
10707	
Deep	Learning	
Russ	Salakhutdinov	

Machine Learning Department
rsalakhu@cs.cmu.edu

h0p://www.cs.cmu.edu/~rsalakhu/10707/	

Deep Belief Networks	

Neural Networks Online Course

•  Hugo’s class covers
many other topics:
convolutional networks,
neural language model,
Boltzmann machines,
autoencoders, sparse
coding, etc.

•  We will use his
material for some of the
other lectures.

•  Disclaimer: Much of the material and slides for this lecture were
borrowed from Hugo Larochelle’s class on Neural Networks:
https://sites.google.com/site/deeplearningsummerschool2016/

Multilayer Neural Net
•  Consider a network with L hidden layers.

-  hidden layer activation
 from 1 to L:

-  layer pre-activation for k>0

• p(y = c|x)

• o(a) = softmax(a) =

h
exp(a1)P
c exp(ac)

. . .

exp(aC)P
c exp(ac)

i>

• f(x)

• h

(1)

(x) h

(2)

(x) W

(1)

W

(2)

W

(3)

b

(1)

b

(2)

b

(3)

• a

(k)
(x) = b

(k)
+W

(k)
h

(k�1)

(x) (h

(0)

(x) = x)

• h

(k)
(x) = g(a

(k)
(x))

• h

(L+1)

(x) = o(a

(L+1)

(x)) = f(x)

2

• p(y = c|x)

• o(a) = softmax(a) =

h
exp(a1)P
c exp(ac)

. . .

exp(aC)P
c exp(ac)

i>

• f(x)

• h

(1)

(x) h

(2)

(x) W

(1)

W

(2)

W

(3)

b

(1)

b

(2)

b

(3)

• a

(k)
(x) = b

(k)
+W

(k)
h

(k�1)

x (h

(0)

= x)

• h

(k)
(x) = g(a

(k)
(x))

• h

(L+1)

(x) = o(a

(L+1)

(x)) = f(x)

2

• p(y = c|x)

• o(a) = softmax(a) =

h
exp(a1)P
c exp(ac)

. . .

exp(aC)P
c exp(ac)

i>

• f(x)

• h

(1)

(x) h

(2)

(x) W

(1)

W

(2)

W

(3)

b

(1)

b

(2)

b

(3)

• a

(k)
(x) = b

(k)
+W

(k)
h

(k�1)

x (h

(0)

= x)

• h

(k)
(x) = g(a

(k)
(x))

• h

(L+1)

(x) = o(a

(L+1)

(x)) = f(x)

2

-  output layer activation (k=L+1):

• p(y = c|x)

• o(a) = softmax(a) =

h
exp(a1)P
c exp(ac)

. . .

exp(aC)P
c exp(ac)

i>

• f(x)

• h

(1)

(x) h

(2)

(x) W

(1)

W

(2)

W

(3)

b

(1)

b

(2)

b

(3)

• a

(k)
(x) = b

(k)
+W

(k)
h

(k�1)

x (h

(0)

(x) = x)

• h

(k)
(x) = g(a

(k)
(x))

• h

(L+1)

(x) = o(a

(L+1)

(x)) = f(x)

2

Learning Distributed Representations
•  Deep learning is research on learning models with multilayer
representations

Ø  multilayer (feed-forward) neural networks

Ø  multilayer graphical model (deep belief network, deep Boltzmann

machine)

•  Each layer learns ‘‘distributed representation’’

Ø  Units in a layer are not mutually exclusive

•  each unit is a separate feature of the input

•  two units can be ‘‘active’’ at the same time

Ø  Units do not correspond to a partitioning (clustering) of the inputs

•  in clustering, an input can only belong to a single cluster

Inspiration from Visual Cortex

Success Story: Speech Recognition

• 	Deep	Convolu@onal	Nets	for	Vision	(Supervised)		

1.2	million	training	images	
1000	classes	

Success Story: Image Recognition

Why Training is Hard
•  First hypothesis: Hard optimization
problem (underfitting)

Ø  vanishing gradient problem

Ø  saturated units block gradient

propagation

• This is a well known problem in
recurrent neural networks

Why Training is Hard
•  Second hypothesis: Overfitting

Ø  we are exploring a space of complex functions

Ø  deep nets usually have lots of parameters

•  Might be in a high variance / low bias situation

Why Training is Hard
•  First hypothesis (underfitting): better optimize

Ø  Use better optimization tools (e.g. batch-normalization, second

order methods, such as KFAC)

Ø  Use GPUs, distributed computing.

•  Second hypothesis (overfitting): use better regularization

Ø  Unsupervised pre-training

Ø  Stochastic drop-out training

•  For many large-scale practical problems, you will need to use both:
better optimization and better regularization!

Unsupervised Pre-training
•  Initialize hidden layers using unsupervised learning

Ø  Force network to represent latent structure of input distribution

Ø  Encourage hidden layers to encode that structure

Unsupervised Pre-training
•  Initialize hidden layers using unsupervised learning

Ø  This is a harder task than supervised learning (classification)

Ø  Hence we expect less overfitting

Pre-training
•  We will use a greedy, layer-wise procedure

Ø  Train one layer at a time with unsupervised criterion

Ø  Fix the parameters of previous hidden layers

Ø  Previous layers viewed as feature extraction

Pre-training
•  Unsupervsed Pre-training

Ø  first layer: find hidden unit features that are more common in

training inputs than in random inputs

Ø  second layer: find combinations of hidden unit features that are

more common than random hidden unit features

Ø  third layer: find combinations of combinations of ...

•  Pre-training initializes the parameters in a region such that the
near local optima overfit less the data

Fine-tuning
•  Once all layers are pre-trained

Ø  add output layer
Ø  train the whole network using

supervised learning

•  Supervised learning is performed as
in a regular network

Ø  forward propagation,
backpropagation and update

•  We call this last phase fine-tuning

Ø  all parameters are ‘‘tuned’’ for the
supervised task at hand

Ø  representation is adjusted to be more
discriminative

Stacking RBMs, Autoencoders
•  Stacked Restricted Boltzmann Machines:

Ø  Hinton, Teh and Osindero suggested this procedure with RBMs,:

A fast learning algorithm for deep belief nets.
Ø  To recognize shapes, first learn to generate images.

Hinton, 2006.

16

•  Stacked autoencoders, sparse-coding models, etc.

Ø  Bengio, Lamblin, Popovici and Larochelle (stacked autoencoders)

Ø  Ranzato, Poultney, Chopra and LeCun (stacked sparse coding

models)

•  Lots of others started stacking models together.

Example
•  Datasets generated with varying number of factors of variations

17 An Empirical Evaluation of Deep Architectures on Problems with Many Factors
of Variation, Larochelle, Erhan, Courville, Bergstra and Bengio, 2007

Impact of Initialization

18

Impact of Pretraining

19

ERHAN, BENGIO, COURVILLE, MANZAGOL, VINCENT AND BENGIO

Figure 9: Effect of layer size on the changes brought by unsupervised pre-training, for networks
with 1, 2 or 3 hidden layers. Experiments on MNIST. Error bars have a height of two
standard deviations (over initialization seed). Pre-training hurts for smaller layer sizes
and shallower networks, but it helps for all depths for larger networks.

the small size of the hidden layers. As the model size decreases from 800 hidden units, the general-
ization error increases, and it increases more with unsupervised pre-training presumably because of
the extra regularization effect: small networks have a limited capacity already so further restricting
it (or introducing an additional bias) can harm generalization. Such a result seems incompatible
with a pure optimization effect. We also obtain the result that DBNs and SDAEs seem to have
qualitatively similar effects as pre-training strategies.

The effect can be explained in terms of the role of unsupervised pre-training as promoting input
transformations (in the hidden layers) that are useful at capturing the main variations in the input
distribution P(X). It may be that only a small subset of these variations are relevant for predicting
the class label Y . When the hidden layers are small it is less likely that the transformations for
predicting Y are included in the lot learned by unsupervised pre-training.

7.4 Experiment 4: Challenging the Optimization Hypothesis

Experiments 1–3 results are consistent with the regularization hypothesis and Experiments 2–3
would appear to directly support the regularization hypothesis over the alternative—that unsuper-
vised pre-training aids in optimizing the deep model objective function.

