

10707: Deep Learning

Russ Salakhutdinov

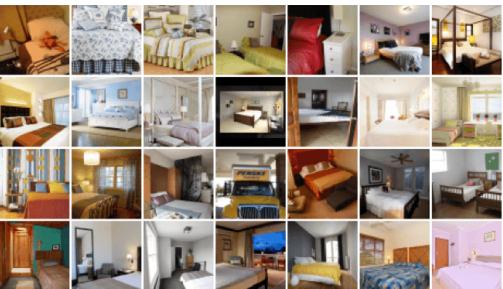
Machine Learning Department

rsalakhu@cs.cmu.edu

<http://www.cs.cmu.edu/~rsalakhu/10707/>

Generative Adversarial Networks

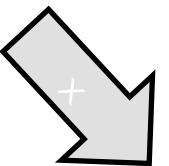
Statistical Generative Models



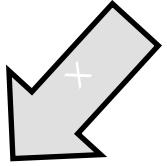
+

Model family, loss function,
optimization algorithm, etc.

Data



Learning



Prior Knowledge

Image x

A probability
distribution
 $p(x)$

probability $p(x)$

Sampling from $p(x)$ **generates** new images:

Conditional Generation

- ▶ Conditional generative model $P(\text{zebra images} | \text{horse images})$

- ▶ Style Transfer

Input Image

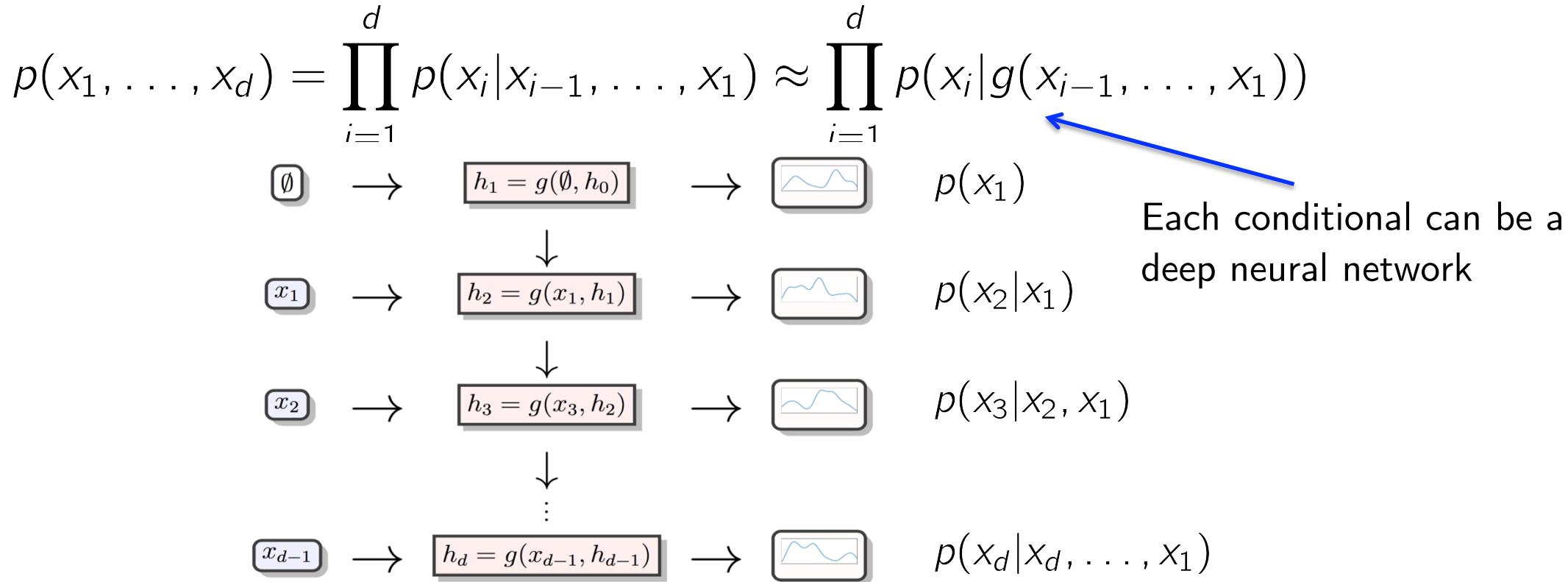
Monet

Van Gogh

Zhou et al., Cycle GAN 2017

Fully Observed Models

- Density Estimation by Autoregression

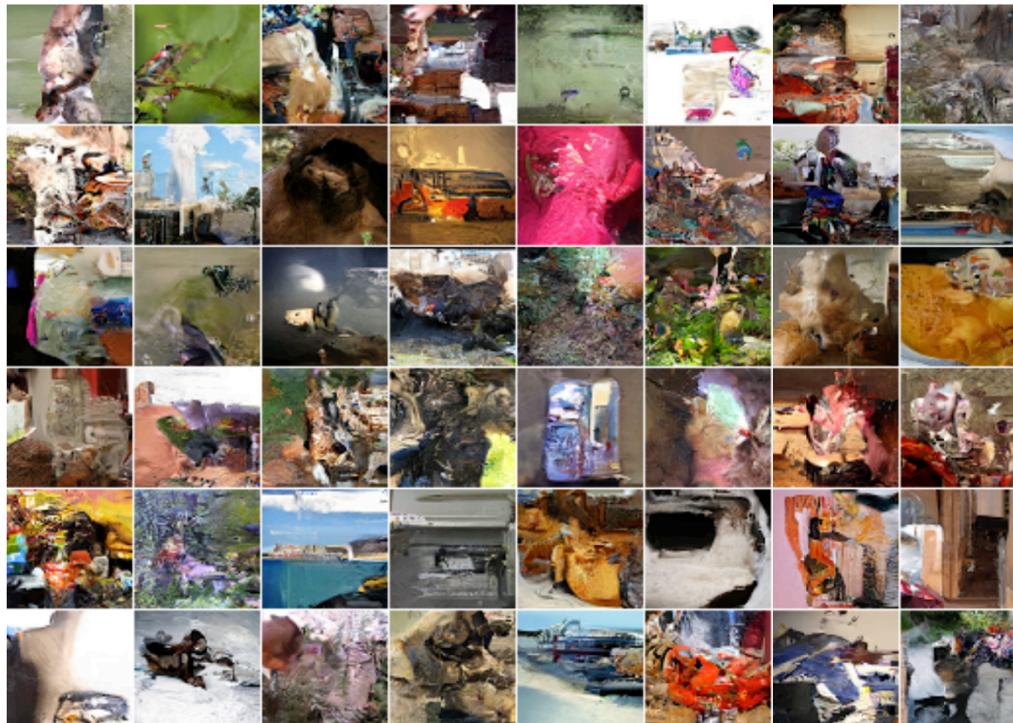


- Ordering of variables is crucial

NADE (Uria 2013), MADE (Germain 2017), MAF (Papamakarios 2017), PixelCNN (van den Oord, et al, 2016)

Fully Observed Models

► Density Estimation by Autoregression

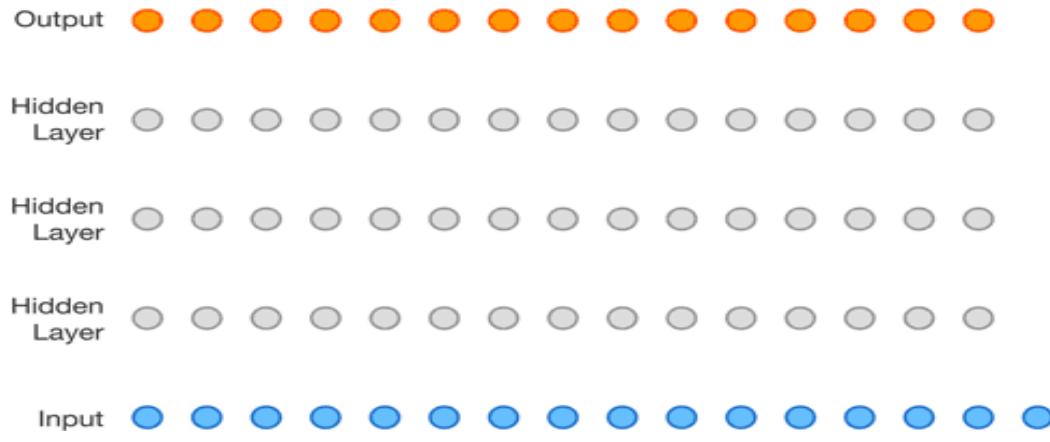


PixelCNN (van den Oord, et al, 2016)

NADE (Uria 2013), MADE (Germain 2017), MAF (Papamakarios 2017), PixelCNN (van den Oord, et al, 2016)

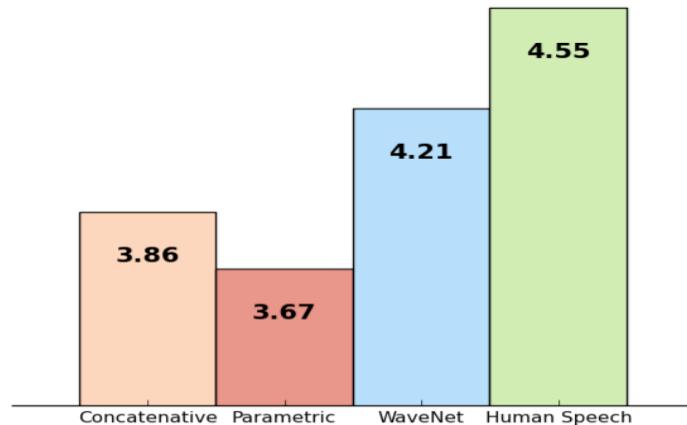
WaveNet

► Generative Model of Speech Signals



1 Second

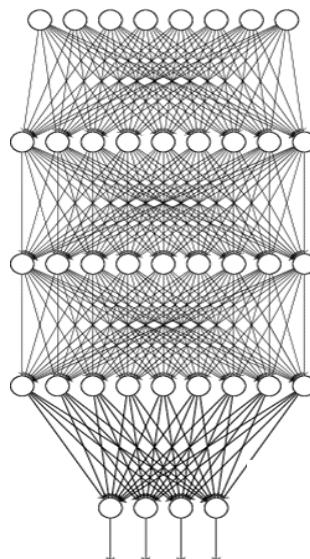
Quality: Mean Opinion Scores



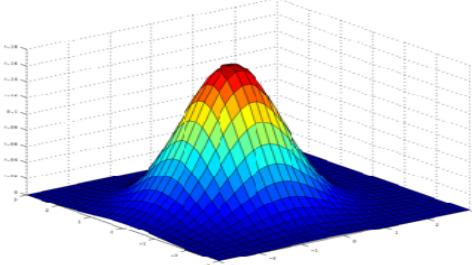
van den Oord et al, 2016

Deep Directed Generative Models

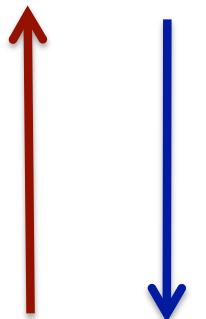
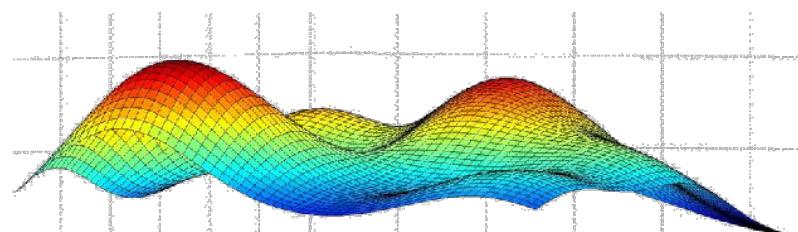
White
Noise



