

# 10707

# Deep Learning

Russ Salakhutdinov

Machine Learning Department  
rsalakhu@cs.cmu.edu

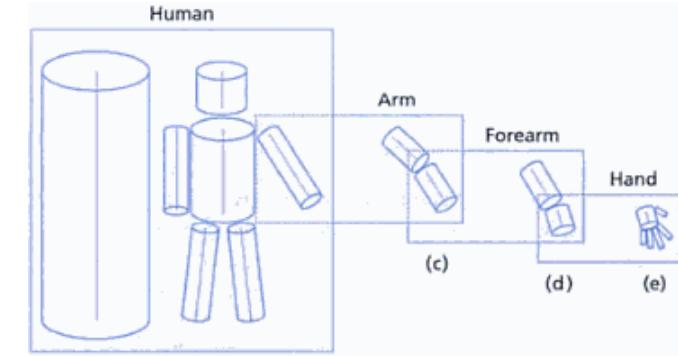
<http://www.cs.cmu.edu/~rsalakhu/10707/>

## Deep Boltzmann Machines II

# Learning Hierarchical Representations

Deep Boltzmann Machines:

Learning Hierarchical Structure  
in Features: edges, combination  
of edges.



- Performs well in many application domains
- Fast Inference: fraction of a second
- Learning scales to millions of examples

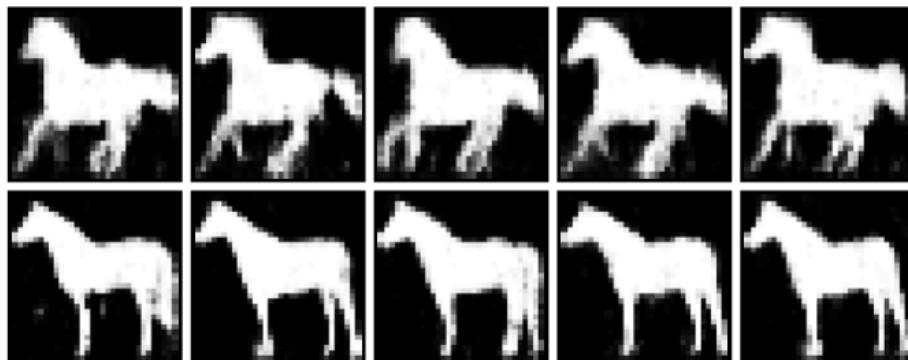
# Learning Hierarchical Representations

Deep Boltzmann Machines:

Learning Hi  
in Features  
of edges.

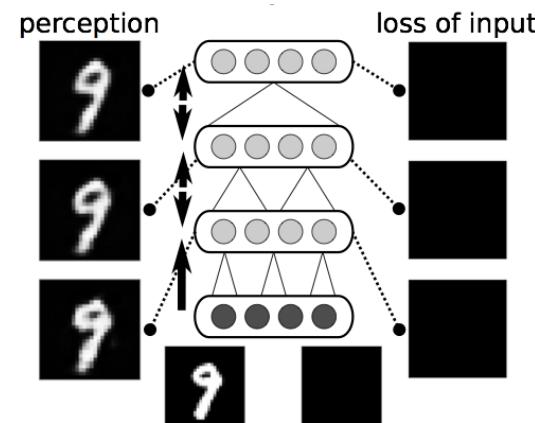
Need more structured  
and robust models

**The Shape Boltzmann Machine: a Strong Model of Object Shape**  
(Eslami, Heess, Winn, CVPR 2012).



[Demo DBM](#)

**Hallucinations in Charles Bonnet Syndrome Induced by Homeostasis: a Deep Boltzmann Machine Model**  
(Reichert, Series, Storkey, NIPS 2012)