In the literature there is some support for the optimization hypothesis. Bengio et al. (2007)
constrained the top layer of a deep network to have 20 units and measured the training error of
networks with and without pre-training. The idea was to prevent the networks from overfitting the
training error simply with the top hidden layer, thus to make it clearer whether some optimization

646

Acts as a regularizer: overfits less with large
capacity, underfits with small capacity

Performance on Different Datasets

20

Extracting and Composing Robust Features with Denoising Autoencoders

Table 1. Comparison of stacked denoising autoencoders (SdA-3) with other models.
Test error rate on all considered classification problems is reported together with a 95% confidence interval. Best performer
is in bold, as well as those for which confidence intervals overlap. SdA-3 appears to achieve performance superior or
equivalent to the best other model on all problems except bg-rand. For SdA-3, we also indicate the fraction � of destroyed
input components, as chosen by proper model selection. Note that SAA-3 is equivalent to SdA-3 with � = 0%.

Dataset SVMrbf SVMpoly DBN-1 SAA-3 DBN-3 SdA-3 (�)
basic 3.03±0.15 3.69±0.17 3.94±0.17 3.46±0.16 3.11±0.15 2.80±0.14 (10%)
rot 11.11±0.28 15.42±0.32 14.69±0.31 10.30±0.27 10.30±0.27 10.29±0.27 (10%)
bg-rand 14.58±0.31 16.62±0.33 9.80±0.26 11.28±0.28 6.73±0.22 10.38±0.27 (40%)
bg-img 22.61±0.37 24.01±0.37 16.15±0.32 23.00±0.37 16.31±0.32 16.68±0.33 (25%)
rot-bg-img 55.18±0.44 56.41±0.43 52.21±0.44 51.93±0.44 47.39±0.44 44.49±0.44 (25%)
rect 2.15±0.13 2.15±0.13 4.71±0.19 2.41±0.13 2.60±0.14 1.99±0.12 (10%)
rect-img 24.04±0.37 24.05±0.37 23.69±0.37 24.05±0.37 22.50±0.37 21.59±0.36 (25%)
convex 19.13±0.34 19.82±0.35 19.92±0.35 18.41±0.34 18.63±0.34 19.06±0.34 (10%)

(a) No destroyed inputs (b) 25% destruction (c) 50% destruction

(d) Neuron A (0%, 10%, 20%, 50% destruction) (e) Neuron B (0%, 10%, 20%, 50% destruction)

Figure 3. Filters obtained after training the first denoising autoencoder.
(a-c) show some of the filters obtained after training a denoising autoencoder on MNIST samples, with increasing
destruction levels �. The filters at the same position in the three images are related only by the fact that the autoencoders
were started from the same random initialization point.
(d) and (e) zoom in on the filters obtained for two of the neurons, again for increasing destruction levels.
As can be seen, with no noise, many filters remain similarly uninteresting (undistinctive almost uniform grey patches).
As we increase the noise level, denoising training forces the filters to di�erentiate more, and capture more distinctive
features. Higher noise levels tend to induce less local filters, as expected. One can distinguish di�erent kinds of filters,
from local blob detectors, to stroke detectors, and some full character detectors at the higher noise levels.

Extracting and Composing Robust Features with Denoising Autoencoders,
Vincent, Larochelle, Bengio and Manzagol, 2008.

Deep Autoencoder

Ø  Pre-training initializes the
optimization problem
in a region with better local
optima of the training objective

Ø  Each RBM used to initialize
parameters both in encoder
and decoder (‘‘unrolling’’)

Ø  Better optimization algorithms
can also help: Deep learning
via Hessian-free optimization.
Martens, 2010 21

W

W

W +�

W

W

W

W

W +�

W +�

W +�

W

W +�

W +�

W +�

+�

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine�tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

•  Pre-training can be used to initialize a deep autoencoder

Image	

Low-level	features:	
Edges	

Input:	Pixels	

Built	from	unlabeled	inputs.		

Deep	Belief	Network		

(Hinton et.al. Neural Computation 2006)

Image	

Higher-level	features:	
Combina@on	of	edges	

Low-level	features:	
Edges	

Input:	Pixels	

Built	from	unlabeled	inputs.		

Deep	Belief	Network	

Internal	representa@ons	capture	
higher-order	sta@s@cal	structure	

(Hinton et.al. Neural Computation 2006)

Deep	Belief	Network	

Hidden	
Layers	

Visible	Layer	

RBM	

Sigmoid	
Belief	
Network	

Deep Belief Network

25

•  Deep Belief Networks:

Ø  it is a generative model that mixes
undirected and directed connections
between variables

Ø  top 2 layers’ distribution
is an RBM!

Deep learning

Hugo Larochelle
Département d’informatique

Université de Sherbrooke
hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h

(1)
h

(2)
h

(3)

• p(h(2)
,h

(3))

• p(xi = 1|h(1)) = sigm(b(0) +W

(1)>
h

(1))

• p(h(1)
j = 1|h(2)) = sigm(b(1) +W

(2)>
h

(2))

1

Ø  other layers form a Bayesian network
with conditional distributions:

Deep learning

Hugo Larochelle
Département d’informatique

Université de Sherbrooke
hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h

(1)
h

(2)
h

(3)

• p(h(2)
,h

(3))

• p(xi = 1|h(1)) = sigm(b(0) +W

(1)>
h

(1))

• p(h(1)
j = 1|h(2)) = sigm(b(1) +W

(2)>
h

(2))

1

Deep learning

Hugo Larochelle
Département d’informatique

Université de Sherbrooke
hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h

(1)
h

(2)
h

(3)

• p(h(2)
,h

(3))

• p(xi = 1|h(1)) = sigm(b(0) +W

(1)>
h

(1))

• p(h(1)
j = 1|h(2)) = sigm(b(1) +W

(2)>
h

(2))

1

Ø  This is not a feed-forward neural network

Deep	Belief	Network	

RBM	

Sigmoid		
Belief		
Network	

Deep	Belief	Network	
Ø  top 2 layers’ distribution

is an RBM

Deep learning

Hugo Larochelle
Département d’informatique

Université de Sherbrooke
hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h

(1)
h

(2)
h

(3)

• p(h(2)
,h

(3))

• p(xi = 1|h(1)) = sigm(b(0) +W

(1)>
h

(1))

• p(h(1)
j = 1|h(2)) = sigm(b(1) +W

(2)>
h

(2))

1

Ø  other layers form a Bayesian
network with conditional
distributions:

Deep learning

Hugo Larochelle
Département d’informatique

Université de Sherbrooke
hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h

(1)
h

(2)
h

(3)

• p(h(2)
,h

(3))

• p(xi = 1|h(1)) = sigm(b(0) +W

(1)>
h

(1))

• p(h(1)
j = 1|h(2)) = sigm(b(1) +W

(2)>
h

(2))

1

Deep learning

Hugo Larochelle
Département d’informatique

Université de Sherbrooke
hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h

(1)
h

(2)
h

(3)

• p(h(2)
,h

(3))

• p(xi = 1|h(1)) = sigm(b(0) +W

(1)>
h

(1))

• p(h(1)
j = 1|h(2)) = sigm(b(1) +W

(2)>
h

(2))

1

Deep	Belief	Network	
•  The joint distribution of a DBN is as follows

where

27

Deep learning

Hugo Larochelle
Département d’informatique

Université de Sherbrooke
hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h

(1)
h

(2)
h

(3)

• p(h

(2)
,h

(3)
)

• p(xi = 1|h(1)
) = sigm(b

(0)
+W

(1)>
h

(1)
)

• p(h

(1)
j = 1|h(2)

) = sigm(b

(1)
+W

(2)>
h

(2)
)

• p(x,h

(1)
,h

(2)
,h

(3)
) = p(h

(2)
,h

(3)
) p(h

(1)|h(2)
) p(x|h(1)

)

• p(h

(2)
,h

(3)
) = exp

⇣
h

(2)>
W

(3)
h

(3)
+ b

(2)>
h

(2)
+ b

(3)>
h

(3)
⌘
/Z

• p(h

(1)|h(2)
) =

Q
j p(h

(1)
j |h(2)

)

• p(x|h(1)
) =

Q
i p(xi|h(1)

)

1

Deep learning

Hugo Larochelle
Département d’informatique

Université de Sherbrooke
hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h

(1)
h

(2)
h

(3)

• p(h

(2)
,h

(3)
)

• p(xi = 1|h(1)
) = sigm(b

(0)
+W

(1)>
h

(1)
)

• p(h

(1)
j = 1|h(2)

) = sigm(b

(1)
+W

(2)>
h

(2)
)

• p(x,h

(1)
,h

(2)
,h

(3)
) = p(h

(2)
,h

(3)
) p(h

(1)|h(2)
) p(x|h(1)

)

• p(h

(2)
,h

(3)
) = exp

⇣
h

(2)>
W

(3)
h

(3)
+ b

(2)>
h

(2)
+ b

(3)>
h

(3)
⌘
/Z

• p(h

(1)|h(2)
) =

Q
j p(h

(1)
j |h(2)