Code Z



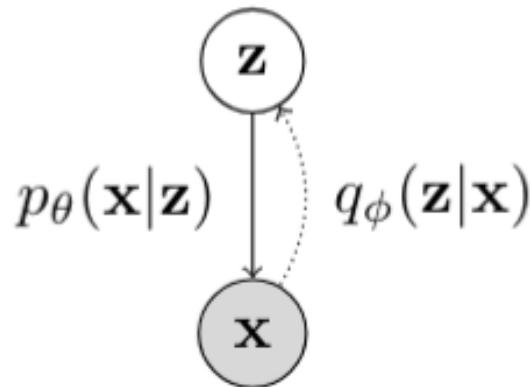
- ▶ Recognition
- ▶ Bottom-up
- ▶ $Q(z|x)$



D_{real}

- ▶ Generative
- ▶ Top-Down
- ▶ $P(x|z)$

- ▶ Latent Variable Models

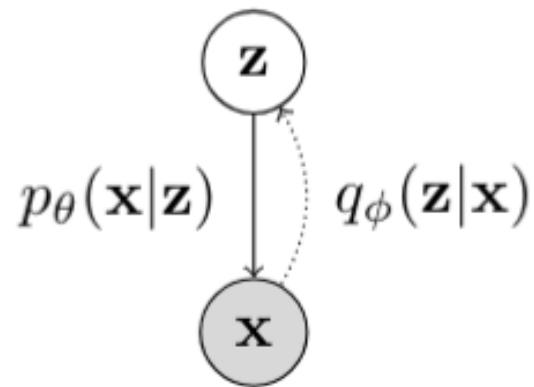


$$\log p_\theta(\mathbf{x}) = \log \int p_\theta(\mathbf{x}, \mathbf{z}) d\mathbf{z}$$

- ▶ Conditional distributions are parameterized by deep neural networks

Directed Deep Generative Models

- Directed Latent Variable Models with Inference Network



- Maximum log-likelihood objective

$$\max_{\theta} \sum_{\mathbf{x} \in \mathcal{D}} \log p_{\theta}(\mathbf{x})$$

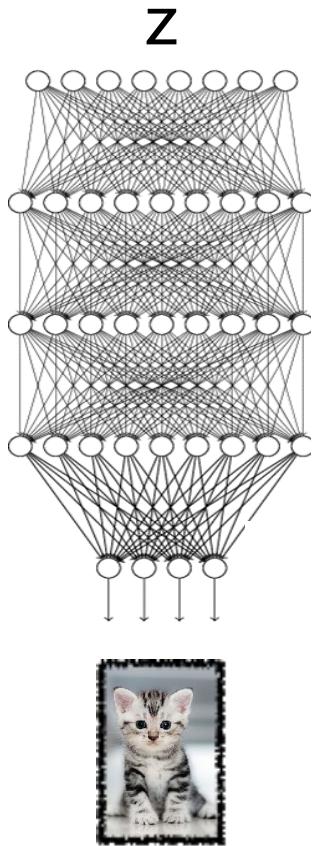
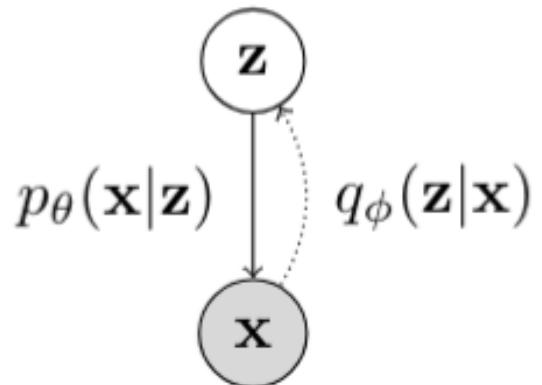
- Marginal log-likelihood is **intractable**:

$$\log p_{\theta}(\mathbf{x}) = \log \int p_{\theta}(\mathbf{x}, \mathbf{z}) d\mathbf{z}$$

- **Key idea:** Approximate true posterior $p(z|x)$ with a simple, tractable distribution $q(z|x)$ (inference/recognition network).

Variational Autoencoders (VAEs)

- Single stochastic (Gaussian) layer, followed by many deterministic layers



$$p(\mathbf{z}) = \mathcal{N}(0, I)$$

$$p_{\theta}(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mu(\mathbf{z}, \theta), \Sigma(\mathbf{z}, \theta))$$

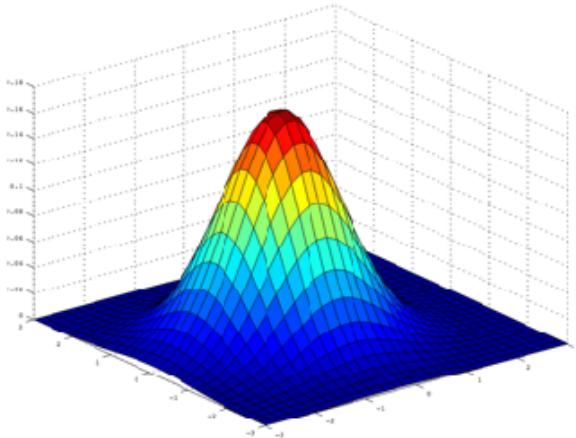
Deep neural network parameterized by θ .
(Can use different noise models)

$$q_{\phi}(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mu(\mathbf{x}, \phi), \Sigma(\mathbf{x}, \phi))$$

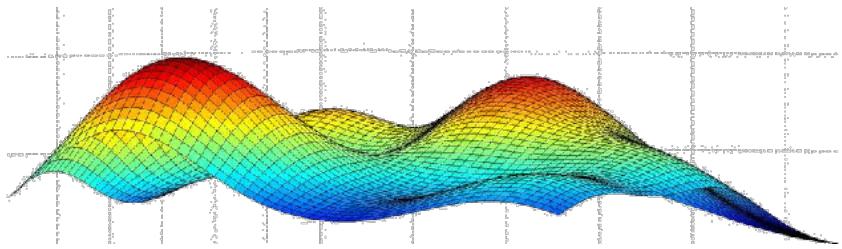
Deep neural network parameterized by ϕ .

Generative Adversarial Networks (GAN)

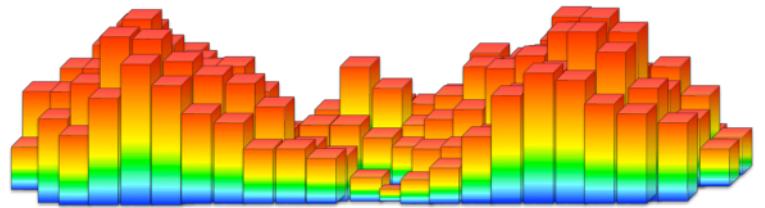
- ▶ Implicit generative model for an unknown target density $p(x)$
- ▶ Converts sample from a known noise density $p_Z(z)$ to the target $p(x)$



Noise density $p_Z(z)$ over space \mathcal{Z}



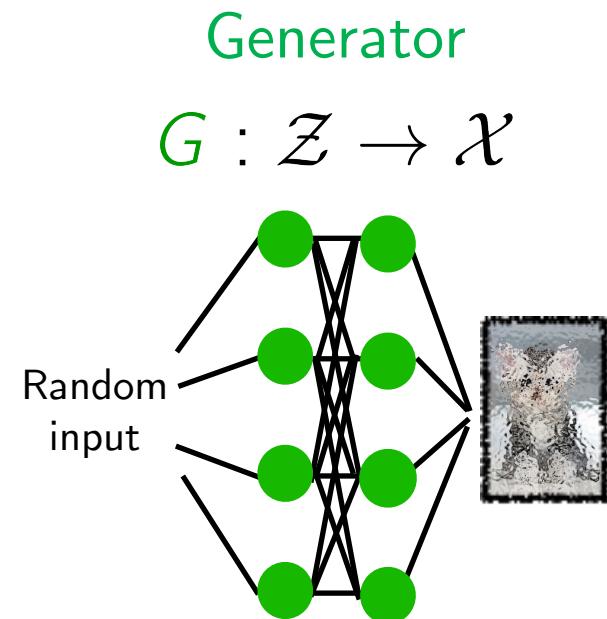
Unknown target density $p(x)$ of data over domain \mathcal{X} , e.g. $\mathbb{R}^{32 \times 32}$



Distribution of generated samples should follow target density $p(x)$

GAN Formulation

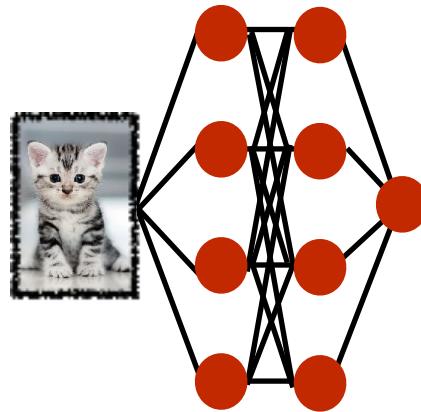
- GAN consists of two components



Goal: Produce samples indistinguishable from true data

Discriminator

$$D : \mathcal{X} \rightarrow \mathbb{R}$$

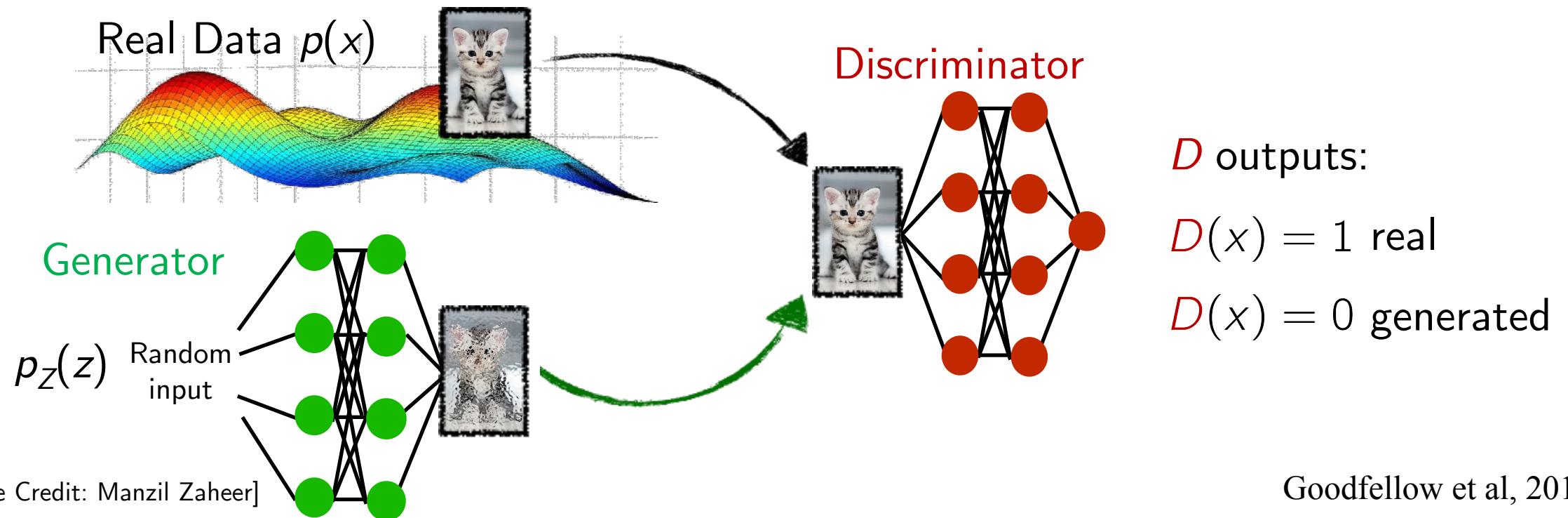


Goal: Distinguish true and generated data apart

GAN Formulation: Discriminator

- **Discriminator's** objective: Tell real and generated data apart like a classifier