# Face Recognition

Yale B Extended Face Dataset

4 subsets of increasing illumination variations

Subset 1



Subset 2



Subset 3



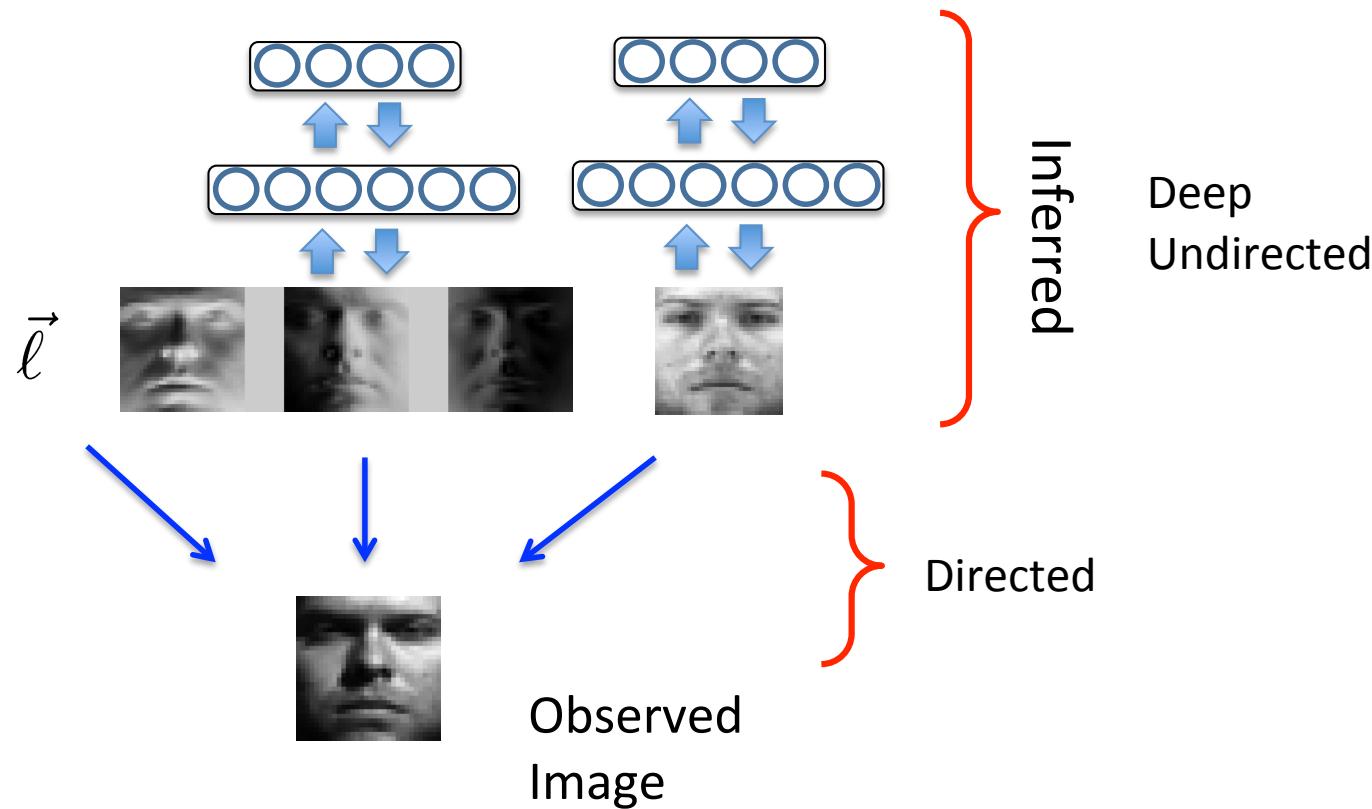
Subset 4



Due to extreme illumination variations, deep models perform quite poorly on this dataset.

# Deep Lambertian Model

Consider More Structured Models: undirected + directed models.



Combines the elegant properties of the Lambertian model with the Gaussian DBM model.

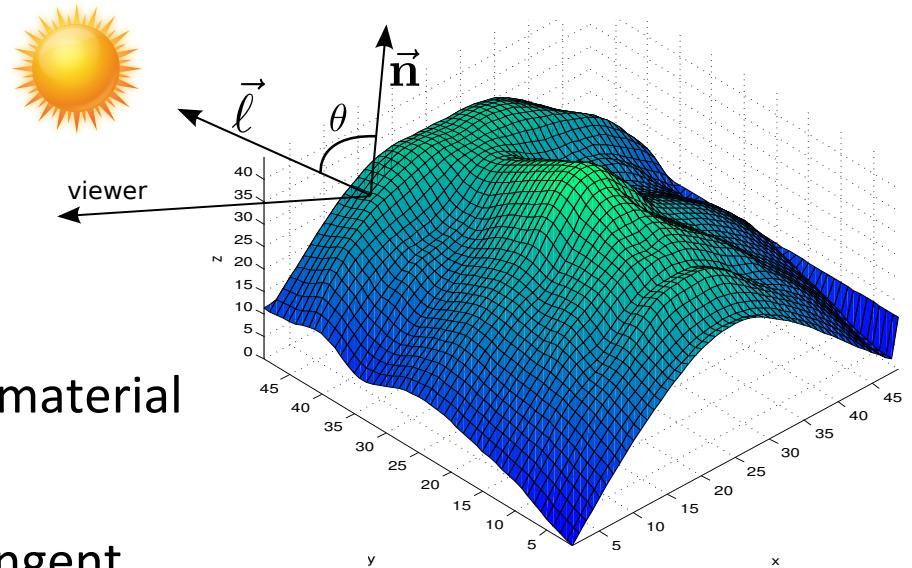
(Tang et. Al., ICML 2012, Tang et. al. CVPR 2012)

# Lambertian Reflectance Model

- A simple model of the image formation process.