)

• p(x|h(1)
) =

Q
i p(xi|h(1)

)

1

Deep learning

Hugo Larochelle
Département d’informatique

Université de Sherbrooke
hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h

(1)
h

(2)
h

(3)

• p(h

(2)
,h

(3)
)

• p(xi = 1|h(1)
) = sigm(b

(0)
+W

(1)>
h

(1)
)

• p(h

(1)
j = 1|h(2)

) = sigm(b

(1)
+W

(2)>
h

(2)
)

• p(x,h

(1)
,h

(2)
,h

(3)
) = p(h

(2)
,h

(3)
) p(h

(1)|h(2)
) p(x|h(1)

)

• p(h

(2)
,h

(3)
) = exp

⇣
h

(2)>
W

(3)
h

(3)
+ b

(2)>
h

(2)
+ b

(3)>
h

(3)
⌘
/Z

• p(h

(1)|h(2)
) =

Q
j p(h

(1)
j |h(2)

)

• p(x|h(1)
) =

Q
i p(xi|h(1)

)

1

Deep learning

Hugo Larochelle
Département d’informatique

Université de Sherbrooke
hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h

(1)
h

(2)
h

(3)

• p(h

(2)
,h

(3)
)

• p(xi = 1|h(1)
) = sigm(b

(0)
+W

(1)>
h

(1)
)

• p(h

(1)
j = 1|h(2)

) = sigm(b

(1)
+W

(2)>
h

(2)
)

• p(x,h

(1)
,h

(2)
,h

(3)
) = p(h

(2)
,h

(3)
) p(h

(1)|h(2)
) p(x|h(1)

)

• p(h

(2)
,h

(3)
) = exp

⇣
h

(2)>
W

(3)
h

(3)
+ b

(2)>
h

(2)
+ b

(3)>
h

(3)
⌘
/Z

• p(h

(1)|h(2)
) =

Q
j p(h

(1)
j |h(2)

)

• p(x|h(1)
) =

Q
i p(xi|h(1)

)

1

•  As in a deep feed-forward network, training a DBN is hard

Layer-wise	Pretraining	
•  This is where the RBM stacking procedure comes from:

28

Ø  idea: improve prior on last layer by

adding another hidden layer

Deep learning

Hugo Larochelle
Département d’informatique

Université de Sherbrooke
hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h

(1)
h

(2)
h

(3)

• p(h

(2)
,h

(3)
)

• p(xi = 1|h(1)
) = sigm(b

(0)
+W

(1)>
h

(1)
)

• p(h

(1)
j = 1|h(2)

) = sigm(b

(1)
+W

(2)>
h

(2)
)

• p(x,h

(1)
,h

(2)
,h

(3)
) = p(h

(2)
,h

(3)
) p(h

(1)|h(2)
) p(x|h(1)

)

• p(h

(2)
,h

(3)
) = exp

⇣
h

(2)>
W

(3)
h

(3)
+ b

(2)>
h

(2)
+ b

(3)>
h

(3)
⌘
/Z

• p(h

(1)|h(2)
) =

Q
j p(h

(1)
j |h(2)

)

• p(x|h(1)
) =

Q
i p(xi|h(1)

)

• p(x) =

P
h(1) p(x,h

(1)
)

• p(x,h

(1)
) = p(x|h(1)

)

P
h(2) p(h

(1)
,h

(2)
)

• p(h

(1)
,h

(2)
) = p(h

(1)|h(2)
)

P
h(3) p(h

(2)
,h

(3)
)

1

Deep learning

Hugo Larochelle
Département d’informatique

Université de Sherbrooke
hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h

(1)
h

(2)
h

(3)

• p(h

(2)
,h

(3)
)

• p(xi = 1|h(1)
) = sigm(b

(0)
+W

(1)>
h

(1)
)

• p(h

(1)
j = 1|h(2)

) = sigm(b

(1)
+W

(2)>
h

(2)
)

• p(x,h

(1)
,h

(2)
,h

(3)
) = p(h

(2)
,h

(3)
) p(h

(1)|h(2)
) p(x|h(1)

)

• p(h

(2)
,h

(3)
) = exp

⇣
h

(2)>
W

(3)
h

(3)
+ b

(2)>
h

(2)
+ b

(3)>
h

(3)
⌘
/Z

• p(h

(1)|h(2)
) =

Q
j p(h

(1)
j |h(2)

)

• p(x|h(1)
) =

Q
i p(xi|h(1)

)

• p(x) =

P
h(1) p(x,h

(1)
)

• p(x,h

(1)
) = p(x|h(1)

)

P
h(2) p(h

(1)
,h

(2)
)

• p(h

(1)
,h

(2)
) = p(h

(1)|h(2)
)

P
h(3) p(h

(2)
,h

(3)
)

1

Deep learning

Hugo Larochelle
Département d’informatique

Université de Sherbrooke
hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h

(1)
h

(2)
h

(3)

• p(h

(2)
,h

(3)
)

• p(xi = 1|h(1)
) = sigm(b

(0)
+W

(1)>
h

(1)
)

• p(h

(1)
j = 1|h(2)

) = sigm(b

(1)
+W

(2)>
h

(2)
)

• p(x,h

(1)
,h

(2)
,h

(3)
) = p(h

(2)
,h

(3)
) p(h

(1)|h(2)
) p(x|h(1)

)

• p(h

(2)
,h

(3)
) = exp

⇣
h

(2)>
W

(3)
h

(3)
+ b

(2)>
h

(2)
+ b

(3)>
h

(3)
⌘
/Z

• p(h

(1)|h(2)
) =

Q
j p(h

(1)
j |h(2)

)

• p(x|h(1)
) =

Q
i p(xi|h(1)

)

• p(x) =

P
h(1) p(x,h

(1)
)

• p(x,h

(1)
) = p(x|h(1)

)

P
h(2) p(h

(1)
,h

(2)
)

• p(h

(1)
,h

(2)
) = p(h

(1)|h(2)
)

P
h(3) p(h

(2)
,h

(3)
)

1

Concavity
•  We will use the fact that the logarithm function is concave:

29

Deep learning

Hugo Larochelle
Département d’informatique

Université de Sherbrooke
hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract
Math for my slides “Deep learning”.

• x h

(1)
h

(2)
h

(3)

• p(h

(2)
,h

(3)
)

• p(xi = 1|h(1)
) = sigm(b

(0)
+W

(1)>
h

(1)
)

• p(h

(1)
j = 1|h(2)

) = sigm(b

(1)
+W

(2)>
h

(2)
)

• p(x,h

(1)
,h

(2)
,h

(3)
) = p(h

(2)
,h

(3)
) p(h

(1)|h(2)
) p(x|h(1)

)

• p(h

(2)
,h

(3)
) = exp

⇣
h

(2)>
W

(3)
h

(3)
+ b

(2)>
h

(2)
+ b

(3)>
h

(3)
⌘
/Z

• p(h

(1)|h(2)
) =

Q
j p(h

(1)
j |h(2)

)

• p(x|h(1)
) =

Q
i p(xi|h(1)

)

• p(x) =

P
h

(1) p(x,h
(1)

)

• p(x,h

(1)
) = p(x|h(1)

)

P
h

(2) p(h
(1)

,h

(2)
)

• p(h

(1)
,h

(2)
) = p(h

(1)|h(2)
)

P
h

(3) p(h
(2)

,h

(3)
)

• log(

P
i !i ai) �

P
i !i log(ai)

P
i !i = 1 !i � 0

• ai ⌘ p(x|h(1))p(h(1))
q(h(1)|x) !i ⌘ q(h

(1)|x)

•

log p(x) = log

X

h

(1)

q(h

(1)|x)p(x|h
(1)

)p(h

(1)
)

q(h

(1)|x)
(1)

�
X

h

(1)

q(h

(1)|x) log
✓
p(x|h(1)

)p(h

(1)
)

q(h

(1)|x)

◆
(2)

=

X

h

(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(3)

�
X

h

(1)

q(h

(1)|x) log q(h(1)|x) (4)

(5)

1

(where and)

Deep learning

Hugo Larochelle
Département d’informatique

Université de Sherbrooke
hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract
Math for my slides “Deep learning”.