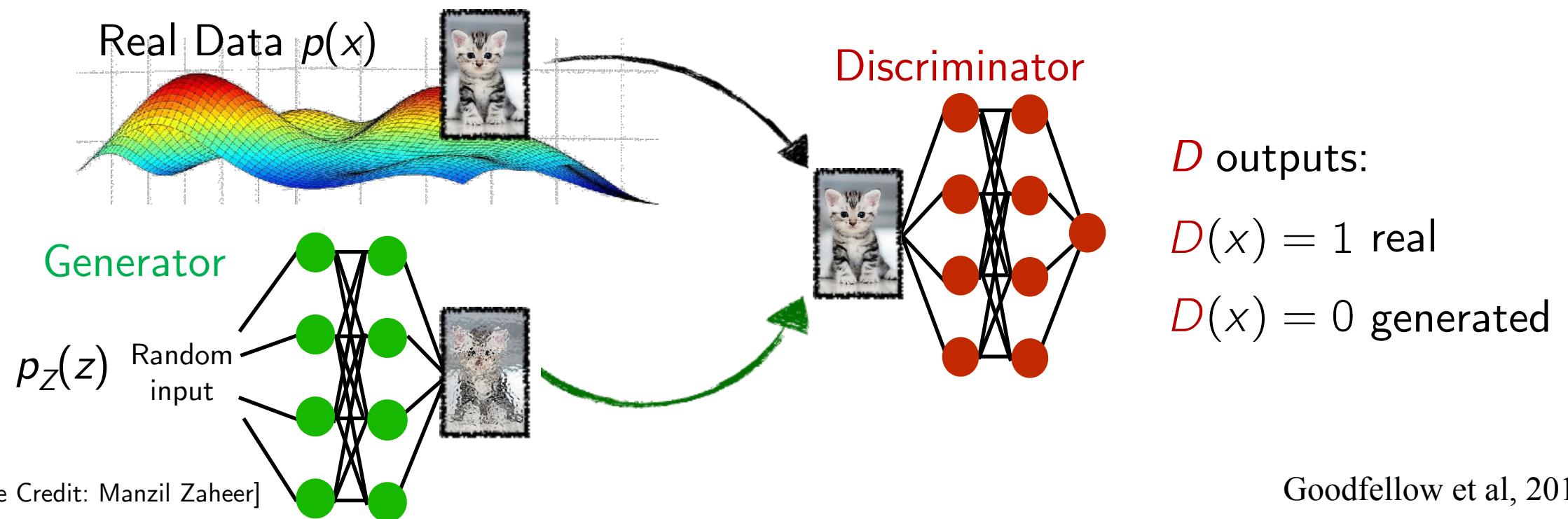
$$\max_D \mathbb{E}_{x \sim p} [\log D(x)] + \mathbb{E}_{z \sim p_Z} [\log (1 - D(G(z)))]$$



GAN Formulation: Generator

- Generator's objective: Fool the best **discriminator**

$$\min_G \max_D \mathbb{E}_{x \sim p} [\log D(x)] + \mathbb{E}_{z \sim p_Z} [\log (1 - D(G(z)))]$$



GAN Formulation: Optimization

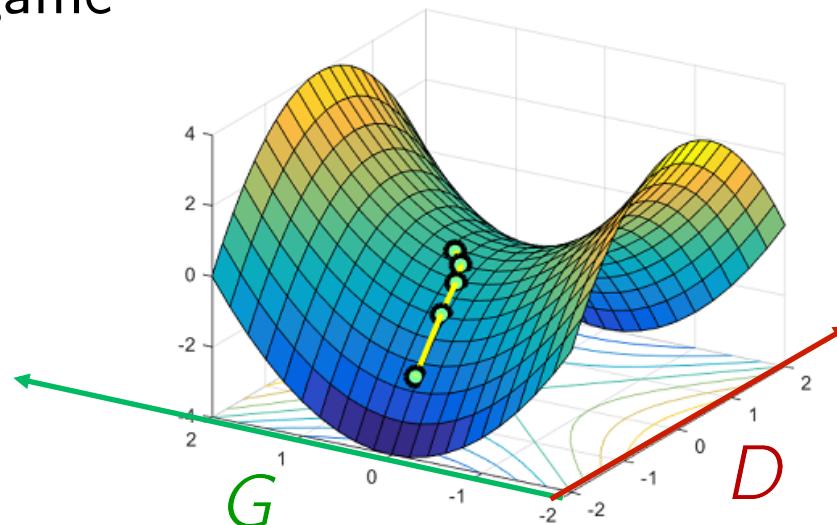
- ▶ Overall GAN optimization

$$\min_G \max_D V(G, D) = \mathbb{E}_{x \sim p} [\log D(x)] + \mathbb{E}_{z \sim p_Z} [\log (1 - D(G(z)))]$$

- ▶ The generator-discriminator are iteratively updated using SGD to find “equilibrium” of a “min-max objective” like a game

$$G \leftarrow G - \eta_G \nabla_G V(G, D)$$

$$D \leftarrow D - \eta_D \nabla_D V(G, D)$$



Distributional perspective - Discriminator

$$\min_G \max_D V(G, D) = \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} [\log D(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})} [\log(1 - D(G(\mathbf{z})))]$$

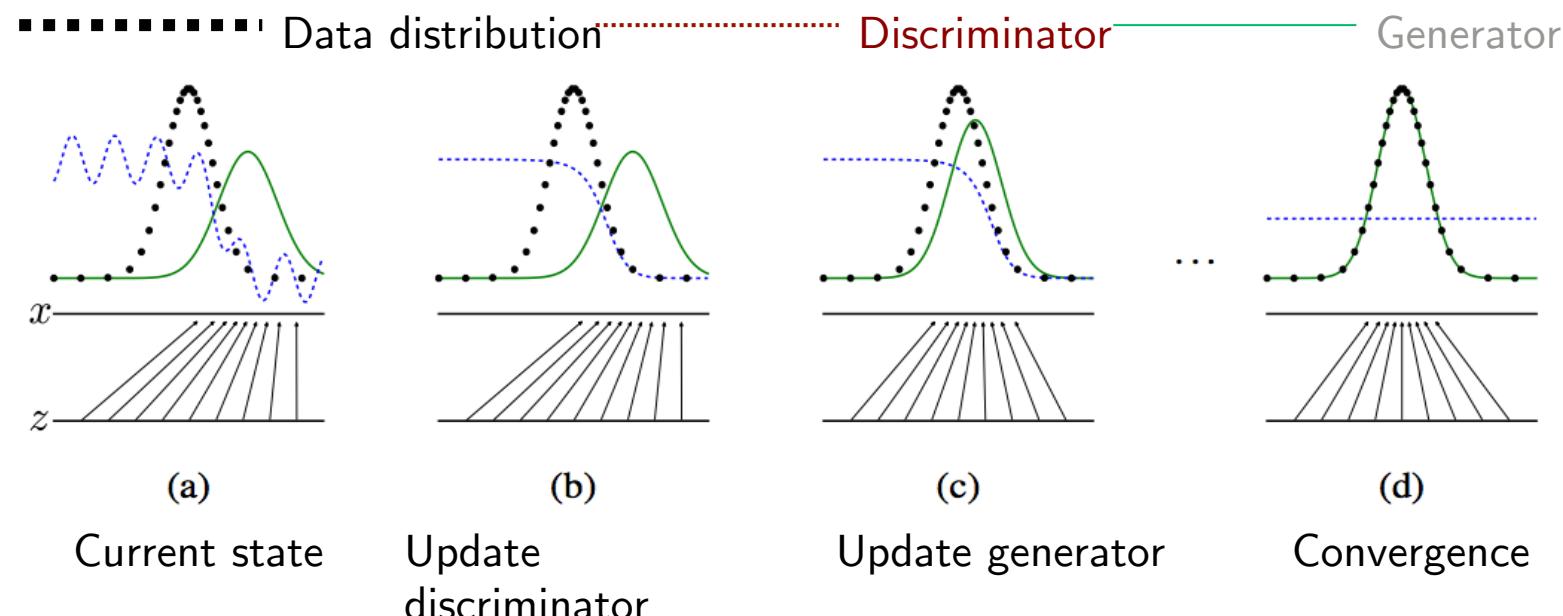
- ▶ For a fixed generator, discriminator is maximizing negative cross entropy
- ▶ Optimal discriminator is given by:

$$D_G^*(\mathbf{x}) = \frac{p_{\text{data}}(\mathbf{x})}{p_{\text{data}}(\mathbf{x}) + p_g(\mathbf{x})}$$

A minimax learning objective

- During learning, generator and discriminator are updated alternatively

$$\min_{\theta} \max_{\phi} V(G_{\theta}, D_{\phi}) = \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} [\log D_{\phi}(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})} [\log(1 - D_{\phi}(G_{\theta}(\mathbf{z})))]$$