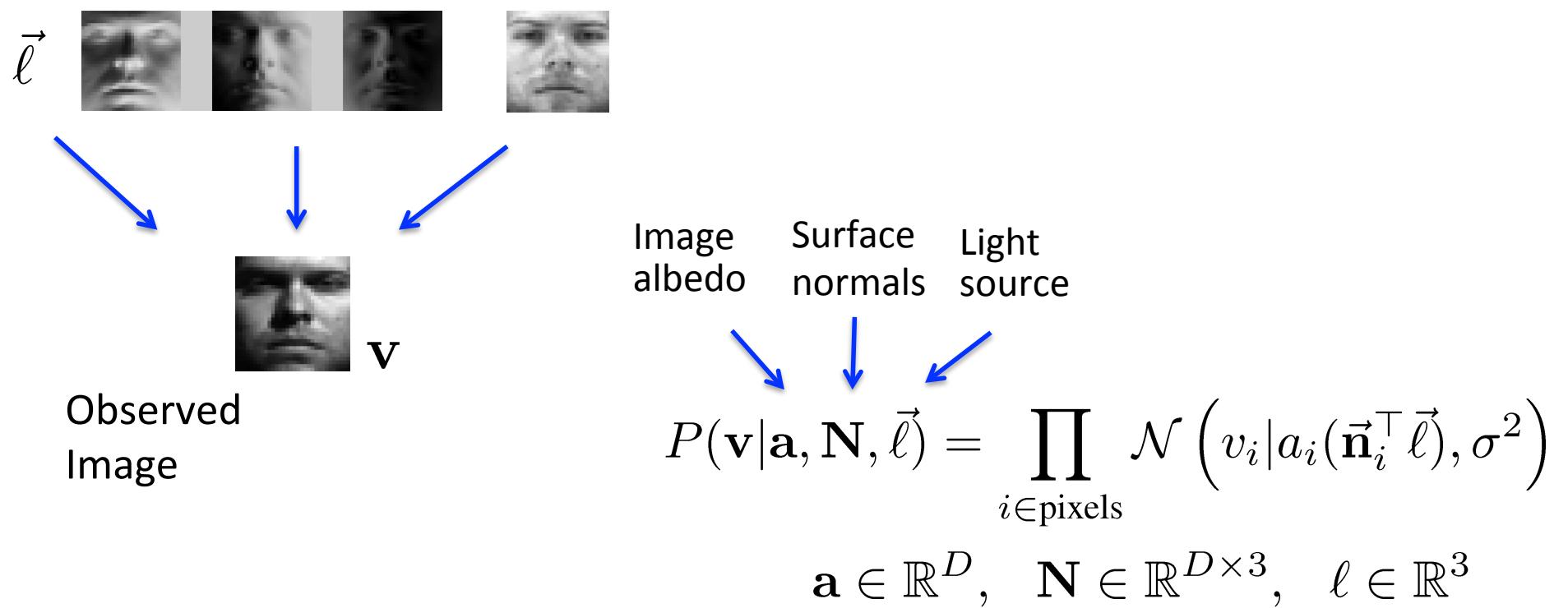
$$I = a \times |\vec{l}| |\vec{n}| \cos(\theta)$$

Image albedo      Light source      Surface normal

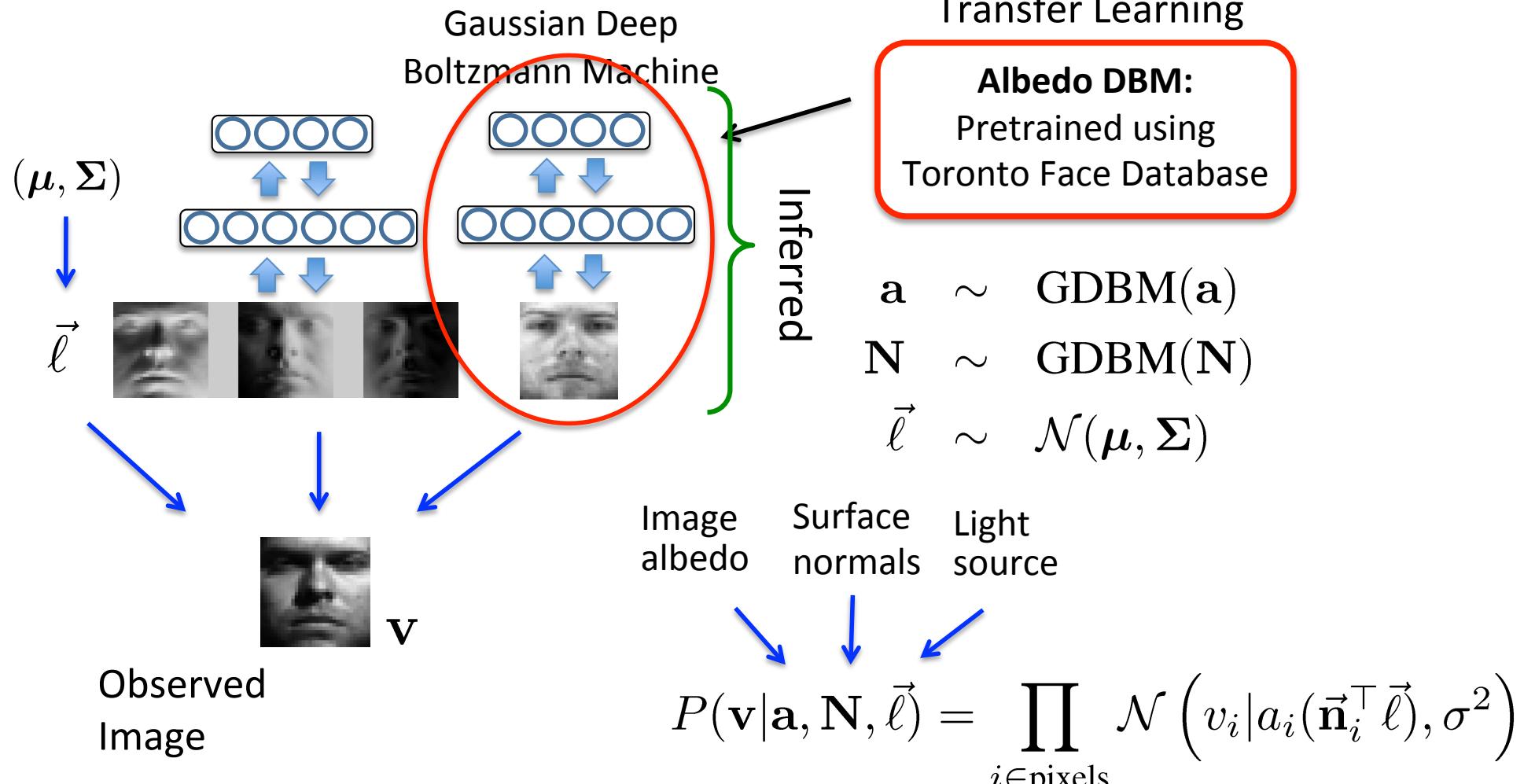


- Albedo -- diffuse reflectivity of a surface, material dependent, illumination independent.
- Surface normal -- perpendicular to the tangent plane at a point on the surface.
- Images with different illumination can be generated by varying light directions