• x h

(1)
h

(2)
h

(3)

• p(h

(2)
,h

(3)
)

• p(xi = 1|h(1)
) = sigm(b

(0)
+W

(1)>
h

(1)
)

• p(h

(1)
j = 1|h(2)

) = sigm(b

(1)
+W

(2)>
h

(2)
)

• p(x,h

(1)
,h

(2)
,h

(3)
) = p(h

(2)
,h

(3)
) p(h

(1)|h(2)
) p(x|h(1)

)

• p(h

(2)
,h

(3)
) = exp

⇣
h

(2)>
W

(3)
h

(3)
+ b

(2)>
h

(2)
+ b

(3)>
h

(3)
⌘
/Z

• p(h

(1)|h(2)
) =

Q
j p(h

(1)
j |h(2)

)

• p(x|h(1)
) =

Q
i p(xi|h(1)

)

• p(x) =

P
h

(1) p(x,h
(1)

)

• p(x,h

(1)
) = p(x|h(1)

)

P
h

(2) p(h
(1)

,h

(2)
)

• p(h

(1)
,h

(2)
) = p(h

(1)|h(2)
)

P
h

(3) p(h
(2)

,h

(3)
)

• log(

P
i !i ai) �

P
i !i log(ai)

P
i !i = 1 !i � 0

• ai ⌘ p(x|h(1))p(h(1))
q(h(1)|x) !i ⌘ q(h

(1)|x)

•

log p(x) = log

X

h

(1)

q(h

(1)|x)p(x|h
(1)

)p(h

(1)
)

q(h

(1)|x)
(1)

�
X

h

(1)

q(h

(1)|x) log
✓
p(x|h(1)

)p(h

(1)
)

q(h

(1)|x)

◆
(2)

=

X

h

(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(3)

�
X

h

(1)

q(h

(1)|x) log q(h(1)|x) (4)

(5)

1

Deep learning

Hugo Larochelle
Département d’informatique

Université de Sherbrooke
hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract
Math for my slides “Deep learning”.

• x h

(1)
h

(2)
h

(3)

• p(h

(2)
,h

(3)
)

• p(xi = 1|h(1)
) = sigm(b

(0)
+W

(1)>
h

(1)
)

• p(h

(1)
j = 1|h(2)

) = sigm(b

(1)
+W

(2)>
h

(2)
)

• p(x,h

(1)
,h

(2)
,h

(3)
) = p(h

(2)
,h

(3)
) p(h

(1)|h(2)
) p(x|h(1)

)

• p(h

(2)
,h

(3)
) = exp

⇣
h

(2)>
W

(3)
h

(3)
+ b

(2)>
h

(2)
+ b

(3)>
h

(3)
⌘
/Z

• p(h

(1)|h(2)
) =

Q
j p(h

(1)
j |h(2)

)

• p(x|h(1)
) =

Q
i p(xi|h(1)

)

• p(x) =

P
h

(1) p(x,h
(1)

)

• p(x,h

(1)
) = p(x|h(1)

)

P
h

(2) p(h
(1)

,h

(2)
)

• p(h

(1)
,h

(2)
) = p(h

(1)|h(2)
)

P
h

(3) p(h
(2)

,h

(3)
)

• log(

P
i !i ai) �

P
i !i log(ai)

P
i !i = 1 !i � 0

• ai ⌘ p(x|h(1))p(h(1))
q(h(1)|x) !i ⌘ q(h

(1)|x)

•

log p(x) = log

X

h

(1)

q(h

(1)|x)p(x|h
(1)

)p(h

(1)
)

q(h

(1)|x)
(1)

�
X

h

(1)

q(h

(1)|x) log
✓
p(x|h(1)

)p(h

(1)
)

q(h

(1)|x)

◆
(2)

=

X

h

(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(3)

�
X

h

(1)

q(h

(1)|x) log q(h(1)|x) (4)

(5)

1

Variational Bound
•  For any model with latent variables we can write:

30

•

log p(x) = log

X

h

(1)

q(h

(1)|x)p(x|h
(1)

)p(h

(1)
)

q(h

(1)|x)

!

(1)

�
X

h

(1)

q(h

(1)|x) log
✓

p(x|h(1)
)p(h

(1)
)

q(h

(1)|x)

◆

(2)

=

X

h

(1)

q(h

(1)|x)
⇣

log p(x|h(1)
) + log p(h

(1)
)

⌘

(3)

�
X

h

(1)

q(h

(1)|x) log q(h(1)|x) (4)

(5)

•

log p(x) = log

X

h

(1)

q(h

(1)|x)p(x,h
(1)

)

q(h

(1)|x)

!

(6)

�
X

h

(1)

q(h

(1)|x) log
✓

p(x,h

(1)
)

q(h

(1)|x)

◆

(7)

=

X

h

(1)

q(h

(1)|x) log p(x,h(1)
) (8)

�
X

h

(1)

q(h

(1)|x) log q(h(1)|x) (9)

(10)

• h

(1)
q(h

(1)|x) p(h

(1)|x)

•

log p(x) �
X

h

(1)

q(h

(1)|x)
⇣

log p(x|h(1)
) + log p(h

(1)
)

⌘

(11)

�
X

h

(1)

q(h

(1)|x) log q(h(1)|x) (12)

(13)

•

log p(x) �
X

h

(1)

q(h

(1)|x) log p(x,h(1)
) (14)

�
X

h

(1)

q(h

(1)|x) log q(h(1)|x) (15)

(16)

• KL(q||p) =
P

h

(1) q(h
(1)|x) log

⇣

q(h(1)|x)
p(h(1)|x)

⌘

• p(x|h(1)
) p(h

(1)
) h

(1)
h

(2)
p(h

(1)
) =

P

h

(2) p(h
(1)

,h

(2)
)

2

•

log p(x) = log

X

h(1)

q(h

(1)|x)p(x|h
(1)

)p(h

(1)
)

q(h

(1)|x)
(1)

�
X

h(1)

q(h

(1)|x) log
✓
p(x|h(1)

)p(h

(1)
)

q(h

(1)|x)

◆
(2)

=

X

h(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(3)

�
X

h(1)

q(h

(1)|x) log q(h(1)|x) (4)

(5)

• h

(1)
q(h

(1)|x) p(h

(1)|x)

2

•

log p(x) = log

X

h

(1)

q(h

(1)|x)p(x|h
(1)

)p(h

(1)
)

q(h

(1)|x)

!

(1)

�
X

h

(1)

q(h

(1)|x) log
✓

p(x|h(1)
)p(h

(1)
)

q(h

(1)|x)

◆

(2)

=

X

h

(1)

q(h

(1)|x)
⇣

log p(x|h(1)
) + log p(h

(1)
)

⌘

(3)

�
X

h

(1)

q(h

(1)|x) log q(h(1)|x) (4)

(5)

•

log p(x) = log

X

h

(1)

q(h

(1)|x)p(x,h
(1)

)

q(h

(1)|x)

!

(6)

�
X

h

(1)

q(h

(1)|x) log
✓

p(x,h

(1)
)

q(h

(1)|x)

◆

(7)

=

X

h

(1)

q(h

(1)|x) log p(x,h(1)
) (8)

�
X

h

(1)

q(h

(1)|x) log q(h(1)|x) (9)

(10)

• h

(1)
q(h

(1)|x) p(h

(1)|x)

•

log p(x) �
X

h

(1)

q(h

(1)|x)
⇣

log p(x|h(1)
) + log p(h

(1)
)

⌘

(11)

�
X

h

(1)

q(h

(1)|x) log q(h(1)|x) (12)

(13)

•

log p(x) �
X

h

(1)

q(h

(1)|x) log p(x,h(1)
) (14)

�
X

h

(1)

q(h

(1)|x) log q(h(1)|x) (15)

(16)

• KL(q||p) =
P

h

(1) q(h
(1)|x) log

⇣

q(h(1)|x)
p(h(1)|x)

⌘

• p(x|h(1)
) p(h

(1)
) h

(1)
h

(2)
p(h

(1)
) =

P

h

(2) p(h
(1)

,h

(2)
)

2

where is any approximation to

•

log p(x) = log

X

h(1)

q(h

(1)|x)p(x|h
(1)

)p(h

(1)
)

q(h

(1)|x)
(1)

�
X

h(1)

q(h

(1)|x) log
✓
p(x|h(1)

)p(h

(1)
)

q(h

(1)|x)

◆
(2)

=

X

h(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(3)

�
X

h(1)

q(h

(1)|x) log q(h(1)|x) (4)

(5)

• h

(1)
q(h

(1)|x) p(h

(1)|x)

2

•

log p(x) = log

X

h(1)

q(h

(1)|x)p(x|h
(1)

)p(h

(1)
)

q(h

(1)|x)
(1)

�
X

h(1)

q(h

(1)|x) log
✓
p(x|h(1)

)p(h

(1)
)

q(h

(1)|x)

◆
(2)

=

X

h(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(3)

�
X

h(1)

q(h

(1)|x) log q(h(1)|x) (4)

(5)

• h

(1)
q(h

(1)|x) p(h

(1)|x)

2

Variational Bound
•  This is called a variational bound

31

•

log p(x) = log

X

h

(1)

q(h

(1)|x)p(x|h
(1)

)p(h

(1)
)

q(h

(1)|x)

!