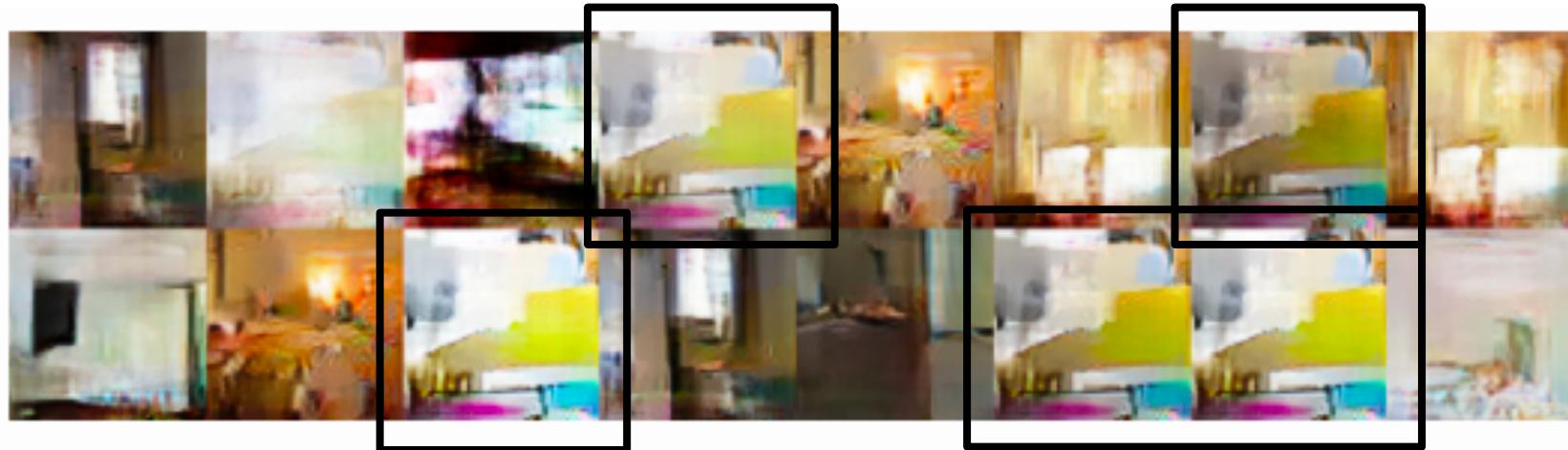


Evaluation

- ▶ Likelihoods may not be defined or tractable
- ▶ Directed model permits ancestral sampling
 - ▶ For labelled datasets, metrics such as inception scores quantify sample diversity and quality using pretrained classifiers

Mode Collapse

- ▶ In practice, GANs suffer from mode collapse



Arjovsky et al., 2017

Wasserstein GAN

- ▶ WGAN optimization

$$\min_G \max_D W(G, D) = \mathbb{E}_{x \sim p} [D(x)] - \mathbb{E}_{z \sim p_Z} [D(G(z))]$$

- ▶ Difference in expected output on real vs. generated images
 - ▶ Generator attempts to drive objective ≈ 0
- ▶ More stable optimization

Compare to training DBMs

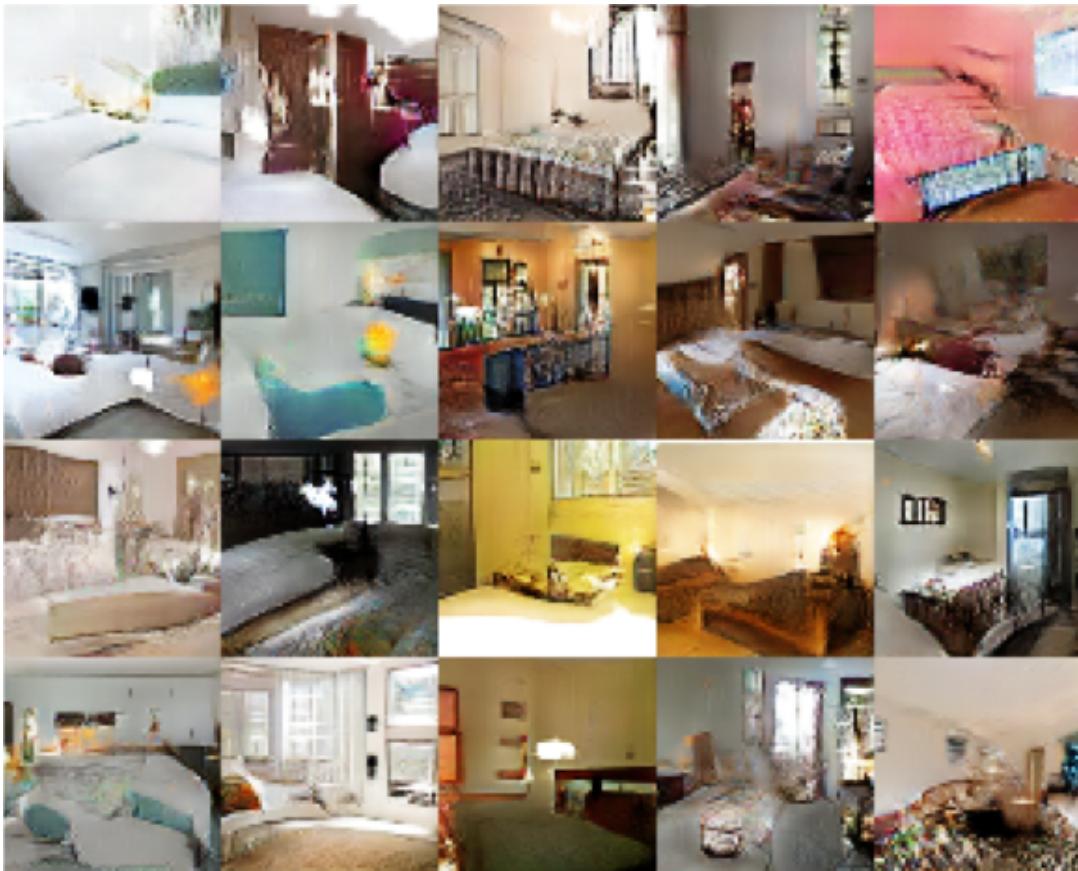
$$\frac{\partial \log P_\theta(\mathbf{v})}{\partial W^1} = \mathbb{E}_{P_{data}} [\mathbf{v} \mathbf{h}^1 \top] - \mathbb{E}_{P_\theta} [\mathbf{v} \mathbf{h}^1 \top]$$

D outputs:

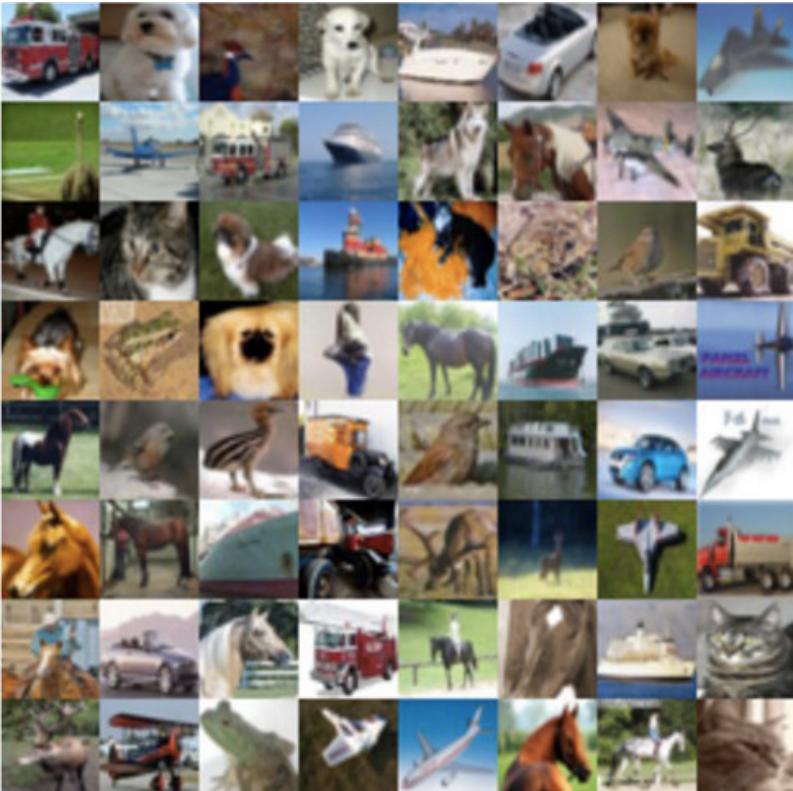
$D(x) = 1$ real

$D(x) = 0$ generated

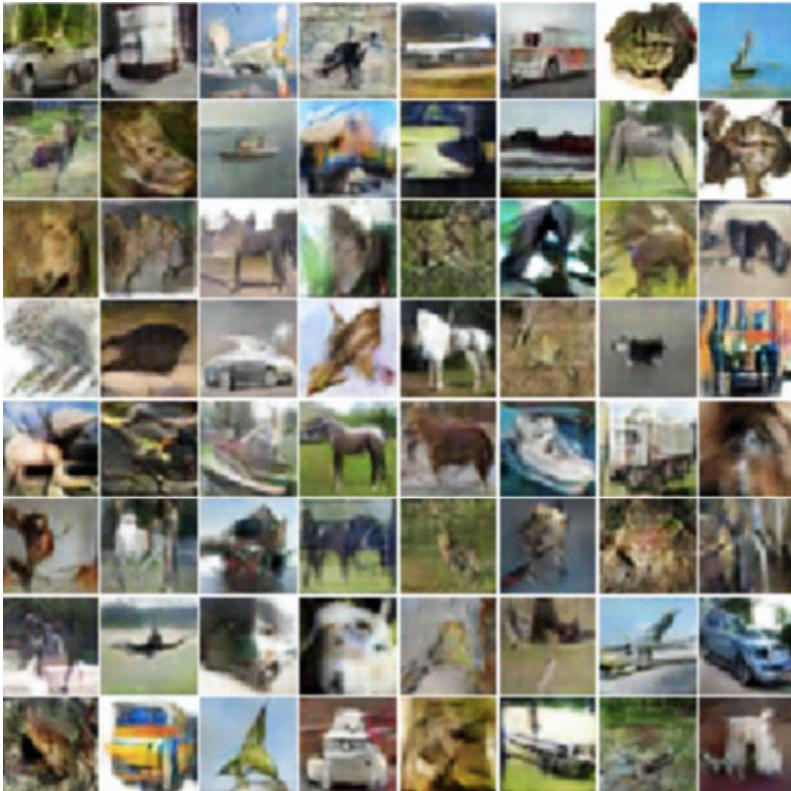
LSUN Bedroom: Samples



CIFAR Dataset

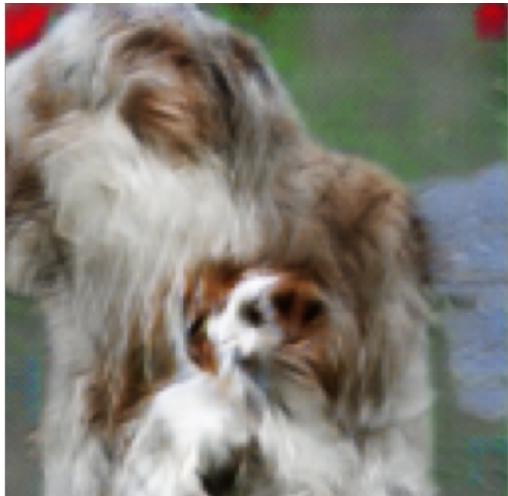
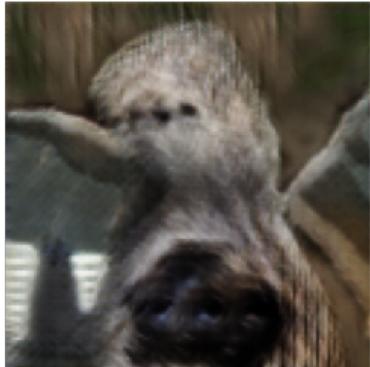
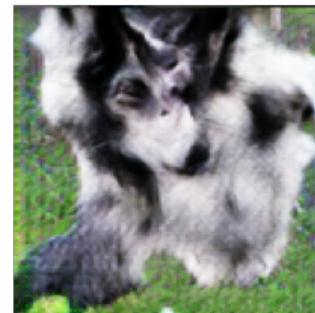
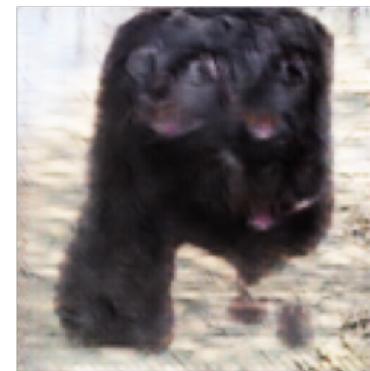


Training



Samples

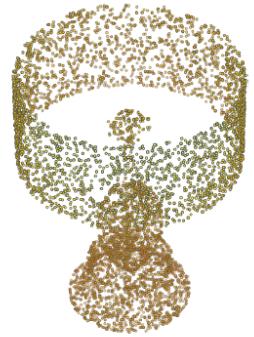
ImageNet: Cherry-Picked Samples



- ▶ **Open Question:** How can we quantitatively evaluate these models!