# Deep Lambertian Model



# Deep Lambertian Model



**Inference:** Variational Inference.

**Learning:** Stochastic Approximation

$$\mathbf{a} \in \mathbb{R}^D, \quad \mathbf{N} \in \mathbb{R}^{D \times 3}, \quad \vec{\ell} \in \mathbb{R}^3$$

# Yale B Extended Face Dataset

Subset 1



Subset 2



Subset 3



Subset 4



- 38 subjects, ~ 45 images of varying illuminations per subject, divided into 4 subsets of increasing illumination variations.
- 28 subjects for training, and 10 for testing.

# Face Relighting

One Test Image

Observed      Inferred  
albedo

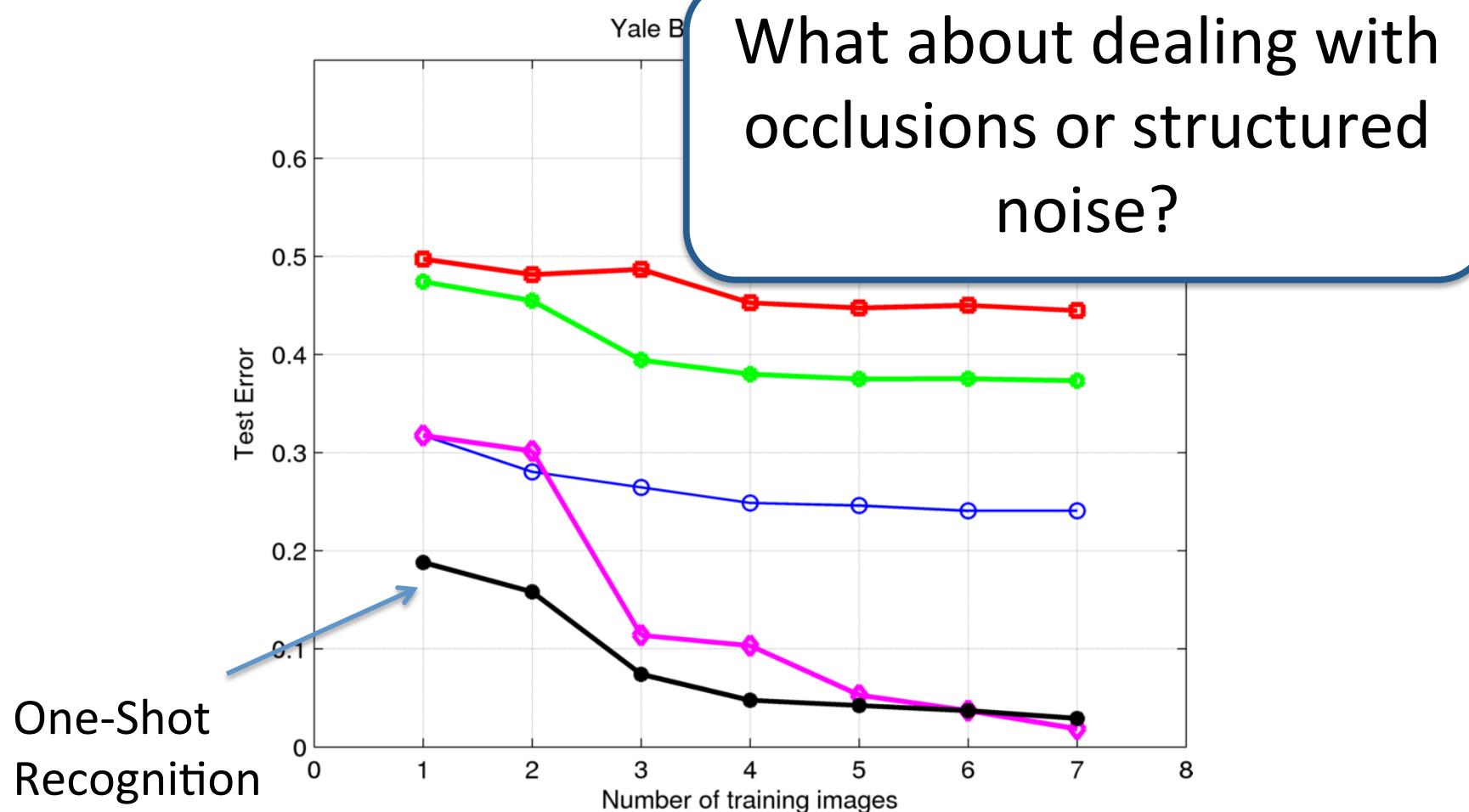


Face Relighting



# Recognition Results

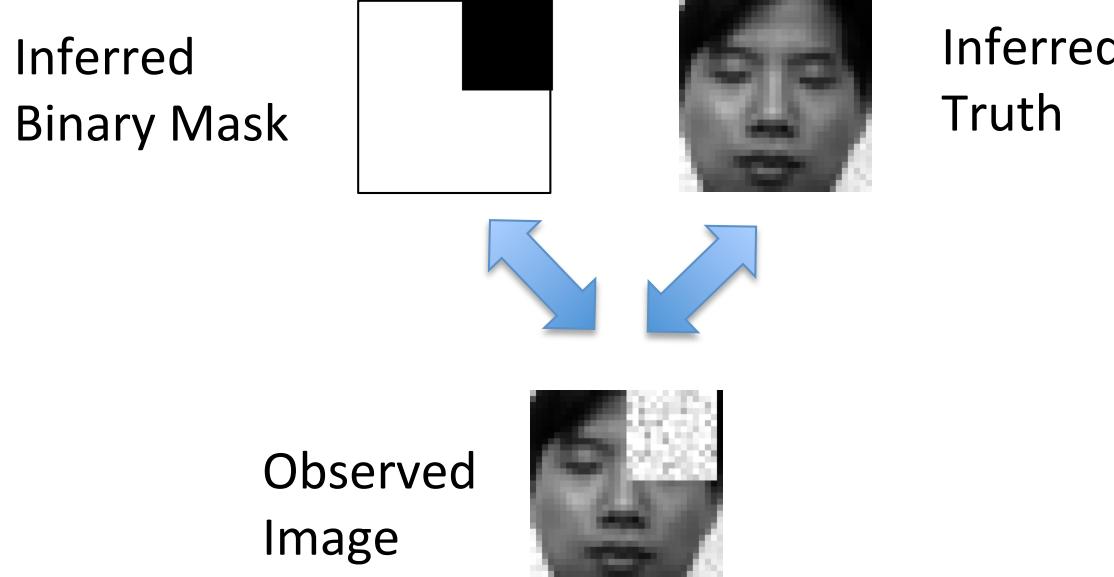