(1)

�
X

h

(1)

q(h

(1)|x) log
✓

p(x|h(1)
)p(h

(1)
)

q(h

(1)|x)

◆

(2)

=

X

h

(1)

q(h

(1)|x)
⇣

log p(x|h(1)
) + log p(h

(1)
)

⌘

(3)

�
X

h

(1)

q(h

(1)|x) log q(h(1)|x) (4)

(5)

•

log p(x) = log

X

h

(1)

q(h

(1)|x)p(x,h
(1)

)

q(h

(1)|x)

!

(6)

�
X

h

(1)

q(h

(1)|x) log
✓

p(x,h

(1)
)

q(h

(1)|x)

◆

(7)

=

X

h

(1)

q(h

(1)|x) log p(x,h(1)
) (8)

�
X

h

(1)

q(h

(1)|x) log q(h(1)|x) (9)

(10)

• h

(1)
q(h

(1)|x) p(h

(1)|x)

•

log p(x) �
X

h

(1)

q(h

(1)|x)
⇣

log p(x|h(1)
) + log p(h

(1)
)

⌘

(11)

�
X

h

(1)

q(h

(1)|x) log q(h(1)|x) (12)

(13)

•

log p(x) �
X

h

(1)

q(h

(1)|x) log p(x,h(1)
) (14)

�
X

h

(1)

q(h

(1)|x) log q(h(1)|x) (15)

(16)

• KL(q||p) =
P

h

(1) q(h
(1)|x) log

⇣

q(h(1)|x)
p(h(1)|x)

⌘

• p(x|h(1)
) p(h

(1)
) h

(1)
h

(2)
p(h

(1)
) =

P

h

(2) p(h
(1)

,h

(2)
)

2

Ø  if is equal to the true conditional , then we

have an equality – the bound is tight!

Ø  the more is different from the less tight the

bound is.

•

log p(x) = log

X

h(1)

q(h

(1)|x)p(x|h
(1)

)p(h

(1)
)

q(h

(1)|x)

!
(1)

�
X

h(1)

q(h

(1)|x) log
✓
p(x|h(1)

)p(h

(1)
)

q(h

(1)|x)

◆
(2)

=

X

h(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(3)

�
X

h(1)

q(h

(1)|x) log q(h(1)|x) (4)

(5)

• h

(1)
q(h

(1)|x) p(h

(1)|x)

•

log p(x) �
X

h(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(6)

�
X

h(1)

q(h

(1)|x) log q(h(1)|x) (7)

(8)

2

•

log p(x) = log

X

h(1)

q(h

(1)|x)p(x|h
(1)

)p(h

(1)
)

q(h

(1)|x)

!
(1)

�
X

h(1)

q(h

(1)|x) log
✓
p(x|h(1)

)p(h

(1)
)

q(h

(1)|x)

◆
(2)

=

X

h(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(3)

�
X

h(1)

q(h

(1)|x) log q(h(1)|x) (4)

(5)

• h

(1)
q(h

(1)|x) p(h

(1)|x)

•

log p(x) �
X

h(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(6)

�
X

h(1)

q(h

(1)|x) log q(h(1)|x) (7)

(8)

2

•

log p(x) = log

X

h(1)

q(h

(1)|x)p(x|h
(1)

)p(h

(1)
)

q(h

(1)|x)

!
(1)

�
X

h(1)

q(h

(1)|x) log
✓
p(x|h(1)

)p(h

(1)
)

q(h

(1)|x)

◆
(2)

=

X

h(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(3)

�
X

h(1)

q(h

(1)|x) log q(h(1)|x) (4)

(5)

• h

(1)
q(h

(1)|x) p(h

(1)|x)

•

log p(x) �
X

h(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(6)

�
X

h(1)

q(h

(1)|x) log q(h(1)|x) (7)

(8)

2

•

log p(x) = log

X

h(1)

q(h

(1)|x)p(x|h
(1)

)p(h

(1)
)

q(h

(1)|x)

!
(1)

�
X

h(1)

q(h

(1)|x) log
✓
p(x|h(1)

)p(h

(1)
)

q(h

(1)|x)

◆
(2)

=

X

h(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(3)

�
X

h(1)

q(h

(1)|x) log q(h(1)|x) (4)

(5)

• h

(1)
q(h

(1)|x) p(h

(1)|x)

•

log p(x) �
X

h(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(6)

�
X

h(1)

q(h

(1)|x) log q(h(1)|x) (7)

(8)

2

Variational Bound
•  This is called a variational bound

Ø  In fact, difference between the left and right terms is the KL

divergence between and :

32

•

log p(x) = log

X

h

(1)

q(h

(1)|x)p(x|h
(1)

)p(h

(1)
)

q(h

(1)|x)

!

(1)

�
X

h

(1)

q(h

(1)|x) log
✓

p(x|h(1)
)p(h

(1)
)

q(h

(1)|x)

◆

(2)

=

X

h

(1)

q(h

(1)|x)
⇣

log p(x|h(1)
) + log p(h

(1)
)

⌘

(3)

�
X

h

(1)

q(h

(1)|x) log q(h(1)|x) (4)

(5)

•

log p(x) = log

X

h

(1)

q(h

(1)|x)p(x,h
(1)

)

q(h

(1)|x)

!

(6)

�
X

h

(1)

q(h

(1)|x) log
✓

p(x,h

(1)
)

q(h

(1)|x)

◆

(7)

=

X

h

(1)

q(h

(1)|x) log p(x,h(1)
) (8)

�
X

h

(1)

q(h

(1)|x) log q(h(1)|x) (9)

(10)

• h

(1)
q(h

(1)|x) p(h

(1)|x)

•

log p(x) �
X

h

(1)

q(h

(1)|x)
⇣

log p(x|h(1)
) + log p(h

(1)
)

⌘

(11)

�
X

h

(1)

q(h

(1)|x) log q(h(1)|x) (12)

(13)

•

log p(x) �
X

h

(1)

q(h

(1)|x) log p(x,h(1)
) (14)

�
X

h

(1)

q(h

(1)|x) log q(h(1)|x) (15)

(16)

• KL(q||p) =
P

h

(1) q(h
(1)|x) log

⇣

q(h(1)|x)
p(h(1)|x)

⌘

• p(x|h(1)
) p(h

(1)
) h

(1)
h

(2)
p(h

(1)
) =

P

h

(2) p(h
(1)

,h

(2)
)

2

•

log p(x) = log

X

h(1)

q(h

(1)|x)p(x|h
(1)

)p(h

(1)
)

q(h

(1)|x)

!
(1)

�
X

h(1)

q(h

(1)|x) log
✓
p(x|h(1)

)p(h

(1)
)

q(h

(1)|x)

◆
(2)

=

X

h(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(3)

�
X

h(1)

q(h

(1)|x) log q(h(1)|x) (4)

(5)

• h

(1)
q(h

(1)|x) p(h

(1)|x)

•

log p(x) �
X

h(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(6)

�
X

h(1)

q(h

(1)|x) log q(h(1)|x) (7)

(8)

2

•

log p(x) = log

X

h(1)

q(h

(1)|x)p(x|h
(1)

)p(h

(1)
)

q(h

(1)|x)

!
(1)

�
X

h(1)

q(h

(1)|x) log
✓
p(x|h(1)

)p(h

(1)
)

q(h

(1)|x)

◆
(2)

=

X

h(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(3)

�
X

h(1)

q(h

(1)|x) log q(h(1)|x) (4)

(5)

• h

(1)
q(h

(1)|x) p(h

(1)|x)

•

log p(x) �
X

h(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(6)

�
X

h(1)

q(h

(1)|x) log q(h(1)|x) (7)

(8)

2

•

log p(x) = log

X

h

(1)

q(h

(1)|x)p(x|h
(1)

)p(h

(1)
)

q(h

(1)|x)

!
(1)

�
X

h

(1)

q(h

(1)|x) log
✓
p(x|h(1)

)p(h

(1)
)

q(h

(1)|x)

◆
(2)

=

X

h

(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(3)

�
X

h

(1)

q(h

(1)|x) log q(h(1)|x) (4)

(5)

• h

(1)
q(h

(1)|x) p(h

(1)|x)

•

log p(x) �
X

h

(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(6)

�
X

h

(1)

q(h

(1)|x) log q(h(1)|x) (7)

(8)

• KL(q||p) =
P

h

(1) q(h
(1)|x) log

⇣
q(h(1)|x)
p(h(1)|x)

⌘

2

Variational Bound
•  This is called a variational bound

33

•

log p(x) = log

X

h(1)

q(h

(1)|x)p(x|h
(1)

)p(h

(1)
)

q(h

(1)|x)

!
(1)

�
X

h(1)

q(h

(1)|x) log
✓
p(x|h(1)

)p(h

(1)
)

q(h

(1)|x)

◆
(2)

=

X

h(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(3)

�
X

h(1)

q(h

(1)|x) log q(h(1)|x) (4)

(5)

• h

(1)
q(h

(1)|x) p(h

(1)|x)

•

log p(x) �
X

h(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(6)

�
X

h(1)

q(h

(1)|x) log q(h(1)|x) (7)

(8)

2

Ø  for a single hidden layer DBN (i.e. an RBM), both the likelihood

 and the prior depend on the parameters of

the first layer.

