
10707	
Deep	Learning	
Russ	Salakhutdinov	

Machine Learning Department
rsalakhu@cs.cmu.edu

http://www.cs.cmu.edu/~rsalakhu/10707/	
	

Language Modeling	

Neural Networks Online Course

•  Hugo’s class covers
many other topics:
convolutional networks,
neural language model,
Boltzmann machines,
autoencoders, sparse
coding, etc.

•  We will use his
material for some of the
other lectures.

•  Disclaimer: Some of the material and slides for this lecture were
borrowed from Hugo Larochelle’s class on Neural Networks:

2

Natural Language Processing
•  Natural language processing is concerned with tasks involving
language data

Ø  we will focus on text data NLP

3

•  Much like for computer vision, we can design neural networks
specifically adapted to the processing of text data

Ø  main issue: text data is inherently high dimensional

Natural Language Processing
•  Typical preprocessing steps of text data

Ø  Form vocabulary of words that maps words to a unique ID

Ø  Different criteria can be used to select which words are part of the

vocabulary
Ø  Pick most frequent words and ignore uninformative words from a

user-defined short list (ex.: ‘‘ the ’’, ‘‘ a ’’, etc.)

Ø  All words not in the vocabulary will be mapped to a special ‘‘out-

of-vocabulary’

4

•  Typical vocabulary sizes will vary between 10,000 and 250,000

Vocabulary
•  Example:

5

•  We will note word IDs with the symbol w

Ø  we can think of w as a categorical feature for the original word

Ø  we will sometimes refer to w as a word, for simplicity

One-Hot Encoding
•  From its word ID, we get a basic representation of a word
through the one-hot encoding of the ID

Ø  the one-hot vector of an ID is a vector filled with 0s, except for a 1

at the position associated with the ID

Ø  For vocabulary size D=10, the one-hot vector of word ID w=4 is:
 e(w) = [0 0 0 1 0 0 0 0 0 0]

6

Ø  A one-hot encoding makes no assumption about word similarity

Ø  This is a natural representation to start with, though a poor one

One-Hot Encoding
•  The major problem with the one-hot representation is that it is
very high-dimensional

Ø  the dimensionality of e(w) is the size of the vocabulary

Ø  a typical vocabulary size is ≈100,000

Ø  a window of 10 words would correspond to an input vector of at
least 1,000,000 units!

7

•  This has 2 consequences:

Ø  vulnerability to overfitting (millions of inputs means millions of

parameters to train)

Ø  computationally expensive

Continuous Representation of Words
•  Each word w is associated with a real-valued vector C(w)

8

Continuous Representation of Words
•  We would like the distance ||C(w)-C(w’)|| to reflect meaningful
similarities between words

9

(from Blitzer et al. 2004)

•  Learn a continuous representation of words

Ø  we could then use these representations as input to a neural

network

10

Continuous Representation of Words

•  We learn these representations by gradient descent

Ø  we don’t only update the neural network parameters

Ø  we also update each representation C(w) in the input x with a

gradient step:

 where l is the loss function optimized by the neural network

Natural language processing

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

November 12, 2012

Abstract

Math for my slides “Natural language processing”.

•
C(w) (= C(w)� ↵rC(w)l

1

Continuous Representation of Words
•  Let C be a matrix whose rows are the representations C(w)

Ø  obtaining C(w) corresponds to the multiplication e(w)⊤ C

Ø  view differently, we are projecting e(w) onto the columns of C

Ø  this is a continuous transformation, through which we can
propagate gradients

11

•  In practice, we implement C(w) with a lookup table, not with a
multiplication

Language Modeling
•  A language model is a probabilistic model that assigns probabilities
to any sequence of words

12

p(w1, ... ,wT)

Ø  language modeling is the task of learning a language model that

assigns high probabilities to well formed sentences

Ø  plays a crucial role in speech recognition and machine translation
systems

Language Modeling
•  An assumption frequently made is the nth order Markov
assumption

13

Ø  the tth word was generated based only on the n−1 previous words

Ø  we will refer to wt−(n−1) , ... ,wt−1 as the context

 p(w1, ... ,wT) = ∏ p(wt | wt−(n−1) , ... ,wt−1)

Neural Language Model
•  Model the conditional
distributions with a neural
network:

14

BENGIO, DUCHARME, VINCENT AND JAUVIN

softmax

tanh

.