Recognition as function of the number of training images for 10 test subjects.



# Robust Boltzmann Machines

- Build more structured models that can deal with occlusions or structured noise.

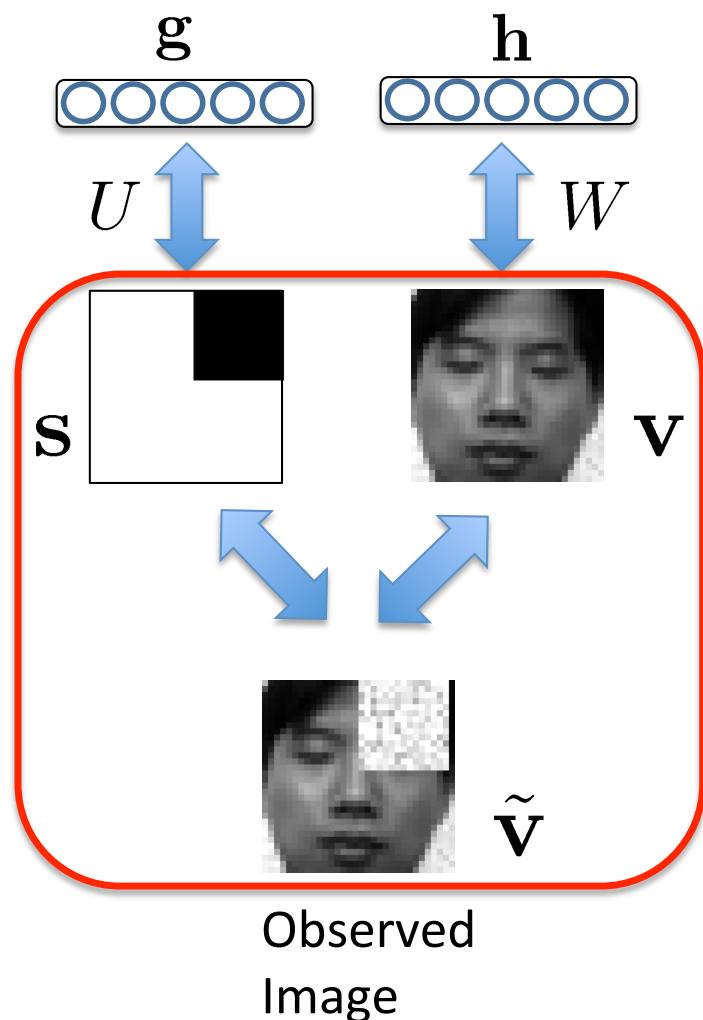
$$\log P(\tilde{\mathbf{v}}, \mathbf{v}, \mathbf{s}, \mathbf{h}, \mathbf{g}) \sim$$



(Tang et. Al., ICML 2012, Tang et. al. CVPR 2012)

# Robust Boltzmann Machines

- Build more structured models that can deal with occlusions or structured noise.



$$\log P(\tilde{\mathbf{v}}, \mathbf{v}, \mathbf{s}, \mathbf{h}, \mathbf{g}) \sim$$

$$-\frac{1}{2} \sum_{i \in \text{pixels}} \frac{(v_i - b_i)^2}{\sigma_i^2} + \mathbf{v}^\top W \mathbf{h} + \mathbf{s}^\top U \mathbf{g}$$