•

log p(x) = log

X

h

(1)

q(h

(1)|x)p(x|h
(1)

)p(h

(1)
)

q(h

(1)|x)

!
(1)

�
X

h

(1)

q(h

(1)|x) log
✓
p(x|h(1)

)p(h

(1)
)

q(h

(1)|x)

◆
(2)

=

X

h

(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(3)

�
X

h

(1)

q(h

(1)|x) log q(h(1)|x) (4)

(5)

• h

(1)
q(h

(1)|x) p(h

(1)|x)

•

log p(x) �
X

h

(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(6)

�
X

h

(1)

q(h

(1)|x) log q(h(1)|x) (7)

(8)

• KL(q||p) =
P

h

(1) q(h
(1)|x) log

⇣
q(h(1)|x)
p(h(1)|x)

⌘

• p(x|h(1)
) p(h

(1)
) h

(1)
h

(2)
p(h

(1)
) =

P
h

(2) p(h
(1)

,h

(2)
)

2

•

log p(x) = log

X

h

(1)

q(h

(1)|x)p(x|h
(1)

)p(h

(1)
)

q(h

(1)|x)

!
(1)

�
X

h

(1)

q(h

(1)|x) log
✓
p(x|h(1)

)p(h

(1)
)

q(h

(1)|x)

◆
(2)

=

X

h

(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(3)

�
X

h

(1)

q(h

(1)|x) log q(h(1)|x) (4)

(5)

• h

(1)
q(h

(1)|x) p(h

(1)|x)

•

log p(x) �
X

h

(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(6)

�
X

h

(1)

q(h

(1)|x) log q(h(1)|x) (7)

(8)

• KL(q||p) =
P

h

(1) q(h
(1)|x) log

⇣
q(h(1)|x)
p(h(1)|x)

⌘

• p(x|h(1)
) p(h

(1)
) h

(1)
h

(2)
p(h

(1)
) =

P
h

(2) p(h
(1)

,h

(2)
)

2

Ø  we can now improve the model by building a better prior

•

log p(x) = log

X

h

(1)

q(h

(1)|x)p(x|h
(1)

)p(h

(1)
)

q(h

(1)|x)

!
(1)

�
X

h

(1)

q(h

(1)|x) log
✓
p(x|h(1)

)p(h

(1)
)

q(h

(1)|x)

◆
(2)

=

X

h

(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(3)

�
X

h

(1)

q(h

(1)|x) log q(h(1)|x) (4)

(5)

• h

(1)
q(h

(1)|x) p(h

(1)|x)

•

log p(x) �
X

h

(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(6)

�
X

h

(1)

q(h

(1)|x) log q(h(1)|x) (7)

(8)

• KL(q||p) =
P

h

(1) q(h
(1)|x) log

⇣
q(h(1)|x)
p(h(1)|x)

⌘

• p(x|h(1)
) p(h

(1)
) h

(1)
h

(2)
p(h

(1)
) =

P
h

(2) p(h
(1)

,h

(2)
)

2

Variational Bound
•  This is called a variational bound

34

•

log p(x) = log

X

h(1)

q(h

(1)|x)p(x|h
(1)

)p(h

(1)
)

q(h

(1)|x)

!
(1)

�
X

h(1)

q(h

(1)|x) log
✓
p(x|h(1)

)p(h

(1)
)

q(h

(1)|x)

◆
(2)

=

X

h(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(3)

�
X

h(1)

q(h

(1)|x) log q(h(1)|x) (4)

(5)

• h

(1)
q(h

(1)|x) p(h

(1)|x)

•

log p(x) �
X

h(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(6)

�
X

h(1)

q(h

(1)|x) log q(h(1)|x) (7)

(8)

2

•  When adding a second layer, we model using a separate
set of parameters

•

log p(x) = log

X

h

(1)

q(h

(1)|x)p(x|h
(1)

)p(h

(1)
)

q(h

(1)|x)

!
(1)

�
X

h

(1)

q(h

(1)|x) log
✓
p(x|h(1)

)p(h

(1)
)

q(h

(1)|x)

◆
(2)

=

X

h

(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(3)

�
X

h

(1)

q(h

(1)|x) log q(h(1)|x) (4)

(5)

• h

(1)
q(h

(1)|x) p(h

(1)|x)

•

log p(x) �
X

h

(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(6)

�
X

h

(1)

q(h

(1)|x) log q(h(1)|x) (7)

(8)

• KL(q||p) =
P

h

(1) q(h
(1)|x) log

⇣
q(h(1)|x)
p(h(1)|x)

⌘

• p(x|h(1)
) p(h

(1)
) h

(1)
h

(2)
p(h

(1)
) =

P
h

(2) p(h
(1)

,h

(2)
)

2

Ø  they are the parameters of the RBM involving and

Ø  is now the marginalization of the second hidden layer

•

log p(x) = log

X

h

(1)

q(h

(1)|x)p(x|h
(1)

)p(h

(1)
)

q(h

(1)|x)

!
(1)

�
X

h

(1)

q(h

(1)|x) log
✓
p(x|h(1)

)p(h

(1)
)

q(h

(1)|x)

◆
(2)

=

X

h

(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(3)

�
X

h

(1)

q(h

(1)|x) log q(h(1)|x) (4)

(5)

• h

(1)
q(h

(1)|x) p(h

(1)|x)

•

log p(x) �
X

h

(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(6)

�
X

h

(1)

q(h

(1)|x) log q(h(1)|x) (7)

(8)

• KL(q||p) =
P

h

(1) q(h
(1)|x) log

⇣
q(h(1)|x)
p(h(1)|x)

⌘

• p(x|h(1)
) p(h

(1)
) h

(1)
h

(2)
p(h

(1)
) =

P
h

(2) p(h
(1)

,h

(2)
)

2

•

log p(x) = log

X

h

(1)

q(h

(1)|x)p(x|h
(1)

)p(h

(1)
)

q(h

(1)|x)

!
(1)

�
X

h

(1)

q(h

(1)|x) log
✓
p(x|h(1)

)p(h

(1)
)

q(h

(1)|x)

◆
(2)

=

X

h

(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(3)

�
X

h

(1)

q(h

(1)|x) log q(h(1)|x) (4)

(5)

• h

(1)
q(h

(1)|x) p(h

(1)|x)

•

log p(x) �
X

h

(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(6)

�
X

h

(1)

q(h

(1)|x) log q(h(1)|x) (7)

(8)

• KL(q||p) =
P

h

(1) q(h
(1)|x) log

⇣
q(h(1)|x)
p(h(1)|x)

⌘

• p(x|h(1)
) p(h

(1)
) h

(1)
h

(2)
p(h

(1)
) =

P
h

(2) p(h
(1)

,h

(2)
)

2

•

log p(x) = log

X

h

(1)

q(h

(1)|x)p(x|h
(1)

)p(h

(1)
)

q(h

(1)|x)

!
(1)

�
X

h

(1)

q(h

(1)|x) log
✓
p(x|h(1)

)p(h

(1)
)

q(h

(1)|x)

◆
(2)

=

X

h

(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(3)

�
X

h

(1)

q(h

(1)|x) log q(h(1)|x) (4)

(5)

• h

(1)
q(h

(1)|x) p(h

(1)|x)

•

log p(x) �
X

h

(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(6)

�
X

h

(1)

q(h

(1)|x) log q(h(1)|x) (7)

(8)

• KL(q||p) =
P

h

(1) q(h
(1)|x) log

⇣
q(h(1)|x)
p(h(1)|x)

⌘

• p(x|h(1)
) p(h

(1)
) h

(1)
h

(2)
p(h

(1)
) =

P
h

(2) p(h
(1)

,h

(2)
)

2

•

log p(x) = log

X

h

(1)

q(h

(1)|x)p(x|h
(1)

)p(h

(1)
)

q(h

(1)|x)

