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Neural Networks Online Course

e Disclaimer: Some of the material and slides for this lecture were
borrowed from Hugo Larochelle’s class on Neural Networks:

* Hugo’s class covers http://info.usherbrooke.ca/hlarochelle/neural_networks
many other topics:

convolutional networks, : e —
neural language model, RESTRICTED BOLTZMANN MACHINE

Boltzmann machines,

Topics: RBM, visible layer; hidden layer, energy function
autoencoders, sparse OBHOOO0) h-
coding, etc.
g o\ et
CBOO0) x+

* We will use his
material for some ofthe
other lectures.
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Natural Language Processing

e Natural language processing is concerned with tasks involving
language data

> we will focus on text data NLP

e Much like for computer vision, we can design neural networks
specifically adapted to the processing of text data

> main issue: text data is inherently high dimensional



Natural Language Processing

* Typical preprocessing steps of text data

» Form vocabulary of words that maps words to a unique ID
> Different criteria can be used to select which words are part of the

vocabulary
>  Pick most frequent words and ignore uninformative words from a

7 1

user-defined short list (ex.: “the ”, “a”, etc.)
> All words not in the vocabulary will be mapped to a special “out-

of-vocabulary’

* Typical vocabulary sizes will vary between 10,000 and 250,000



Vocabulary

* Example:  Wod  w
“the"
“the " ‘and” 1
"cat” i ?oci i 5
“and” ) 0(.)v " 2
“the” 1
“dog” 3
“play” 5
B 4

e \We will note word IDs with the symbol w

> we can think of w as a categorical feature for the original word

> we will sometimes refer to w as a word, for simplicity



One-Hot Encoding

* From its word ID, we get a basic representation of a word
through the one-hot encoding of the ID

> the one-hot vector of an ID is a vector filled with Os, except for a 1
at the position associated with the ID
> For vocabulary size D=10, the one-hot vector of word ID w=4 is:
e(w)=[0001000000]

> Aone-hot encoding makes no assumption about word similarity

> This is a natural representation to start with, though a poor one



One-Hot Encoding

* The major problem with the one-hot representation is that it is
very high-dimensional

> the dimensionality of e(w) is the size of the vocabulary
> atypical vocabulary size is =100,000

> awindow of 10 words would correspond to an input vector of at
least 1,000,000 units!

e This has 2 consequences:

> vulnerability to overfitting (millions of inputs means millions of
parameters to train)

> computationally expensive



Continuous Representation of Words

e Each word w is associated with a real-valued vector C(w)

“the” | 0.6762, -0.9607, 0.3626, -0.2410, 0.6636 |

- G | 0.6859, -0.9266, 0.3777, -0.2140, 0.6711 |

" have " [ 0.1656, -0.1530, 0.0310, -0.3321, -0.1342 |

Crefyes 0.5896, 0.9137, 0.0452, 0.7603, -0.6541

0.5965, 0.9143, 0.0899, 0.7702, -0.6392

1

2

3
“be” 4 | 0.1760, -0.1340, 0.0702, -0.2981, -0.1111 |

d

“dog " 6

i

ECAX -0.0069, 0.7995, 0.6433, 0.2898, 0.6359



Continuous Representation of Words

* We would like the distance ||C(w)-C(w’)|| to reflect meaningful
similarities between words

MONDAY
TUESDAY
WEDNESDAY
MAY, WOULD, COULD, SHOULD, Tr::%?gzx(w
MIGHT, MUST, CAN, CANNOT, . A
COULDN'T, WON'T, WILL Crgw
.T‘.%e 7 “n. . 8
s A XA S JANUARY
ONE, TWO, THREE, - oo 6. FEBRUARY
FOUR, FIVE, SIX, - vy T MARCH
SEVEN, EIGHT, NINE, o P e APRIL
TEN, ELEVEN, x| miLLioN i JUNE
TWELVE, THIRTEEN, BILLION JULY
FOURTEEN, FIFTEEN, X X . AUGUST
SIXTEEN, P XX g X g SEPTEMBER
SEVENTEEN, x Mo OCTOBER
EIGHTEEN NOVEMBER
=] zERO | DECEMBER

(from Blitzer et al. 2004)




Continuous Representation of Words

e Learn a continuous representation of words

> we could then use these representations as input to a neural
network
* We learn these representations by gradient descent

> we don’t only update the neural network parameters
> we also update each representation C(w) in the input x with a

gradient step:
C(w) <= C(w) — aV )l

where [ is the loss function optimized by the neural network



Continuous Representation of Words

e Let C be a matrix whose rows are the representations C(w)

> obtaining C(w) corresponds to the multiplication e(w)™ C
>  view differently, we are projecting e(w) onto the columns of C
> this is a continuous transformation, through which we can

propagate gradients

* In practice, we implement C(w) with a lookup table, not with a
multiplication



Language Modeling

» A language model is a probabilistic model that assigns probabilities
to any sequence of words

p(wy, ... ,Wy)

