0aF) (x);
Oa¥)(x);  gp¥)

0 — log f(x),
da'k)(x);

Remember:
k k _
a®(x); = b’E )+ Zj Wi(,j)h(k D (x);




Gradient Computation

e Loss gradient of parameters

- Gradient (biases):

Remember:
k k _
a®(x); = b7(l '+ Zj Wi(,j)h(k D (x);




Backpropagation Algorithm

e Perform forward propagation
e Compute output gradient (before activation):

Va+n(x) —log f(x), <= —(e(y) —f(x))
e For k=L+1 to 1

- Compute gradients w.r.t. the hidden layer parameters:
Vwk —log f(x), <= (Va<k>(x) — log f(X)y) h(k_l)(X)T
Viw —log f(x)y <= Vam (x) — log f(x)y
— Compute gradients w.r.t. the hidden layer below:

|
V-1 (x) = log f(x)y = W (V) — log f(x)y)

- Compute gradients w.r.t. the hidden layer below (before activation):
Vat-n( —10g f(X)y = (Vhu-npg —log f(x)y) O [, ¢ (a®D(x);), .. ]



Computational Flow Graph

e Forward propagation can be represented
as an acyclic flow graph ’

e Forward propagation can be implemented
In @ modular way:

> Each box can be an object with an fprop
method, that computes the value of the
box given its children

> Calling the fprop method of each box in
the right order yields forward propagation




Computational Flow Graph

i)

e Each object also has a bprop method

— it computes the gradient of the loss with
respect to each child box.

- fprop depends on the fprop output of a
box’s children, while bprop depends on the
bprop of a box’s parents

By calling bprop in the reverse order, we
obtain backpropagation




Stochastic Gradient Descend

e Perform updates after seeing each example:
- Initialize: = {WW b .  WEFD [+
- For t=1:T

— for each training example (X(t),y(t)) )
Training epoch

A = =Vol(f(x;0),yV) — AVeQ(8) =

0 —0-+aA lteration of all examples
J

e To train a neural net, we need:

> Loss function: [(f(x(!); 6), yV))
> A procedure to compute gradients: Vol(f(x?): 0), y®)

» Regularizer and its gradient: 2(0),V£2(0)




Weight Decay

|2 regularization:

0(0) = 2,5, (W) = S WO

e Gradient:

Vwm(0) = 2WH)

- Only applies to weights, not biases (weigh decay)

- Can be interpreted as having a Gaussian prior over the weights,
while performing MAP estimation.

- We will later look at Bayesian methods.



Other Regularizers

« Using a more general regularizer, we get:

e A
2 D {tn —who(xn)}? + B D fw;lf
n=1 7=1
1 | |
I | |
q=0.5 q=1 q=2




L1 Regularization

* L1 regularization:
k
0) = 33, 30, 2 Wi |

e Gradient:
VW(R)Q(Q) — Sign(W(k))

sign(W)), =1 —1

wM >0 T w® <o

- Only applies to weights, not biases (weigh decay)

- Can be interpreted as having a Laplace prior over the weights, while
performing MAP estimation.

- Unlike L2, L1 will push some weights to be exactly 0.



Bias-Variance Trade-off

expected loss = (bias)? 4 variance + noise

/ I N

Average predictions over all Solutions for mo!wndual datasets Intrinsic variability
datasets differ from the vary around their averages -- how of the target
optimal regression function. sensitive is the function to the values

particular choice of the dataset.

(bias)? = / {Eply(x; D)) — h(x)}2p(x) dx

variance

/ Ep [{y(x; D) — Eply(x: D)]}2] p(x) dx

noise = /{h(X)—t}Qp(X,t>dth

* Trade-off between bias and variance: With very flexible models (high
complexity) we have low bias and high variance; With relatively rigid models
(low complexity) we have high bias and low variance.

e The model with the optimal predictive capabilities has to balance between bias
and variance.



Bias-Variance Trade-off

e Consider the sinusoidal dataset. We generate 100 datasets, each containing
N=25 points, drawn independently from h(x) = sin 27z.

High variance Low variance

Low bias High bias



Bias-Variance Trade-off

e Generalization error can be seen as the sum of the
(squared) bias and the variance

@+ D
possible f

possible f

possible f

low variance/ high variance/
high bias : good trade-off ' low bias



Initialization

e |nitialize biases to 0
e For weights

— Can not initialize weights to 0 with tanh activation

> All gradients would be zero (saddle point)

— Can not initialize all weights to the same value
» All hidden units in a layer will always behave the same
» Need to break symmetry

- Sample WE’? from U [—b, b], where

_ V6 Sample around 0 and
VHe+Hg_1 break symmetry

size of h(¥) (X)



Model Selection

e Training Protocol:

- Train your model on the Training Set D"

- For model selection, use Validation Set Dvalid

» Hyper-parameter search: hidden layer size, learning rate,
number of iterations/epochs, etc.

- Estimate generalization performance using the Test Set D5t

e Remember: Generalization is the behavior of the model on
unseen examples.



Early Stopping

 To select the number of epochs, stop training when validation set
error increases (with some look ahead).

O Training O Validation
0,5
0.4 underfitting overfitting
0,3
0,2
0,1
. —O—

number of epochs



Tricks of the Trade:

e Normalizing your (real-valued) data:

> for each dimension x; subtract its training set mean
» divide each dimension x; by its training set standard deviation

>  this can speed up training

* Decreasing the learning rate: As we get closer to the optimum,
take smaller update steps:

I.  start with large learning rate (e.g. 0.1)
li.  maintain until validation error stops improving

ii. divide learning rate by 2 and go back to (ii)



Mini-batch, Momentum

 Make updates based on a mini-batch of examples (instead of a
single example):
> the gradient is the average regularized loss for that mini-batch
>  can give a more accurate estimate of the gradient

> can leverage matrix/matrix operations, which are more efficient

« Momentum: Can use an exponential average of previous

gradients:

Vo = Val(£(x®),y®) + gVo Y

> can get pass plateaus more quickly, by “gaining momentum”



Adapting Learning Rates

e Updates with adaptive learning rates (“one learning rate per
parameter”)

> Adagrad: learning rates are scaled by the square root of the
cumulative sum of squared gradients

. 2 —)  Vel(f(x®),y®)
~®) = (1) (V@l(f(x(t))ay(t))) Vo = VA® + €

> RMSProp: instead of cumulative sum, use exponential moving
average

1O = By 4 (1= 8) (Val(E(xD), )

> Adam: essentially combines
RMSProp with momentum



Gradient Checking

e To debug your implementation of fprop/bprop, you can compare
with a finite-difference approximation of the gradient:

0f(z) . flzte)—f(z—¢)
Ox 2¢

f(x) would be the loss
I would be a parameter

f(x + €) would be the loss if you add € to the parameter

vV V V V

f(x — €) would be the loss if you subtract ¢ to the parameter



Debugging on Small Dataset

* Next, make sure your model can overfit on a smaller dataset
(~ 500-1000 examples)

e If not, investigate the following situations:

>  Are some of the units saturated, even before the first update?
scale down the initialization of your parameters for these units
properly normalize the inputs

> s the training error bouncing up and down?

decrease the learning rate

* This does not mean that you have computed gradients correctly:

> You could still overfit with some of the gradients being wrong