Modelling Point Cloud Data

Data



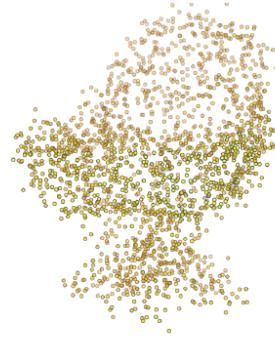
AAE

PC-GAN

(a) Lamp

Data

AAE



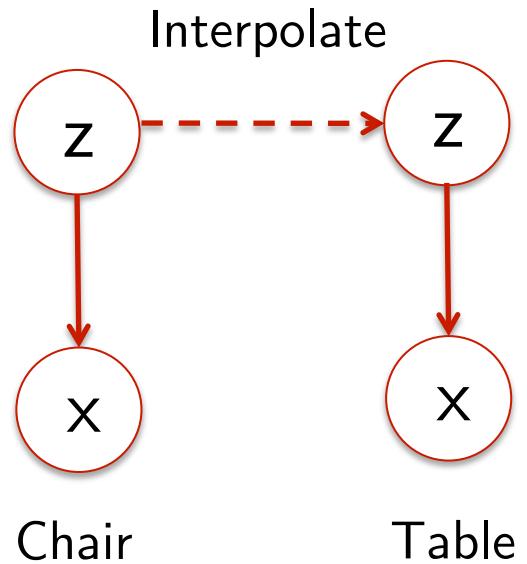
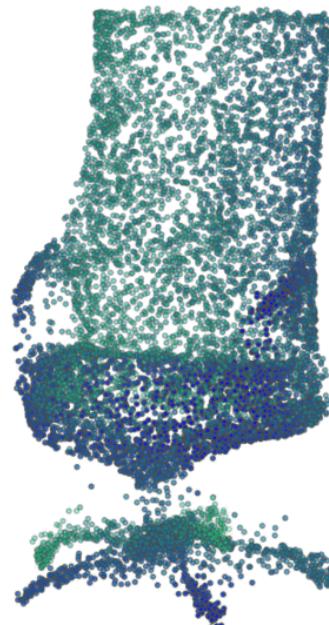
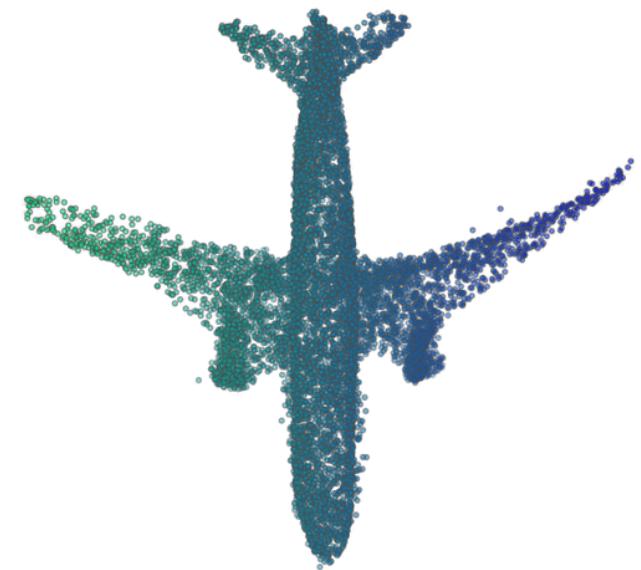
PC-GAN

(b) Chair

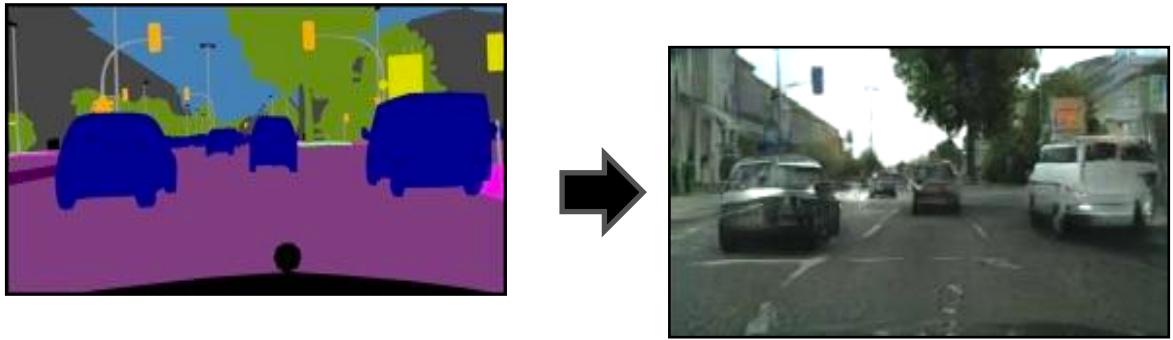
(c) Plane

(d) Guitar

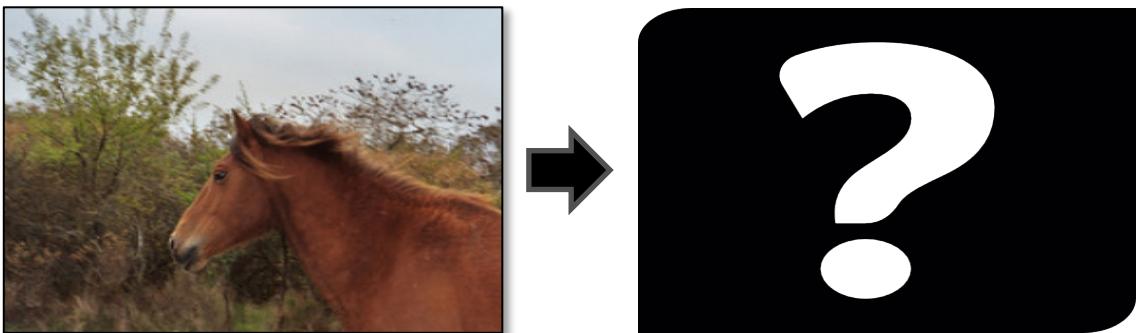
Interpolation in Latent Space



Cycle GAN



Label \leftrightarrow photo: per-pixel labeling



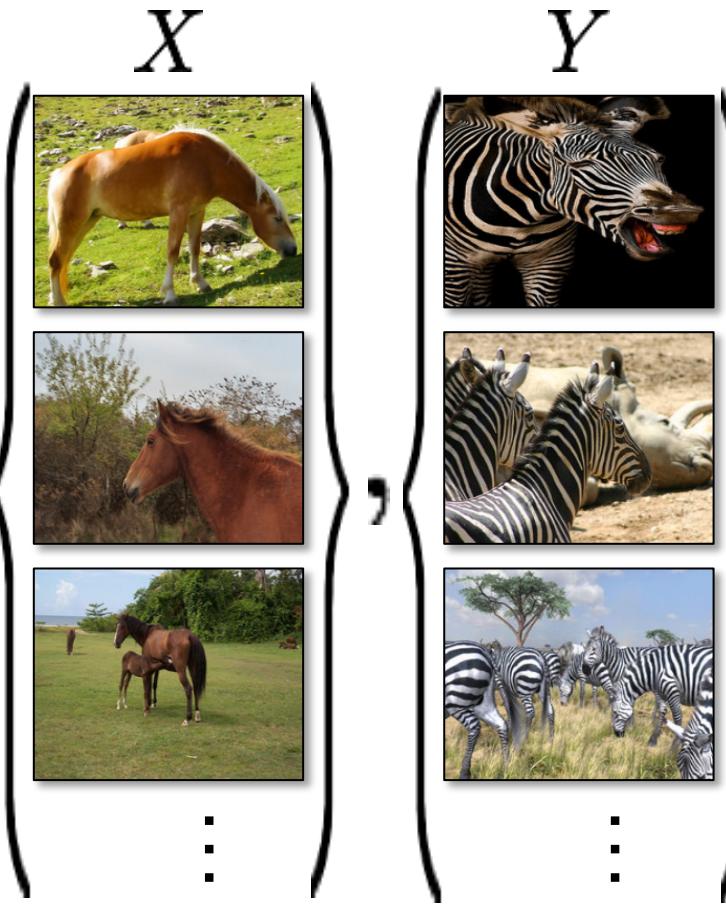
Horse \leftrightarrow zebra: how to get zebras?

- Expensive to collect pairs.
- Impossible in many scenarios.