!
(1)

�
X

h

(1)

q(h

(1)|x) log
✓
p(x|h(1)

)p(h

(1)
)

q(h

(1)|x)

◆
(2)

=

X

h

(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(3)

�
X

h

(1)

q(h

(1)|x) log q(h(1)|x) (4)

(5)

• h

(1)
q(h

(1)|x) p(h

(1)|x)

•

log p(x) �
X

h

(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(6)

�
X

h

(1)

q(h

(1)|x) log q(h(1)|x) (7)

(8)

• KL(q||p) =
P

h

(1) q(h
(1)|x) log

⇣
q(h(1)|x)
p(h(1)|x)

⌘

• p(x|h(1)
) p(h

(1)
) h

(1)
h

(2)
p(h

(1)
) =

P
h

(2) p(h
(1)

,h

(2)
)

2

adding	2nd	layer	means	
untying	the	parameters	

Variational Bound
•  This is called a variational bound

35

•

log p(x) = log

X

h(1)

q(h

(1)|x)p(x|h
(1)

)p(h

(1)
)

q(h

(1)|x)

!
(1)

�
X

h(1)

q(h

(1)|x) log
✓
p(x|h(1)

)p(h

(1)
)

q(h

(1)|x)

◆
(2)

=

X

h(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(3)

�
X

h(1)

q(h

(1)|x) log q(h(1)|x) (4)

(5)

• h

(1)
q(h

(1)|x) p(h

(1)|x)

•

log p(x) �
X

h(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(6)

�
X

h(1)

q(h

(1)|x) log q(h(1)|x) (7)

(8)

2

adding	2nd	layer	means	
untying	the	parameters	

Ø  we can train the parameters of the new second layer by maximizing
the bound. This is equivalent to minimizing the following, since the
other terms are constant:

•

log p(x) = log

X

h

(1)

q(h

(1)|x)p(x|h
(1)

)p(h

(1)
)

q(h

(1)|x)

!
(1)

�
X

h

(1)

q(h

(1)|x) log
✓
p(x|h(1)

)p(h

(1)
)

q(h

(1)|x)

◆
(2)

=

X

h

(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(3)

�
X

h

(1)

q(h

(1)|x) log q(h(1)|x) (4)

(5)

• h

(1)
q(h

(1)|x) p(h

(1)|x)

•

log p(x) �
X

h

(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(6)

�
X

h

(1)

q(h

(1)|x) log q(h(1)|x) (7)

(8)

• KL(q||p) =
P

h

(1) q(h
(1)|x) log

⇣
q(h(1)|x)
p(h(1)|x)

⌘

• p(x|h(1)
) p(h

(1)
) h

(1)
h

(2)
p(h

(1)
) =

P
h

(2) p(h
(1)

,h

(2)
)

•

�
X

h

(1)

q(h

(1)|x) log p(h(1)
) (9)

2

Ø  this is like training an RBM on data generated from !

•

log p(x) = log

X

h(1)

q(h

(1)|x)p(x|h
(1)

)p(h

(1)
)

q(h

(1)|x)

!
(1)

�
X

h(1)

q(h

(1)|x) log
✓
p(x|h(1)

)p(h

(1)
)

q(h

(1)|x)

◆
(2)

=

X

h(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(3)

�
X

h(1)

q(h

(1)|x) log q(h(1)|x) (4)

(5)

• h

(1)
q(h

(1)|x) p(h

(1)|x)

•

log p(x) �
X

h(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(6)

�
X

h(1)

q(h

(1)|x) log q(h(1)|x) (7)

(8)

2

Layerwise	pretraining		
improves		varia@onal		
lower	bound	

Variational Bound
•  This is called a variational bound

36

•

log p(x) = log

X

h(1)

q(h

(1)|x)p(x|h
(1)

)p(h

(1)
)

q(h

(1)|x)

!
(1)

�
X

h(1)

q(h

(1)|x) log
✓
p(x|h(1)

)p(h

(1)
)

q(h

(1)|x)

◆
(2)

=

X

h(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(3)

�
X

h(1)

q(h

(1)|x) log q(h(1)|x) (4)

(5)

• h

(1)
q(h

(1)|x) p(h

(1)|x)

•

log p(x) �
X

h(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(6)

�
X

h(1)

q(h

(1)|x) log q(h(1)|x) (7)

(8)

2

adding	2nd	layer	means	
untying	the	parameters	

Ø  for we use the posterior of the first layer RBM. This is

equivalent to a feed-forward (sigmoidal) layer, followed by sampling

•

log p(x) = log

X

h(1)

q(h

(1)|x)p(x|h
(1)

)p(h

(1)
)

q(h

(1)|x)

!
(1)

�
X

h(1)

q(h

(1)|x) log
✓
p(x|h(1)

)p(h

(1)
)

q(h

(1)|x)

◆
(2)

=

X

h(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(3)

�
X

h(1)

q(h

(1)|x) log q(h(1)|x) (4)

(5)

• h

(1)
q(h

(1)|x) p(h

(1)|x)

•

log p(x) �
X

h(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(6)

�
X

h(1)

q(h

(1)|x) log q(h(1)|x) (7)

(8)

2

Ø  by initializing the weights of the second layer RBM as the transpose

of the first layer weights, the bound is initially tight!

Ø  a 2-layer DBN with tied weights is equivalent to a 1-layer RBM

Layer-wise	Pretraining	
•  This is where the RBM stacking procedure comes from:

37

Ø  idea: improve prior on last layer by

adding another hidden layer

Deep learning

Hugo Larochelle
Département d’informatique

Université de Sherbrooke
hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h

(1)
h

(2)
h

(3)

• p(h

(2)
,h

(3)
)

• p(xi = 1|h(1)
) = sigm(b

(0)
+W

(1)>
h

(1)
)

• p(h

(1)
j = 1|h(2)

) = sigm(b

(1)
+W

(2)>
h

(2)
)

• p(x,h

(1)
,h

(2)
,h

(3)
) = p(h

(2)
,h

(3)
) p(h

(1)|h(2)
) p(x|h(1)

)

• p(h

(2)
,h

(3)
) = exp

⇣
h

(2)>
W

(3)
h

(3)
+ b

(2)>
h

(2)
+ b

(3)>
h

(3)
⌘
/Z

• p(h

(1)|h(2)
) =

Q
j p(h

(1)
j |h(2)

)

• p(x|h(1)
) =

Q
i p(xi|h(1)

)

• p(x) =

P
h(1) p(x,h

(1)
)

• p(x,h

(1)
) = p(x|h(1)

)

P
h(2) p(h

(1)
,h

(2)
)

• p(h

(1)
,h

(2)
) = p(h

(1)|h(2)
)

P
h(3) p(h

(2)
,h

(3)
)

1

Deep learning

Hugo Larochelle
Département d’informatique

Université de Sherbrooke
hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h

(1)
h

(2)
h

(3)

• p(h

(2)
,h

(3)
)

• p(xi = 1|h(1)
) = sigm(b

(0)
+W

(1)>
h

(1)
)

• p(h

(1)
j = 1|h(2)

) = sigm(b

(1)
+W

(2)>
h

(2)
)

• p(x,h

(1)
,h

(2)
,h

(3)
) = p(h

(2)
,h

(3)
) p(h

(1)|h(2)
) p(x|h(1)

)

• p(h

(2)
,h

(3)
) = exp

⇣
h

(2)>
W

(3)
h

(3)
+ b

(2)>
h

(2)
+ b

(3)>
h

(3)
⌘
/Z

• p(h

(1)|h(2)
) =

Q
j p(h

(1)
j |h(2)

)

• p(x|h(1)
) =

Q
i p(xi|h(1)

)

• p(x) =

P
h(1) p(x,h

(1)
)

• p(x,h

(1)
) = p(x|h(1)

)

P
h(2) p(h

(1)
,h

(2)
)

• p(h

(1)
,h

(2)
) = p(h

(1)|h(2)
)

P
h(3) p(h

(2)
,h

(3)
)

1

Deep learning

Hugo Larochelle
Département d’informatique

Université de Sherbrooke
hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h

(1)
h

(2)
h

(3)

• p(h

(2)
,h

(3)
)

• p(xi = 1|h(1)
) = sigm(b

(0)
+W

(1)>
h

(1)
)

• p(h

(1)
j = 1|h(2)

) = sigm(b

(1)
+W

(2)>
h

(2)
)

• p(x,h

(1)
,h

(2)
,h

(3)
) = p(h

(2)
,h

(3)
) p(h

(1)|h(2)
) p(x|h(1)

)

• p(h

(2)
,h

(3)
) = exp

⇣
h

(2)>
W

(3)
h

(3)
+ b

(2)>
h

(2)
+ b

(3)>
h

(3)
⌘
/Z

• p(h

(1)|h(2)
) =

Q
j p(h

(1)
j |h(2)

)

• p(x|h(1)
) =

Q
i p(xi|h(1)

)

• p(x) =

P
h(1) p(x,h

(1)
)

• p(x,h

(1)
) = p(x|h(1)

)

P
h(2) p(h

(1)
,h

(2)
)

• p(h

(1)
,h

(2)
) = p(h

(1)|h(2)
)

P
h(3) p(h

(2)
,h

(3)
)

1

Deep	Belief	Network	
Genera@ve	
Process	

Approximate	
Inference	

v

h2

h1

h3

W1

W3

W2

DBN	Layer-wise	Training	
•  Learn	an	RBM	with	an	input	
layer	v=x	and	a	hidden	layer	h.	

h

v

W1

DBN	Layer-wise	Training	

h1

h2

v

W1

W1⊤

•  Learn	an	RBM	with	an	input	
layer	v=x	and	a	hidden	layer	h.	