> language modeling is the task of learning a language model that
assigns high probabilities to well formed sentences

> plays a crucial role in speech recognition and machine translation

////)'f"a person smart’”
?

systems

“a smart person’”
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Language Modeling

* An assumption frequently made is the nt" order Markov
assumption
T

p(wy, ... ,wy) = |_|1P(Wt | Wee(n-1)s - sWie-q)
ti

> the th word was generated based only on the n—1 previous words

> we will refer to w,_;,_,), ... ,W;_; as the context



Neural Language Model

 Model the conditional

i-th output = P(w; = i | context)

distributions with a neural
softmax
network: (eee oo —
Il ‘ t tation h *
/ mostj computation nere \
PWi | Wien-1ys - s Wig) '
(n=1) > ! R .
\
> learn word |
representations to tanh o) ;
allow transfer to n- N
grams not observed in )
training corpus /,’
C<Wt—n—|— - C(Wt_2> C(Wt_l) _” ’
(e @ .- @) (oo ---0)
Table .. ~. Matrix C y
!00(1/(1—up --------- shared parameters
. . mn across words
Bengio, Ducharme,Vincent and
Jauvin, 2003 index for w;_,11 index for w;,_» index for w,_; 1



Neural Language Model

e Can potentially generalize to contexts not seen in training set

> Example: P(“eating 7| “the 7, “cat ”, “is ”)

> Imagine 4-gram [“the ”, “cat”, “is ", “ eating " ] is not in training

corpus, but[“the ”, “dog ”, “is”, “eating " ] is

> If the word representations of “ cat ” and “ dog ” are similar, then

the neural network will be able to generalize to the case of “ cat ”



Neural Language Model

* \We know how to propagate gradients in such a network

> we know how to compute the
gradient for the linear activation

i-th output = P(w, = i| context)

softmax

of the hidden layer V)l

> let’s note the submatrix
connecting w,_;and the hidden
layer as W;

e The gradient wrt C(w) for any w is

most| computation here

tanh

..........................................

n—1

T index for w;_, 41
VC(w)l — Z ]‘(wt—i:w) W’L va(x)l —
1=1

across words

index for w,_;

shared parameters

index for w;,_;

16



Performance Evaluation

 In language modeling, a common evaluation metric is the
perplexity

> itis simply the exponential of the average negative log-
likelihood

e Evaluation on Brown Corpus

> n-gram model (Kneser-Ney smoothing): 321
> neural network language model: 276

> neural network + n-gram: 252



How About Generating Sentences!

Input Output
E T oy

A man skiing down the snow
covered mountain with a dark
sky in the background.




How About Generating Sentences!

Input Output

A man skiing down the snow
covered mountain with a dark
sky in the background.

We want to model:

p(wy, wa, ..., wy) =

p(w1)p(wz|wr )p(ws|wi, w2)...p(wn w1, wa, ..., wp—1)



Caption Generation with NLM

- a wooden table and chairs
a car is parked in arranged in a room .

the middle of nowhere .

a ferry boat on a marina
with a group of people .

of friends on the street .




the two birds are trying a parked car while
to be seen in the water . to a fence in a field . driving down the road .

(can't count) (hallucination) (contradiction)



Caption Generation with NLM

o T B

the two birds are trying a giraffe is standing next
to be seen in the water . to a fence in a field . driving down the road .
(can't count) (hallucination) (contradiction)

a woman and a bottle of wine
in a garden . (gender)

the handlebars are trying
to ride a bike rack .
(nonsensical)




Hierarchical Output Layer

e Example: [“ the ”, “dog ”, “and ”, “the”, “cat”]

p(" cat " | context) =

2 = ok V

and

© 0O

-
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Hierarchical Output Layer

e Example: [“ the ”, “dog ”, “and ”, “the”, “cat”]

=N
‘the " p(" cat " | context) = p(branch left at 1| context)
: x p(branch right at 2| context)
dog ’ w V x p(branch right at 5| context)
“and”
i the "
;JI ————————

“dog" "“the" “and" “cat" “he” "have" “be” “oov "
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e« Example: [ the 7, “ dog

1] the "
1] dog "
i and "

i the "

Hierarchical Output Layer

—)

H, 13 and H, (1 the ”’ (1 Cat ”]

p(" cat " | context) = (1-p(branch right at 1
x p(branch right at 2

“

x p(branch right at 5

Vv

© 0O

-
-
-
-
-
- "
-
-

" the " " and " " ca't " " he " " have "

" dogll

" be "

context))
context)
context)

" OOV "
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Hierarchical Output Layer

e Example: [“ the ”, “dog ”, “and ”, “the”, “cat”]

1 .
the p(" cat " | context) = (1 - sigm(b; + Vi.. h(x)))
: x sigm(b2 + Va. h(x))
dog _} ‘ V x sigm(bs + V5. h(x))
“and "
the
>~ N\ LT
¥
“dog" "“the" “and" “cat" “he” "“have" “be” “oov'’
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Hierarchical Output Layer

 How to define the word hierarchy?