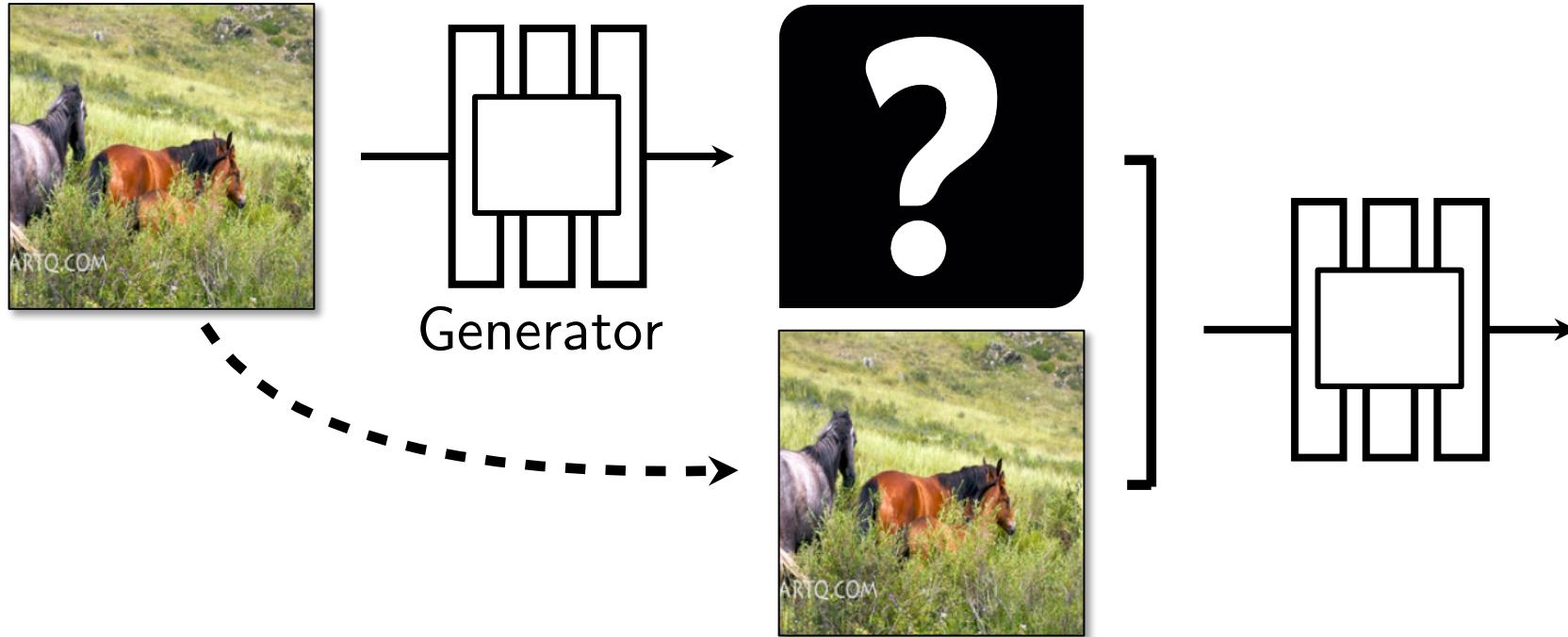
Cycle GAN

Paired

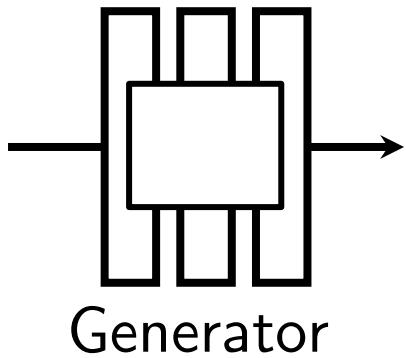
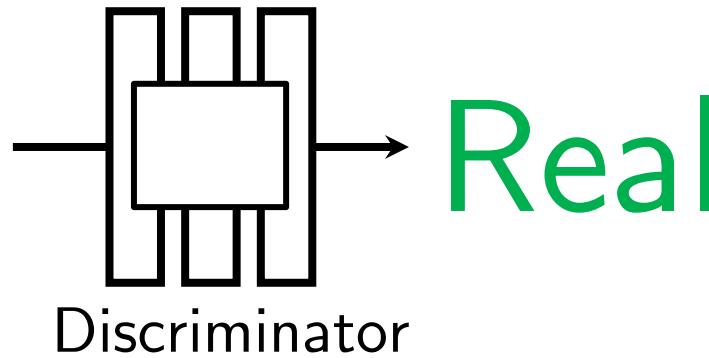
Unpaired



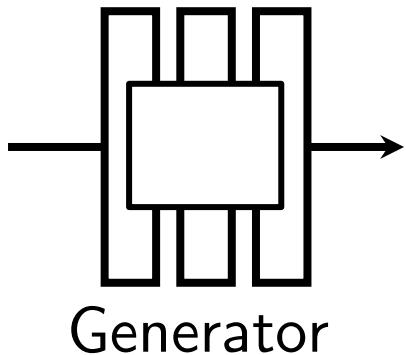
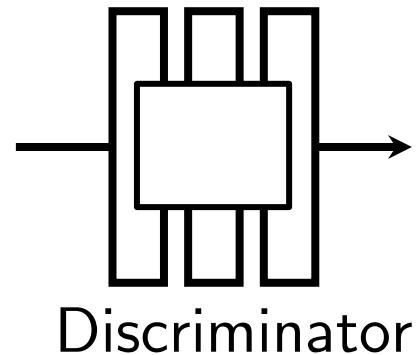
[Zhu*, Park*, Isola, and Efros, ICCV 2017]



No input-output pairs!



Real

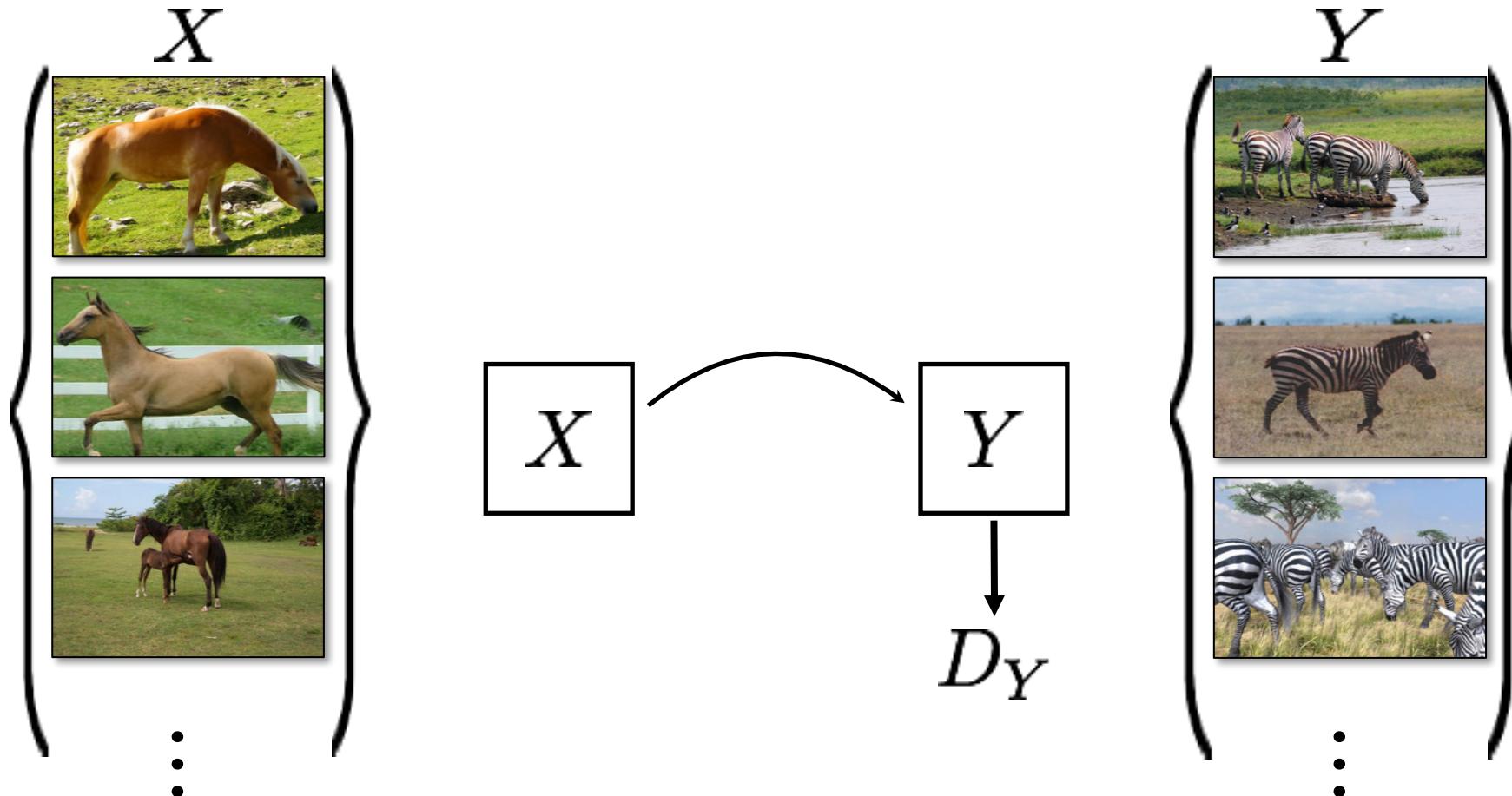


Real too

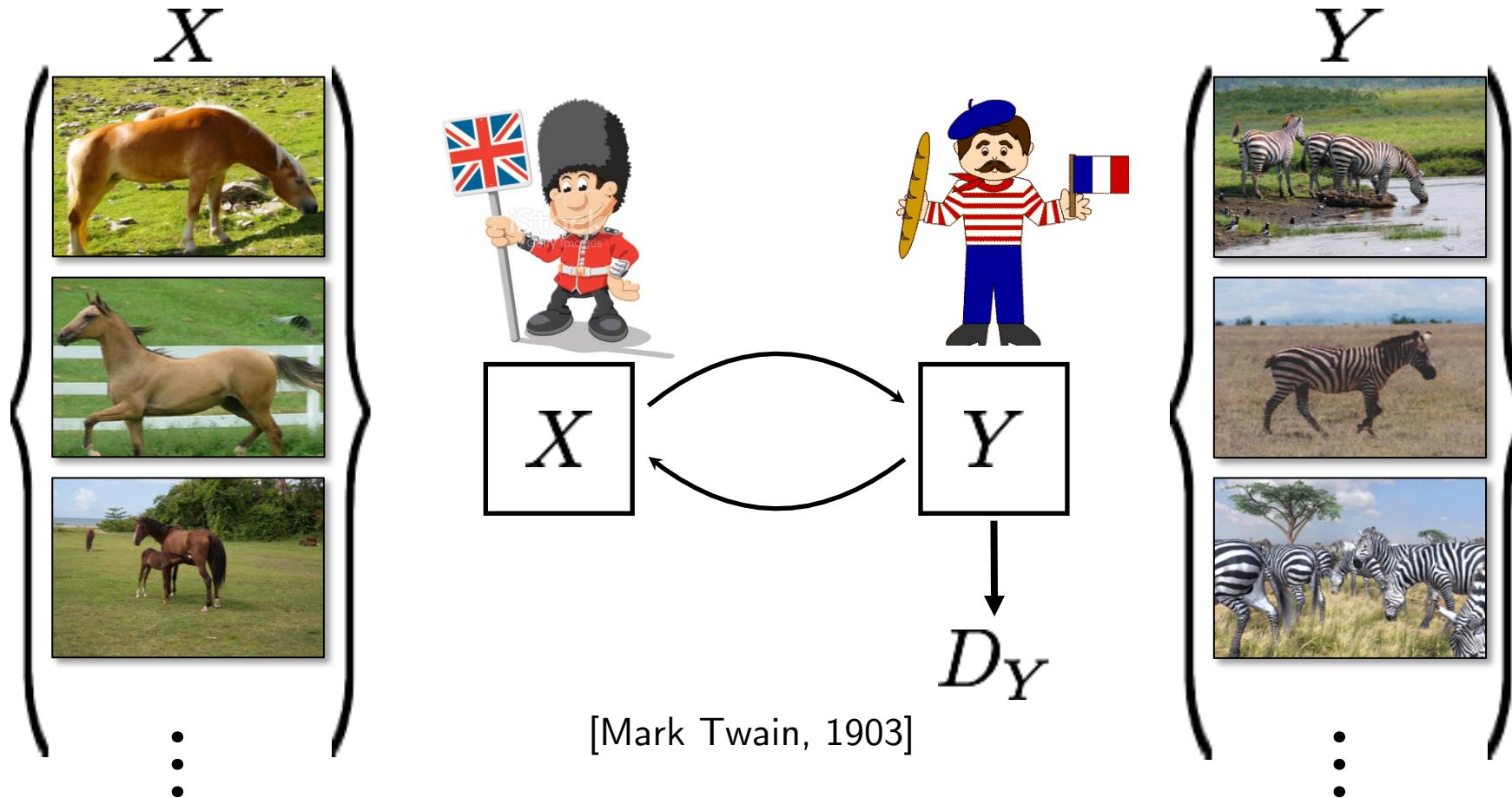
GANs doesn't force output to correspond to input