# Gaussian RBM, modeling clean faces

# Binary RBM modeling occlusions

$$-\frac{1}{2} \sum_{i \in \text{pixels}} \gamma_i s_i (v_i - \tilde{v}_i)^2 - \frac{1}{2} \sum_{i \in \text{pixels}} \frac{(\tilde{v}_i - \tilde{b}_i)^2}{\tilde{\sigma}_i^2}$$

## Binary pixel-wise Mask

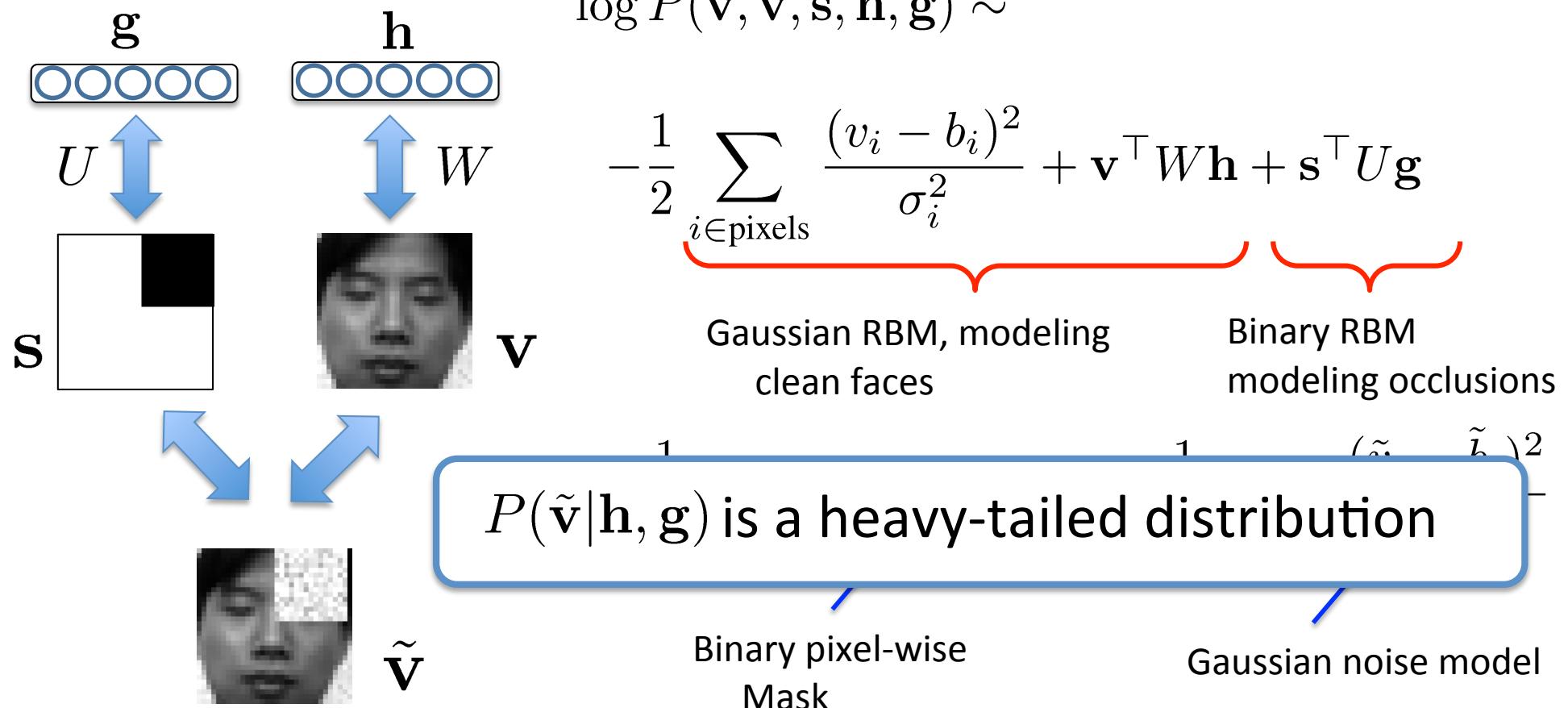
$$\frac{1}{2} \sum_{i \in \text{pixels}} \frac{(\tilde{v}_i - \tilde{b}_i)^2}{\tilde{\sigma}_i^2}$$

## Gaussian noise model

# Robust Boltzmann Machines

(Tang et. Al., ICML 2012, Tang et. al. CVPR 2012)