.

.

across words

most computation here

index for index for index for

shared parameters

Matrix

in
look−up
Table

. . .

C

C

wt�1wt�2

C(wt�2) C(wt�1)C(wt�n+1)

wt�n+1

i-th output = P(wt = i | context)

Figure 1: Neural architecture: f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1)) where g is the
neural network andC(i) is the i-th word feature vector.

parameters of the mapping C are simply the feature vectors themselves, represented by a |V |⇥m
matrixC whose row i is the feature vectorC(i) for word i. The function g may be implemented by a
feed-forward or recurrent neural network or another parametrized function, with parameters ω. The
overall parameter set is θ= (C,ω).

Training is achieved by looking for θ that maximizes the training corpus penalized log-likelihood:

L=
1
T ∑t

log f (wt ,wt�1, · · · ,wt�n+1;θ)+R(θ),

where R(θ) is a regularization term. For example, in our experiments, R is a weight decay penalty
applied only to the weights of the neural network and to theC matrix, not to the biases.3

In the above model, the number of free parameters only scales linearly with V , the number of
words in the vocabulary. It also only scales linearly with the order n : the scaling factor could
be reduced to sub-linear if more sharing structure were introduced, e.g. using a time-delay neural
network or a recurrent neural network (or a combination of both).

In most experiments below, the neural network has one hidden layer beyond the word features
mapping, and optionally, direct connections from the word features to the output. Therefore there
are really two hidden layers: the shared word features layer C, which has no non-linearity (it would
not add anything useful), and the ordinary hyperbolic tangent hidden layer. More precisely, the
neural network computes the following function, with a softmax output layer, which guarantees
positive probabilities summing to 1:

P̂(wt |wt�1, · · ·wt�n+1) =
eywt
∑i eyi

.

3. The biases are the additive parameters of the neural network, such as b and d in equation 1 below.

1142

p(wt | wt−(n−1) , ... ,wt−1)

Ø  learn word
representations to
allow transfer to n-
grams not observed in
training corpus

Bengio, Ducharme,Vincent and
Jauvin, 2003

Neural Language Model
•  Can potentially generalize to contexts not seen in training set

15

Ø  Example: P(‘‘ eating ’’ | ‘‘ the ’’, ‘‘ cat ’’, ‘‘ is ’’)

Ø  Imagine 4-gram [‘‘ the ’’, ‘‘ cat ’’, ‘‘ is ’’, ‘‘ eating ’’] is not in training

corpus, but [‘‘ the ’’, ‘‘ dog ’’, ‘‘ is ’’, ‘‘ eating ’’] is

Ø  If the word representations of ‘‘ cat ’’ and ‘‘ dog ’’ are similar, then

the neural network will be able to generalize to the case of ‘‘ cat ’’

Neural Language Model
•  We know how to propagate gradients in such a network

16

Ø  we know how to compute the
gradient for the linear activation
of the hidden layer

BENGIO, DUCHARME, VINCENT AND JAUVIN

softmax

tanh

.

.

.

across words

most computation here

index for index for index for

shared parameters

Matrix

in
look−up
Table

. . .

C

C

wt�1wt�2

C(wt�2) C(wt�1)C(wt�n+1)

wt�n+1

i-th output = P(wt = i | context)

Figure 1: Neural architecture: f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1)) where g is the
neural network andC(i) is the i-th word feature vector.

parameters of the mapping C are simply the feature vectors themselves, represented by a |V |⇥m
matrixC whose row i is the feature vectorC(i) for word i. The function g may be implemented by a
feed-forward or recurrent neural network or another parametrized function, with parameters ω. The
overall parameter set is θ= (C,ω).

Training is achieved by looking for θ that maximizes the training corpus penalized log-likelihood:

L=
1
T ∑t

log f (wt ,wt�1, · · · ,wt�n+1;θ)+R(θ),

where R(θ) is a regularization term. For example, in our experiments, R is a weight decay penalty
applied only to the weights of the neural network and to theC matrix, not to the biases.3

In the above model, the number of free parameters only scales linearly with V , the number of
words in the vocabulary. It also only scales linearly with the order n : the scaling factor could
be reduced to sub-linear if more sharing structure were introduced, e.g. using a time-delay neural
network or a recurrent neural network (or a combination of both).