mode collapse

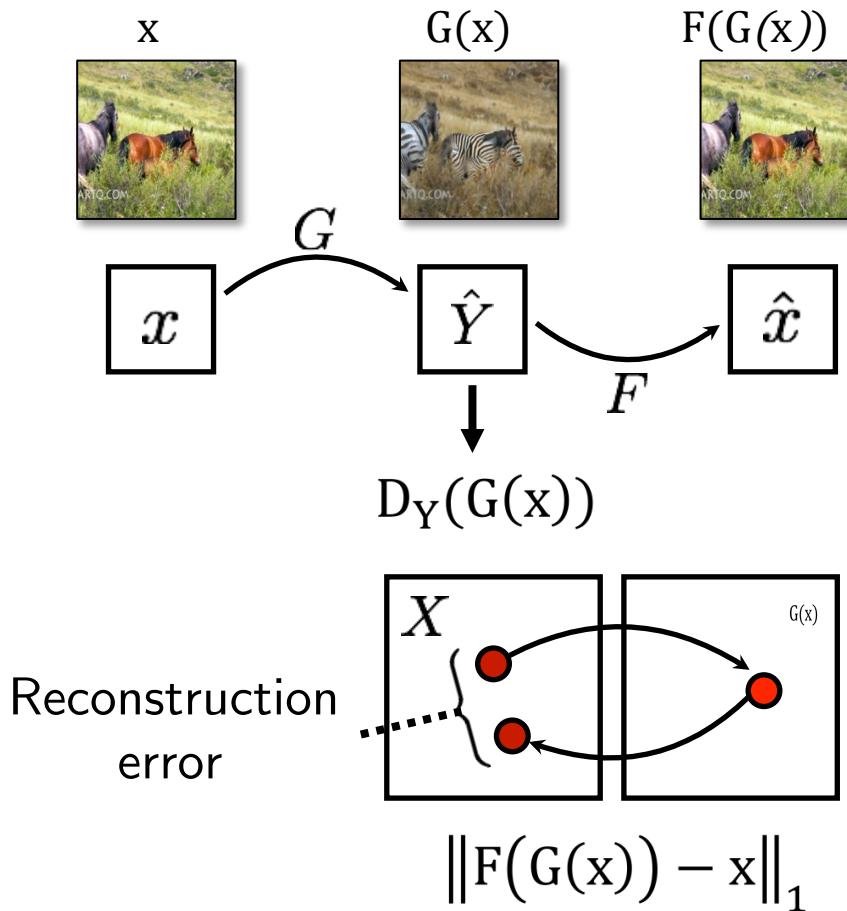
Cycle Consistent Adversarial Networks



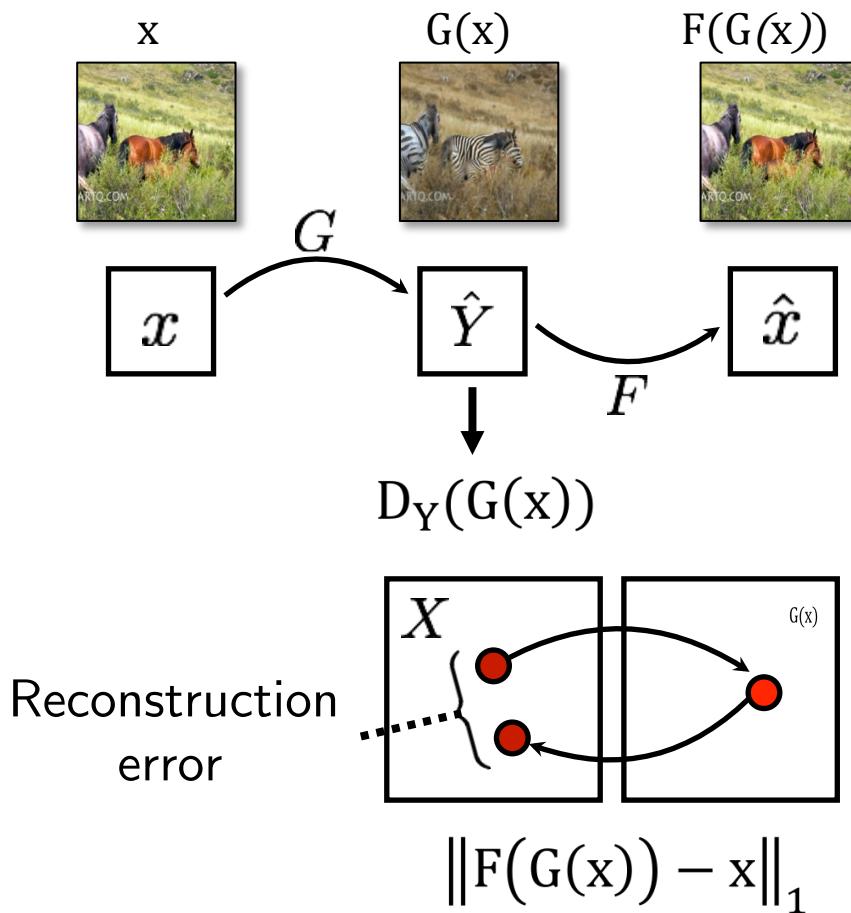
Cycle Consistent Adversarial Networks



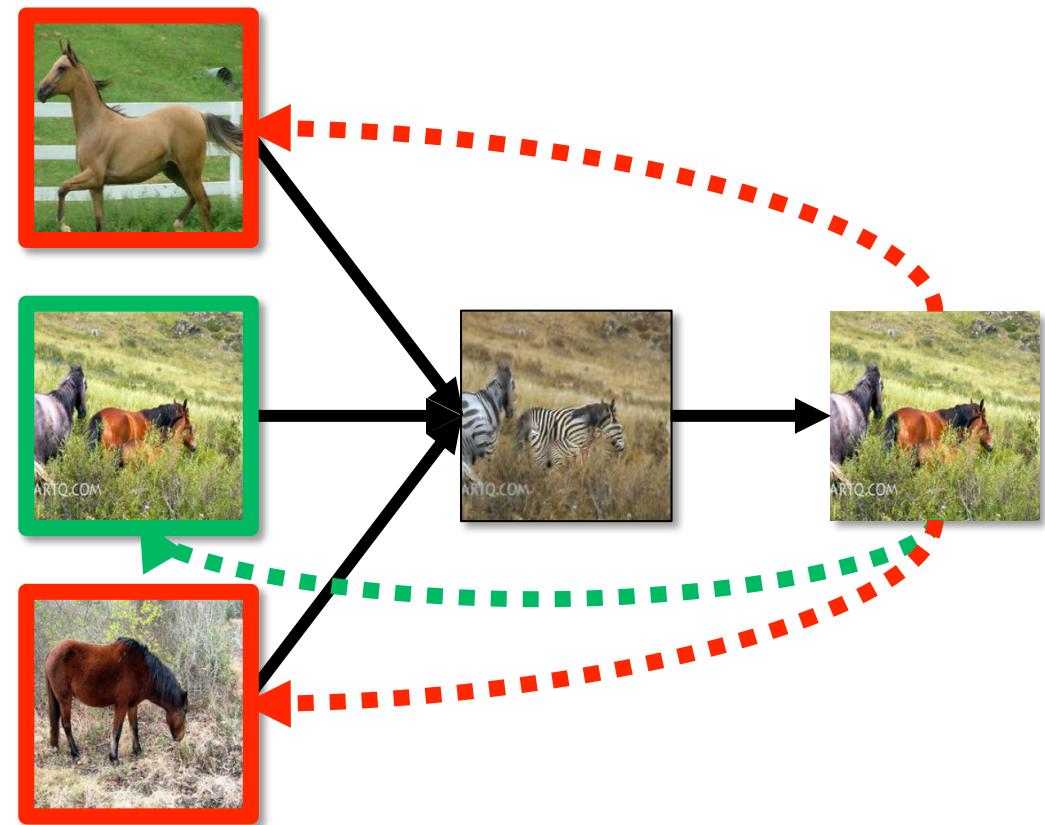
Cycle Consistency Loss



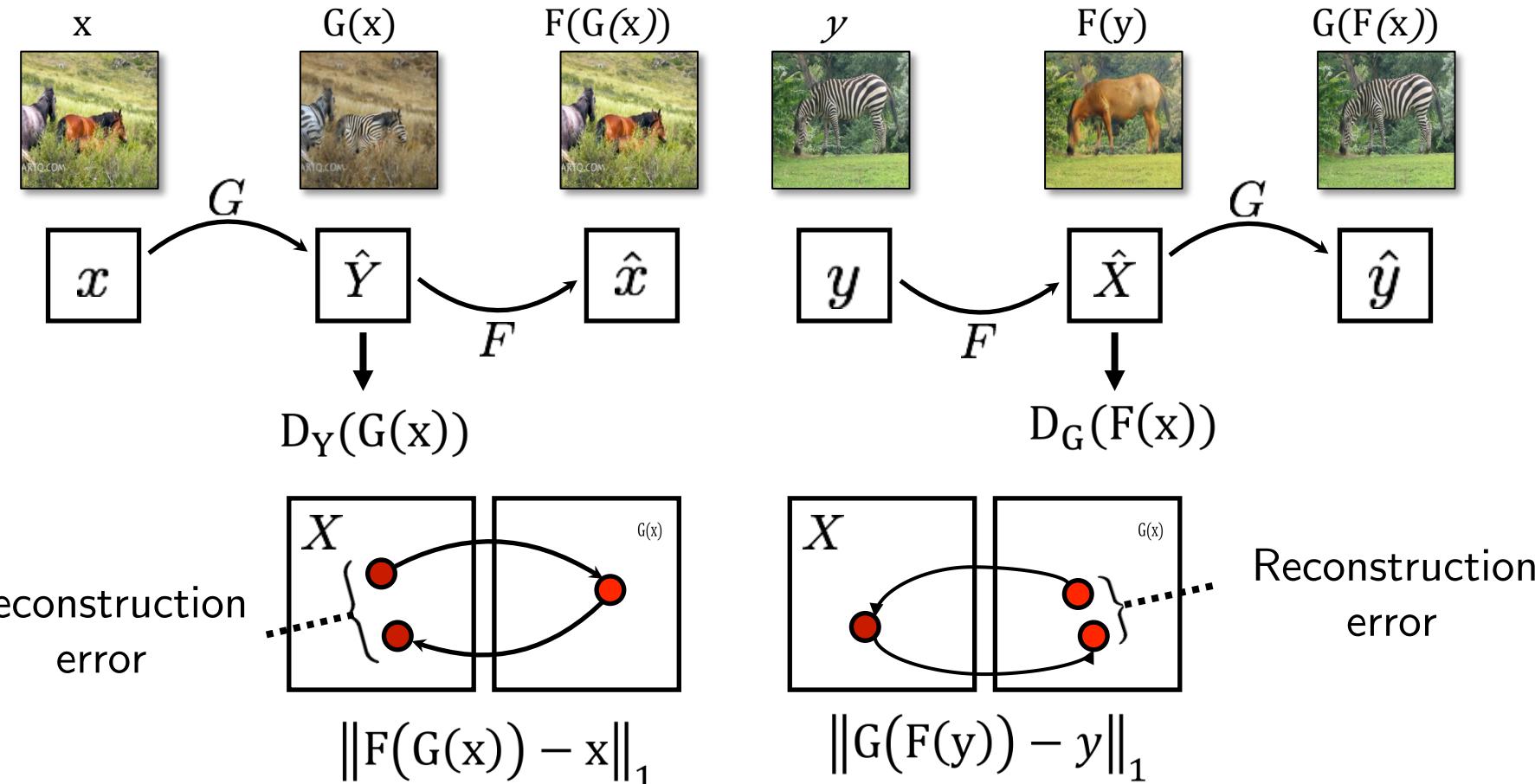
Cycle Consistency Loss



Small cycle loss
Large cycle loss



Cycle Consistency Loss



Collection Style Transfer

Ukiyo-e Cezanne

Van Gogh Monet

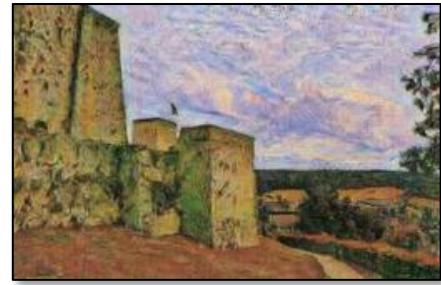
Input

Monet

Van Gogh

Cezanne

Ukiyo-e



Conditional Generation

- ▶ Conditional generative model $P(\text{zebra images} | \text{horse images})$

- ▶ Style Transfer

Input Image

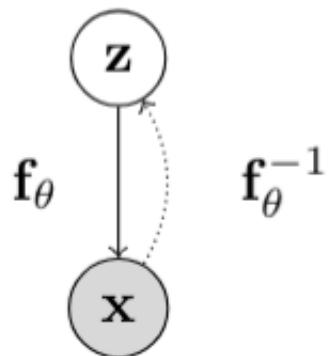
Monet

Van Gogh

Zhou et al., Cycle GAN 2017

Normalizing Flows

- Directed Latent Variable Invertible models



- The mapping between x and z is deterministic and invertible:

$$\begin{aligned} \mathbf{x} &= \mathbf{f}_\theta(\mathbf{z}) \\ \mathbf{z} &= \mathbf{f}_\theta^{-1}(\mathbf{x}) \end{aligned}$$

- Use change-of-variables to relate densities between z and x

$$p_X(\mathbf{x}; \theta) = p_Z(\mathbf{z}) \left| \det \frac{\partial \mathbf{f}_\theta^{-1}(\mathbf{x})}{\partial \mathbf{X}} \right|_{\mathbf{X}=\mathbf{x}}$$

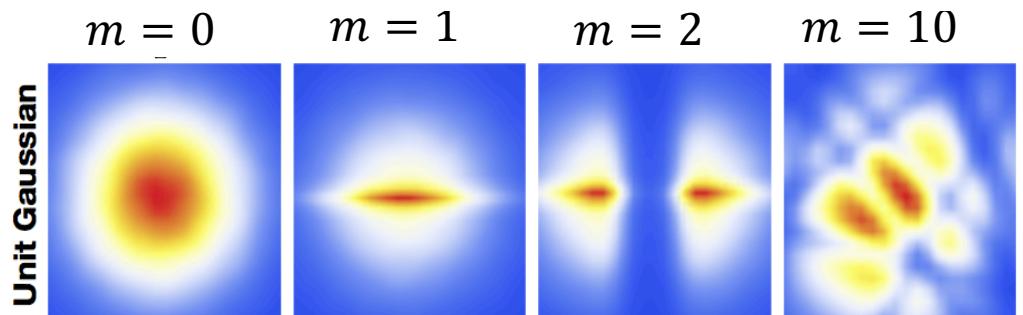
Normalizing Flows

- ▶ Invertible transformations can be composed:

$$\mathbf{x} = \mathbf{f}_\theta^M \circ \dots \circ \mathbf{f}_\theta^1(\mathbf{z}^0); \quad p_X(\mathbf{x}; \theta) = p_{Z^0}(\mathbf{z}^0) \prod_{m=1}^M \left| \det \frac{\partial (\mathbf{f}_\theta^m)^{-1}}{\partial Z^m} \right|_{Z^m=\mathbf{z}^m}$$