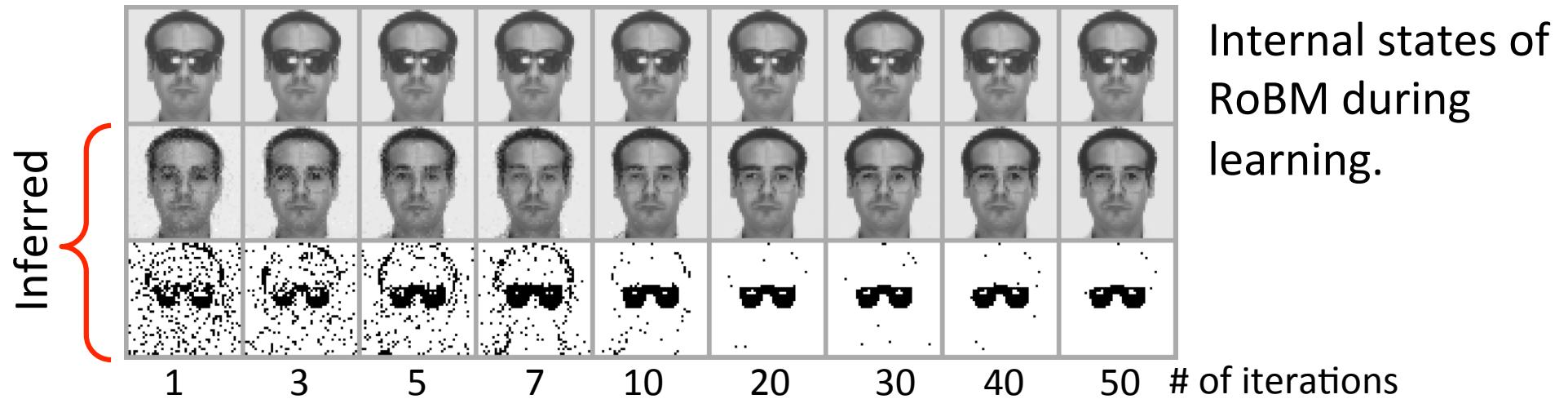
- Build more structured models that can deal with occlusions or structured noise.



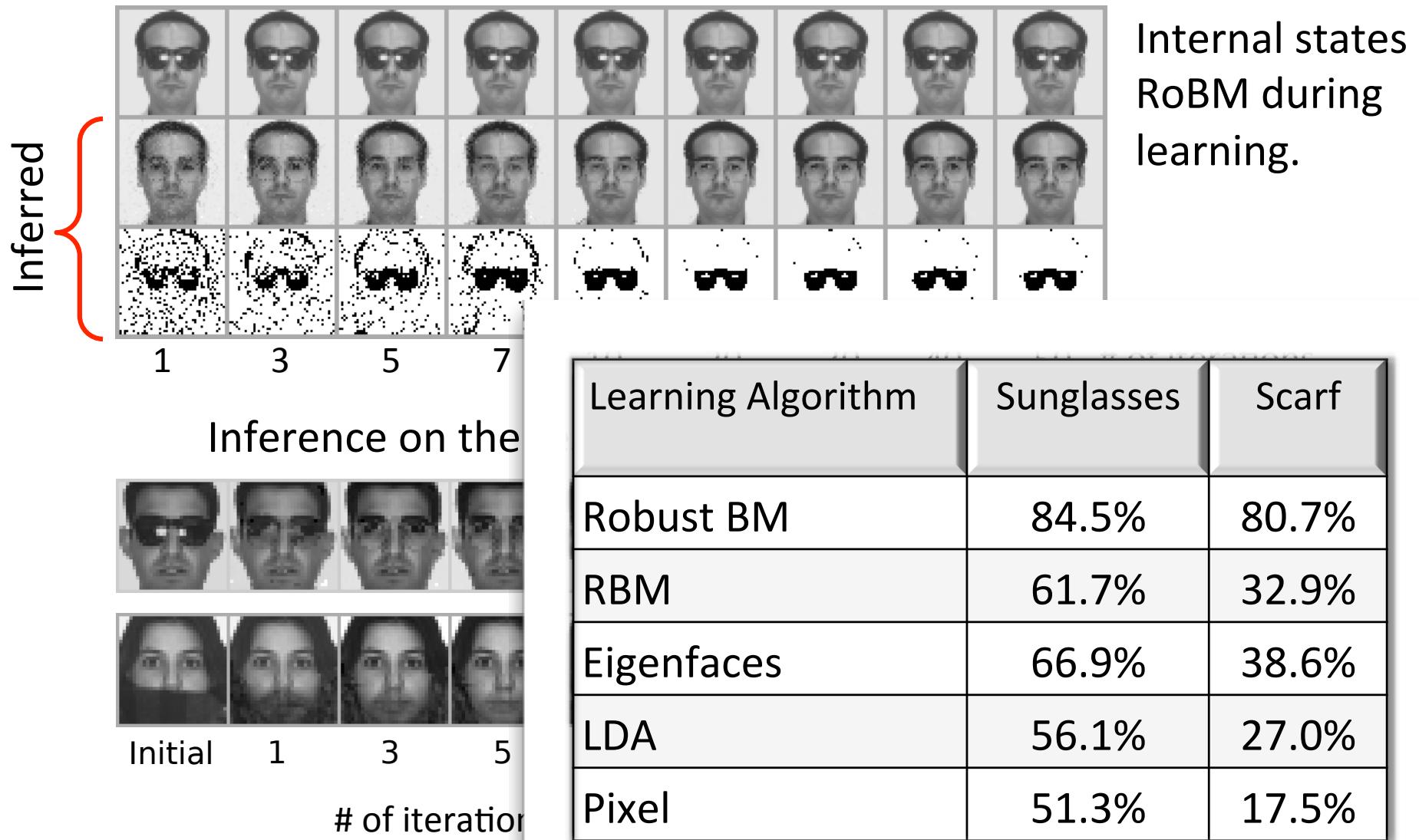
## Inference: Variational Inference.