In most experiments below, the neural network has one hidden layer beyond the word features
mapping, and optionally, direct connections from the word features to the output. Therefore there
are really two hidden layers: the shared word features layer C, which has no non-linearity (it would
not add anything useful), and the ordinary hyperbolic tangent hidden layer. More precisely, the
neural network computes the following function, with a softmax output layer, which guarantees
positive probabilities summing to 1:

P̂(wt |wt�1, · · ·wt�n+1) =
eywt
∑i eyi

.

3. The biases are the additive parameters of the neural network, such as b and d in equation 1 below.

1142

Natural language processing

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

November 13, 2012

Abstract

Math for my slides “Natural language processing”.

•
C(w) (= C(w)� ↵rC(w)l

•

rC(w)l =
n�1X

i=1

1(wt�i=w) W
>
i ra(x)l

• W1 W2 Wn�1

1

Ø  let’s note the submatrix
connecting wt−i and the hidden
layer as Wi

•  The gradient wrt C(w) for any w is

Natural language processing

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

November 13, 2012

Abstract

Math for my slides “Natural language processing”.

•
C(w) (= C(w)� ↵rC(w)l

•

rC(w)l =
n�1X

i=1

1(wt�i=w) W
>
i ra(x)l

• W1 W2 Wn�1

1

Performance Evaluation
•  In language modeling, a common evaluation metric is the
perplexity

17

Ø  it is simply the exponential of the average negative log-
likelihood

•  Evaluation on Brown Corpus

Ø  n-gram model (Kneser-Ney smoothing): 321

Ø  neural network language model: 276

Ø  neural network + n-gram: 252

How	About	Generating	Sentences!	

Input	

A	man	skiing	down	the	snow		
covered	mountain	with	a	dark		
sky	in	the	background.			

Output	

How	About	Generating	Sentences!	

Input	

A	man	skiing	down	the	snow		
covered	mountain	with	a	dark		
sky	in	the	background.			

Output	

We	want	to	model:	

Caption	Generation	with	NLM	

Caption	Generation	with	NLM	

Caption	Generation	with	NLM	

Hierarchical Output Layer
•  Example: [‘‘ the ’’, ‘‘ dog ’’, ‘‘ and ’’, ‘‘ the ’’, ‘‘ cat ’’]

23

Hierarchical Output Layer
•  Example: [‘‘ the ’’, ‘‘ dog ’’, ‘‘ and ’’, ‘‘ the ’’, ‘‘ cat ’’]

24

Hierarchical Output Layer
•  Example: [‘‘ the ’’, ‘‘ dog ’’, ‘‘ and ’’, ‘‘ the ’’, ‘‘ cat ’’]

25

Hierarchical Output Layer
•  Example: [‘‘ the ’’, ‘‘ dog ’’, ‘‘ and ’’, ‘‘ the ’’, ‘‘ cat ’’]

26

Hierarchical Output Layer
•  How to define the word hierarchy?

27

Ø  can use a randomly generated tree

Ø  can use existing linguistic resources, such as WordNet

Ø  can learn the hierarchy using a recursive partitioning strategy

A Scalable Hierarchical Distributed Language Model
Mnih and Hinton, 2008

They report a speedup of 100x, without performance
decrease

Encoding	Sentences	via	Recurrent	
Neural	Network		

	

Recurrent	Neural	Network		

1-of-K	encoding	of	words	

x1	 x2	 x3	

Sentence	
Representation		

h1	 h2	 h3	

Recurrent	Neural	Network		
	

x1	 x2	 x3	

h1	 h2	 h3	

•  Replace

Nonlinearity		 Hidden	State		at	
previous	time	
step	

Input	at	time	
step	t	

•  Can be viewed as a deep neural network with tied weights.

LSTMs	
	

x1	 x2	 x3	

h1	 h2	 h3	

LSTMs	
	

x1	 x2	 x3	

h1	 h2	 h3	

LSTMs	
	

x1	 x2	 x3	

h1	 h2	 h3	

LSTMs	
	

x1	 x2	 x3	

h1	 h2	 h3	

LSTMs	
	

x1	 x2	 x3	

h1	 h2	 h3	

Bidirectional RNNs

35

•  Heavily used in language modeling.