> can use a randomly generated tree
> can use existing linguistic resources, such as WordNet

> can learn the hierarchy using a recursive partitioning strategy

A Scalable Hierarchical Distributed Language Model
Mnih and Hinton, 2008

They report a speedup of 100x, without performance
decrease



Encoding Sentences via Recurrent
Neural Network

Sentence
Representation

h, h, h,
H
I
B
X1 X5 X3

1-of-K encoding of words

Recurrent Neural Network



Recurrent Neural Network

e Replace

Input at time
step t

/

hy = Qb(Uht—l + Wx¢ + b) -

/ o\ =

Nonlinearity  Hidden State at
previous time
step

e Can be viewed as a deep neural network with tied weights.







Ph/t




Ph/t

0 (Waixs + Whihy_1 + Weiei—1 + by)
o (Wwat + thht—l + chct—l + bf) 9




- h-t

0 (Waixs + Whihy_1 + Weiei—1 + by)
o) (Wwat + thht—l + chct—l + bf) 9
fici 1 + 1; tanh (chxt + Whehe—1 + bc) 9



- h-t

o (Waeixs + Whihy 1 + Weiep—1 + by),

o (Wepxs + Whihy 1 +Weper 1 + by),
fici_1 +i; tanh (Weexy + Wichi 1 +be),
0 (Weoxs + Wrohi 1 + Weoer +by),

o; tanh(c;).



Bidirectional RNNs

Bidirectional RNNs (Schuster and Paliwal, 1997)

FORWARD
STATES

— 4

-

BACKWARI
STATES

t-1

L t+1

e Heavily used in language modeling.
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Sequence to Sequence Learning

Learned Output Sequence
Representation
Encoder
* RNN Encoder-Decoders
for Machine Translation
2 ‘a (Sutskever et al. 2014;
Decoder Cho et al. 2014;

Kalchbrenner et al. 2013,

Srivastava et.al., 2015)
Input Sequence



Sequence to Sequence Models

e Natural language processing is concerned with tasks involving
language data

one to one one to many many to one many to many many to many

Andrej Karpathy. The Unreasonable

Effectiveness of Recurrent Neural Networks o



Skip-Thought Model

| got back home <eos>

yo——30—30—30

got back home

[ <eos>

1
...... This was strange <eos>

30

<eos> This was strange

- Given a tuple (S;—1, Si, Si+1) of contiguous sentences:
— the sentence S; is encoded using LSTM.
— the sentence s; attempts to reconstruct the previous
sentence and next sentence S;1.

* The input is the sentence triplet:
— | got back home.
— | could see the cat on the steps.
— This was strange.



Skip-Thought Model

Generate Previous Sentence

A A A

U3 (%) (%1

Encoder

wyl |w, /

Sentence Generate Forward Sentence



Learning Objective

« We are given a tuple (s;—1,S;, S;+1) of contiguous sentences.

* Objective: The sum of the log-probabilities for the next and
previous sentences conditioned on the encoder representation:

representation of

encoder \
logP(w!, {|wt,hy) + ) logP(wi_{|ws, hy)
g J t U J
Y Y
Forward sentence Previous sentence
I got back home <eos>
30303030

""" <eos> got back home

O »O »O »O >0 »0O »O 29, >

I
...... This was strange <eos>

| could see the cat on the steps } }

<eos> This was strange




Book 11K corpus

# of books | # of sentences | # of words | # of unique words

11,038 | 74,004,228 | 984,846,357 | 1,316,420

* Query sentence along with its nearest neighbor from 500K sentences
using cosine similarity:

— He ran his hand inside his coat, double-checking that the unopened
letter was still there.

— He slipped his hand between his coat and his shirt, where the folded
copies lay in a brown envelope.



Semantic Relatedness

* SemkEval 2014 Task 1: semantic relatedness SICK dataset:
Given two sentences, produce a score of how semantically
related these sentences are based on human generated
scores (1 to 5).

 The dataset comes with a predefined split of 4500 training
pairs, 500 development pairs and 4927 testing pairs.

* Using skip-thought vectors for each sentence, we simply train
a linear regression to predict semantic relatedness.

— For pair of sentences, we compute component-wise
features between pairs (e.g. |u-v|).