•  Treat	inferred	values																																
	 	 	 	 			as	the	data	

for	training	2nd-layer	RBM.	

•  Learn	and	freeze	2nd	layer	
RBM.	

DBN	Layer-wise	Training	

v

h2

h1

h3

W1

W3

W2

•  Proceed	to	the	next	layer.	

•  Learn	an	RBM	with	an	input	
layer	v=x	and	a	hidden	layer	h.	

•  Learn	and	freeze	2nd	layer	
RBM.	

•  Treat	inferred	values																																
	 	 	 	 			as	the	data	

for	training	2nd-layer	RBM.	

Unsupervised	Feature	Learning.	

DBN	Layer-wise	Training	

v

h2

h1

h3

W1

W3

W2

•  Proceed	to	the	next	layer.	

•  Learn	an	RBM	with	an	input	
layer	v=x	and	a	hidden	layer	h.	

•  Learn	and	freeze	2nd	layer	
RBM.	

•  Treat	inferred	values																																
	 	 	 	 			as	the	data	

for	training	2nd-layer	RBM.	

Unsupervised	Feature	Learning.	

Layerwise	pretraining		
improves		varia@onal		
lower	bound	

Deep Belief Networks
•  This process of adding layers can be repeated recursively

Ø  we obtain the greedy layer-wise pre-training procedure for neural

networks

43

•  We now see that this procedure corresponds to maximizing a
bound on the likelihood of the data in a DBN

Ø  in theory, if our approximation is very far from the true

posterior, the bound might be very loose

Ø  this only means we might not be improving the true likelihood

Ø  we might still be extracting better features!

•

log p(x) = log

X

h(1)

q(h

(1)|x)p(x|h
(1)

)p(h

(1)
)

q(h

(1)|x)

!
(1)

�
X

h(1)

q(h

(1)|x) log
✓
p(x|h(1)

)p(h

(1)
)

q(h

(1)|x)

◆
(2)

=

X

h(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(3)

�
X

h(1)

q(h

(1)|x) log q(h(1)|x) (4)

(5)

• h

(1)
q(h

(1)|x) p(h

(1)|x)

•

log p(x) �
X

h(1)

q(h

(1)|x)
⇣
log p(x|h(1)

) + log p(h

(1)
)

⌘
(6)

�
X

h(1)

q(h

(1)|x) log q(h(1)|x) (7)

(8)

2

•  Fine-tuning is done by the Up-Down algorithm
Ø  A fast learning algorithm for deep belief nets. Hinton, Teh,

Osindero, 2006.

Supervised	Learning	with	DBNs	
•  If	we	have	access	to	label	informa@on,	we	can	train	the	joint	
genera@ve	model	by	maximizing	the	joint	log-likelihood	of	data	
and	labels	

v

h2

h1

h3

W1

W3

W2label	y	

•  Discrimina@ve	fine-tuning:	

•  Use	DBN	to	ini@alize	a	
mul@layer	neural	network.	

•  Maximize	the	condi@onal	
distribu@on:	

...
h2 ∼ P(h2,h3)

h1 ∼ P(h1|h2)

v ∼ P(v|h1)

h3 ∼ Q(h3|h2)

h2 ∼ Q(h2|h1)

h1 ∼ Q(h1|v)

v

h3 ∼ Q̃(h3|v)

h2 ∼ Q̃(h2|v)

h1 ∼ Q̃(h1|v)

v

Sampling	from	DBNs	
•  To	sample	from	the	DBN	model:	

•  Sample	h2	using	alterna@ng	Gibbs	sampling	from	RBM.	
•  Sample	lower	layers	using	sigmoid	belief	network.	

v

h2

h1

h3

W1

W3

W2

Gibbs	chain	

Learned	Features	

Learning	Part-based	Representa@on	
Convolu@onal	DBN	

Faces	

v

h2

h1

h3

W1

W3

W2

Trained	on	face	images.	

Object	Parts	

Groups	of	parts.	

Lee	et.al.,	ICML	2009	

Learning	Part-based	Representa@on	
Faces	 Cars	 Elephants	 Chairs	

Lee	et.al.,	ICML	2009	

Learning	Part-based	Representa@on	

Trained	from	mul@ple	
classes	(cars,	faces,	
motorbikes,	airplanes).	

Class-specific	object	
parts	

Groups	of	parts.	

Lee	et.al.,	ICML	2009	

DBNs	for	Classifica@on	

• 	A_er	layer-by-layer	unsupervised	pretraining,	discrimina@ve	fine-tuning		
by	backpropaga@on	achieves	an	error	rate	of	1.2%	on	MNIST.	SVM’s	get	
1.4%	and	randomly	ini@alized	backprop	gets	1.6%.		

• 	Clearly	unsupervised	learning	helps	generaliza@on.	It	ensures	that	most	of	
the	informa@on	in	the	weights	comes	from	modeling	the	input	data.	

(Hinton and Salakhutdinov, Science 2006)

W +εW

W

W

W +ε

W +ε

W +ε

W

W

W

W

1 11

500 500

500

2000

500

500

2000

500
2

500

RBM

500

2000
3

Pretraining Unrolling Fine−tuning

4 4

2 2

3 3

1

2

3

4

RBM

10

Softmax Output

10
RBM

T

T

T

T

T

T

T

T

DBNs	for	Regression	
Predic@ng	the	orienta@on	of	a	face	patch	

Training	Data:	1000	face	patches	of		
30	training	people.	

Regression	Task:	predict	orienta@on	of	a	new	face.	

Test	Data:	1000	face	patches	of		
10	new	people.		

Gaussian	Processes	with	spherical	Gaussian	kernel	achieves	a	RMSE			
(root	mean	squared	error)	of	16.33	degree.		

(Salakhutdinov and Hinton, NIPS 2007)

DBNs	for	Regression	

• 	Pretrain	a	stack	of	RBMs:	784-1000-1000-1000.	

Addi<onal	Unlabeled	Training	Data:	12000	face	patches	from	
30	training	people.	

• 	Features	were	extracted	with	no	idea	of	the	final	task.	

GP	with	fine-tuned	covariance	Gaussian	kernel: 	 	 	RMSE:	6.42	
The	same	GP	on	the	top-level	features: 	 	 	 	 	RMSE:	11.22	

Standard	GP	without	using	DBNs: 	 	 	 	 	 	RMSE:	16.33	

Deep	Autoencoders	

W

W

W +�

W

W

W

W

W +�

W +�

W +�

W

W +�

W +�

W +�

+�

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine�tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Deep	Autoencoders	
• 	We	used	25x25	–	2000	–	1000	–	500	–	30	autoencoder	to	extract	
30-D	real-valued	codes	for	Olivej	face	patches.			

• 	Top:	Random	samples	from	the	test	dataset.			
• 	Middle:	Reconstruc@ons	by	the	30-dimensional	deep	autoencoder.	

• 	BoGom:	Reconstruc@ons	by	the	30-dimen@noal	PCA.		

Informa@on	Retrieval	
2-D	LSA	space	

Legal/JudicialLeading
Economic
Indicators

European Community
Monetary/Economic

Accounts/
Earnings

Interbank Markets

Government
Borrowings

Disasters and
Accidents

Energy Markets

• 	The	Reuters	Corpus	Volume	II	contains	804,414	newswire	stories	
(randomly	split	into	402,207	training	and	402,207	test).	

• 	“Bag-of-words”	representa@on:	each	ar@cle	is	represented	as	a	vector	
containing	the	counts	of	the	most	frequently	used	2000	words	in	the	
training	set.	

(Hinton and Salakhutdinov, Science 2006)