- ▶ Planar Flows

$$f(\mathbf{z}) = \mathbf{z} + \mathbf{u}g(\mathbf{w}^\top \mathbf{z} + b)$$



Rezende and Mohamed, 2016

Normalizing Flows

- ▶ Maximum log-likelihood objective

$$\max_{\theta} \log p_X(\mathcal{D}; \theta) = \sum_{\mathbf{x} \in \mathcal{D}} \left(\log p_Z(\mathbf{z}) - \log \left| \det \frac{\partial(\mathbf{f}_{\theta})^{-1}}{\partial \mathbf{X}} \right|_{\mathbf{X}=\mathbf{x}} \right)$$

- ▶ Exact log-likelihood evaluation via inverse transformations
- ▶ Sampling from the model

$$\mathbf{z} \sim p_Z(\mathbf{z}), \quad \mathbf{x} = \mathbf{f}_{\theta}(\mathbf{z})$$

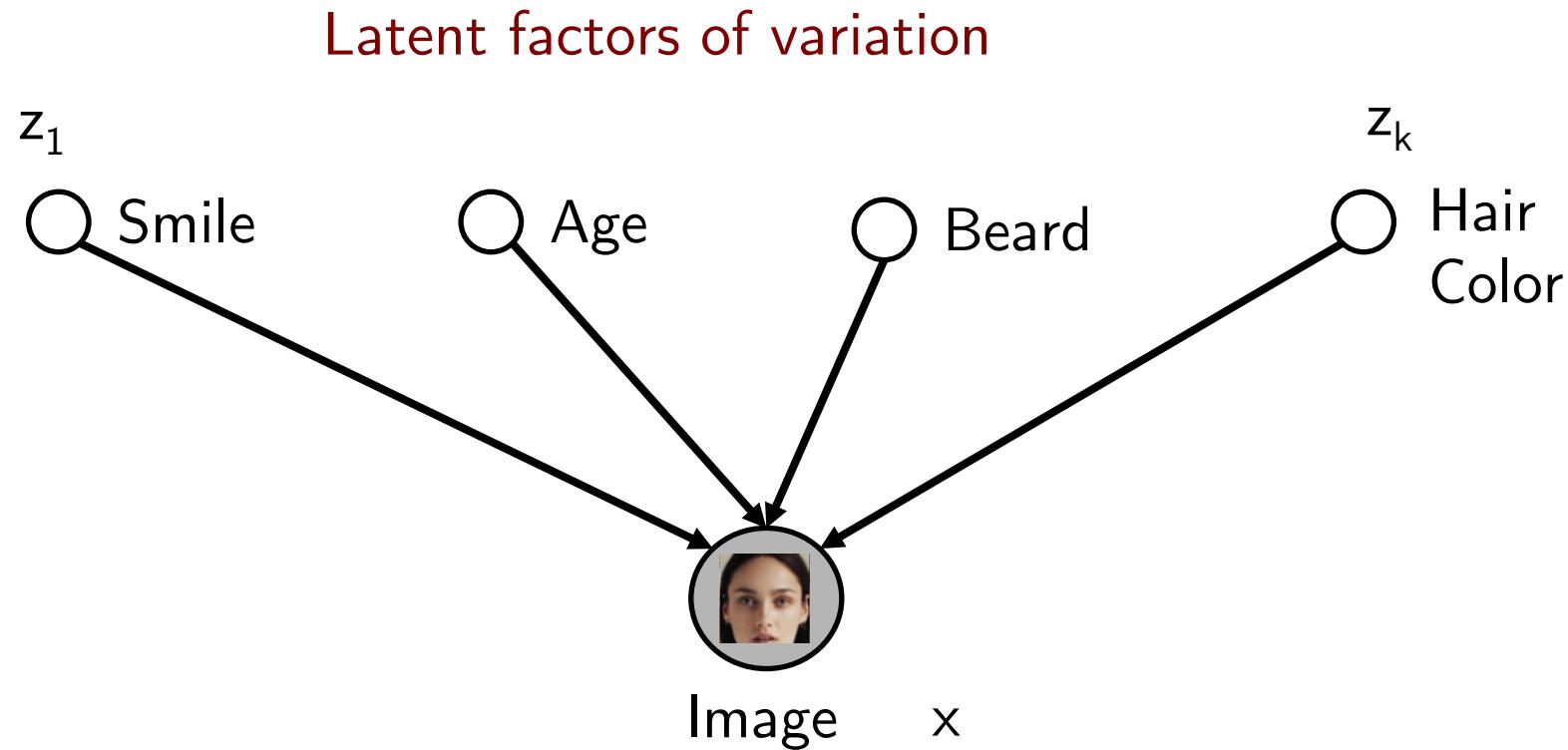
- ▶ Inference over the latent representations:

$$\mathbf{z} = \mathbf{f}_{\theta}^{-1}(\mathbf{x})$$

Example: GLOW

- Generative Flow with Invertible 1x1 Convolutions

<https://blog.openai.com/glow/>



Example: GLOW

Input

Smile

Add Beard

Increase Age

<https://blog.openai.com/glow/>

Flow Models

- ▶ Simple prior that allows for sampling and tractable likelihood evaluation
e.g., isotropic Gaussian
- ▶ Invertible transformations with tractable evaluation:
 - ▶ Likelihood evaluation requires efficient evaluation of inverse
 - ▶ Sampling requires efficient evaluation of inverse
- ▶ Tractable evaluation of determinants of Jacobian for large
 - ▶ Computing determinants for a large matrix is prohibitive
 - ▶ Key idea: Determinant of triangular matrices is the product of the diagonal entries, i.e., an $O(n)$ operation

Thank you