Decoder	

Sequence	to	Sequence	Learning	

•  RNN	Encoder-Decoders	
for	Machine	Translation	
(Sutskever	et	al.	2014;	
Cho	et	al.	2014;	
Kalchbrenner	et	al.	2013,	
Srivastava	et.al.,	2015)	

Input	Sequence	

Encoder	

Learned	
Representation	

Output	Sequence	

Sequence to Sequence Models
•  Natural language processing is concerned with tasks involving
language data

37
Andrej Karpathy. The Unreasonable
Effectiveness of Recurrent Neural Networks

Skip-Thought	Model		

• 	Given	a	tuple																															of	contiguous	sentences:	
- 	the	sentence							is	encoded	using	LSTM.		
- 	the	sentence							attempts	to	reconstruct	the	previous	
sentence	and	next	sentence									.		

• 	The	input	is	the	sentence	triplet:	
- 	I	got	back	home.		
- 	I	could	see	the	cat	on	the	steps.		
- 	This	was	strange.	

Encoder	

Sentence	 Generate	Forward	Sentence	

Generate	Previous	Sentence	

Skip-Thought	Model		

Learning	Objective	
• 	We	are	given	a	tuple																																	of	contiguous	sentences.		

• 	Objective:	The	sum	of	the	log-probabilities	for	the	next	and	
previous	sentences	conditioned	on	the	encoder	representation:	

representation	of	
encoder	

Forward	sentence		 Previous	sentence		

Book	11K	corpus	

• 	Query	sentence	along	with	its	nearest	neighbor	from	500K	sentences	
using	cosine	similarity:	

- 	He	ran	his	hand	inside	his	coat,	double-checking	that	the	unopened	
letter	was	still	there.	

- 	He	slipped	his	hand	between	his	coat	and	his	shirt,	where	the	folded	
copies	lay	in	a	brown	envelope.	

Semantic	Relatedness		
•  SemEval	2014	Task	1:	semantic	relatedness	SICK	dataset:		

Given	two	sentences,	produce	a	score	of	how	semantically	
related	these	sentences	are	based	on	human	generated	
scores	(1	to	5).		

	
•  The	dataset	comes	with	a	predefined	split	of	4500	training	

pairs,	500	development	pairs	and	4927	testing	pairs.	

	
•  Using	skip-thought	vectors	for	each	sentence,	we	simply	train	

a	linear	regression	to	predict	semantic	relatedness.		
-  For	pair	of	sentences,	we	compute	component-wise	

features	between	pairs	(e.g.	|u-v|).				

	

Semantic	Relatedness		

• 	Our	models	outperform	all	previous	systems	from	the	SemEval	
2014	competition.	This	is	remarkable,	given	the	simplicity	of	our	
approach	and	the	lack	of	feature	engineering.	

	

SemEval	
2014	sub-
missions	

Results	
reported	
by	Tai	et.al.	

Ours	

Semantic	Relatedness		

• 	Example	predictions	from	the	SICK	test	set.	GT	is	the	ground	
truth	relatedness,	scored	between	1	and	5.		
	
	
	

	

	
• 	The	last	few	results:	slight	changes	in	sentences	result	in	large	
changes	in	relatedness	that	we	are	unable	to	score	correctly.	
	
	

	

	Paraphrase	Detection	
•  Microsoft	Research	Paraphrase	Corpus:	For	two	sentences	one	

must	predict	whether	or	not	they	are	paraphrases.		

•  The	training	set	
contains	4076	sentence	
pairs	(2753	are	positive)		

•  The	test	set	contains	
1725	pairs	(1147	are	
positive).	

Recursive	
Auto-
encoders	

Best	
published	
results	

Ours	

Classification	Benchmarks	
•  5	datasets:	movie	review	sentiment	(MR),	customer	product	

reviews	(CR),	subjectivity/objectivity	classification	(SUBJ),	opinion	
polarity	(MPQA)	and	question-type	classification	(TREC).		

Bag-of-
words	

Super-
vised	

Ours	

Summary	
•  This	model	for	learning	skip-thought	vectors	only	scratches	the	

surface	of	possible	objectives.	

• 				Many	variations	have	yet	to	be	explored,	including		
- 	deep	encoders	and	decoders	
- 	larger	context	windows	
- 	encoding	and	decoding	paragraphs	
- 	other	encoders	
	

• 	It	is	likely	the	case	that	more	exploration	of	this	space	will	result	
in	even	higher	quality	sentence	representations.	

•  Code	and	Data	are	available	online	
					http://www.cs.toronto.edu/~mbweb/	