Semantic Relatedness

Method T p MSE

SemEval " llinois-LH [18] 0.7993 0.7538 0.3692

2014 sub- < UNAL-NLP [19] 0.8070 0.7489 0.3550

. Meaning Factory [20] 0.8268 0.7721 0.3224
MISSIONS | ECNU [21)] 0.8414 - -

~ Mean vectors [22] 0.7577 0.6738 0.4557

Results DT-RNN [23] 0.7923 0.7319 0.3822

reported SDT-RNN [23] 0.7900 0.7304 0.3848

by Tai et.al. LSTM [22] 0.8528 0.7911 0.2831

Bidirectional LSTM [22] 0.8567 0.7966 0.2736

. Dependency Tree-LSTM [22] 0.8676 0.8083 0.2532

" uni-skip 0.8477 0.7780 0.2872

P bi-skip 0.8405 0.7696  0.2995

Ours combine-skip 0.8584 0.7916 0.2687

. combine-skip+COCO 0.8655 0.7995 0.2561

* Our models outperform all previous systems from the SemEval
2014 competition. This is remarkable, given the simplicity of our
approach and the lack of feature engineering.



Semantic Relatedness

Sentence 1 Sentence 2 GT  pred
A little girl is looking at a woman in costume A young girl is looking at a woman in costume 4.7 4.5
A little girl is looking at a woman in costume The little girl is looking at a man in costume 3.8 4.0
A little girl is looking at a woman in costume A little girl in costume looks like a woman 2.9 3.5
A sea turtle 1s hunting for fish A sea turtle is hunting for food 4.5 4.5
A sea turtle is not hunting for fish A sea turtle is hunting for fish 34 3.8
A man is driving a car The car is being driven by a man S 4.9
There is no man driving the car A man is driving a car 3.6 3.5
A large duck is flying over a rocky stream A duck, which is large, is flying over a rocky stream 4.8 4.9
A large duck is flying over a rocky stream A large stream is full of rocks, ducks and flies 2.7 3.1
A person is performing acrobatics on a motorcycle A person is performing tricks on a motorcycle 4.3 4.4
A person is performing tricks on a motorcycle The performer is tricking a person on a motorcycle 2.6 44
Someone is pouring ingredients into a pot Someone is adding ingredients to a pot 4.4 4.0
Nobody is pouring ingredients into a pot Someone is pouring ingredients into a pot 3.5 4.2
Someone is pouring ingredients into a pot A man is removing vegetables from a pot 24 3.6

* Example predictions from the SICK test set. GT is the ground
truth relatedness, scored between 1 and 5.

* The last few results: slight changes in sentences result in large

changes in relatedness that we are unable to score correctly.



Recursive
Auto-
encoders

Best

Paraphrase Detection

* Microsoft Research Paraphrase Corpus: For two sentences one
must predict whether or not they are paraphrases.

published< PE [26]

results

Ours

Method Acc F1
" feats [24] 73.2
2 RAE+DP [24] 72.6
RAE+feats [24] 74.2
_ RAE+DP+feats [24] 76.8 83.6
" FHS [25] 75.0 82.7
76.1 82.7
WDDP [27] 75.6 83.0
. MTMETRICS [28] 774 84.1
 uni-skip 73.0 819
bi-skip 712 81.2
4 combine-skip 73.0 82.0
_ combine-skip + feats 75.8 83.0

The training set
contains 4076 sentence
pairs (2753 are positive)

The test set contains
1725 pairs (1147 are
positive).



Classification Benchmarks

e 5 datasets: movie review sentiment (MR), customer product
reviews (CR), subjectivity/objectivity classification (SUBJ), opinion
polarity (MPQA) and question-type classification (TREC).

Method MR CR SUBJ] MPQA TREC
Bag-of- NB-SVM [41] 794  81.8 93.2 86.3
words MNB [41] 79.0  80.0 93.6 86.3
cBoW [6] 772 799 91.3 86.4 87.3
Super- ~  GrConv [6] 76.3 813 89.5 84.5 88.4
up RNN [6] 772 823 937  90.1 90.2
vised ' BRNN [6] 823 826 942 903 91.0
CNN [4] 81.5 85.0 93.4 89.6 93.6
\- AdaSent [6] 83.1 86.3 95.5 93.3 92.4
Paragraph-vector [7] 74.8  78.1 90.5 74.2 91.8
(" uni-skip 755 793 92.1 86.9 91.4
bi-skip 739 719 92.5 83.3 89.4
Ours < combine-skip 76.5  80.1 93.6 87.1 92.2
combine-skip + NB 804  81.3 93.6 87.5




Summary

* This model for learning skip-thought vectors only scratches the
surface of possible objectives.

 Many variations have yet to be explored, including
— deep encoders and decoders
— larger context windows
— encoding and decoding paragraphs
— other encoders

* It is likely the case that more exploration of this space will result
in even higher quality sentence representations.

e Code and Data are available online
http://www.cs.toronto.edu/~mbweb/