## Learning: Stochastic Approximation

# Recognition Results on AR Face Database

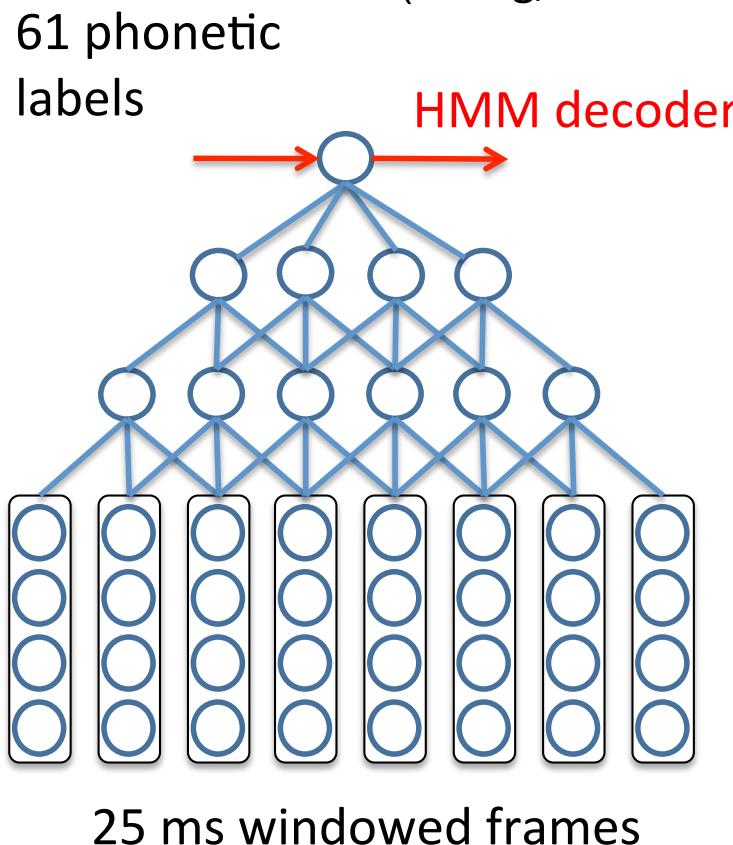
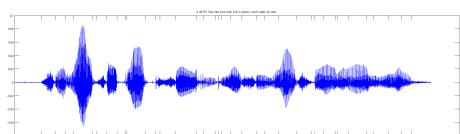
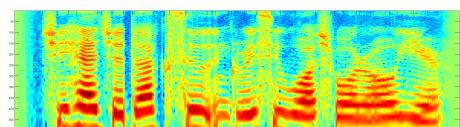


# Recognition Results on AR Face Database



# Speech Recognition

(Zhang, Salakhutdinov, Chang, Glass, ICASSP 2012)



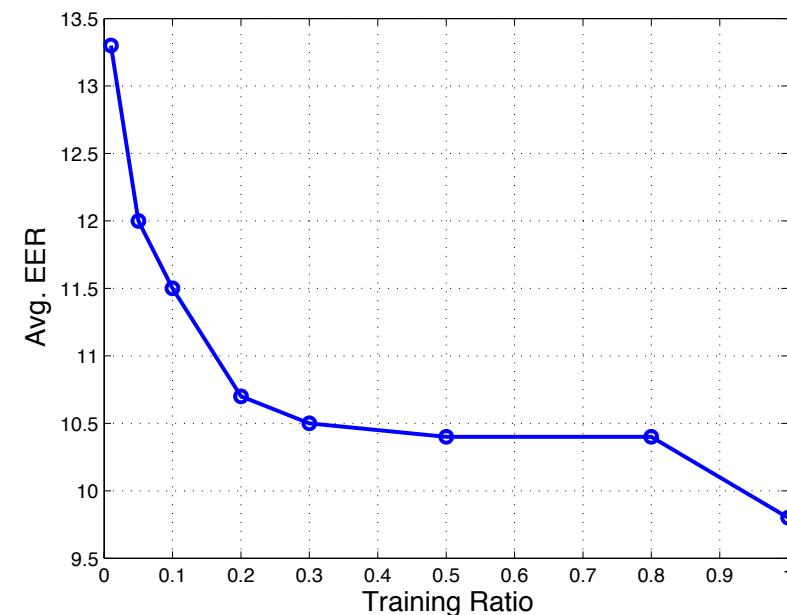
- 630 speaker TIMIT corpus: 3,696 training and 944 test utterances.
- **Spoken Query Detection:**  
For each keyword, estimate utterance's probability of containing that keyword.
- Performance: Average equal error rate (EER).

| Learning Algorithm | AVG EER |
|--------------------|---------|
| GMM Unsupervised   | 16.4%   |
| DBM Unsupervised   | 14.7%   |
| DBM (1% labels)    | 13.3%   |
| DBM (30% labels)   | 10.5%   |
| DBM (100% labels)  | 9.7%    |

# Spoken Query Detection

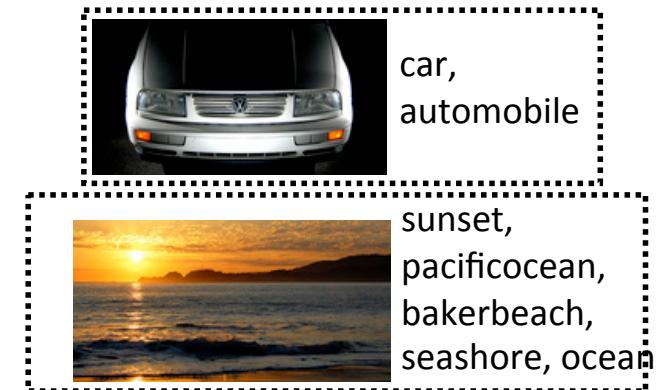
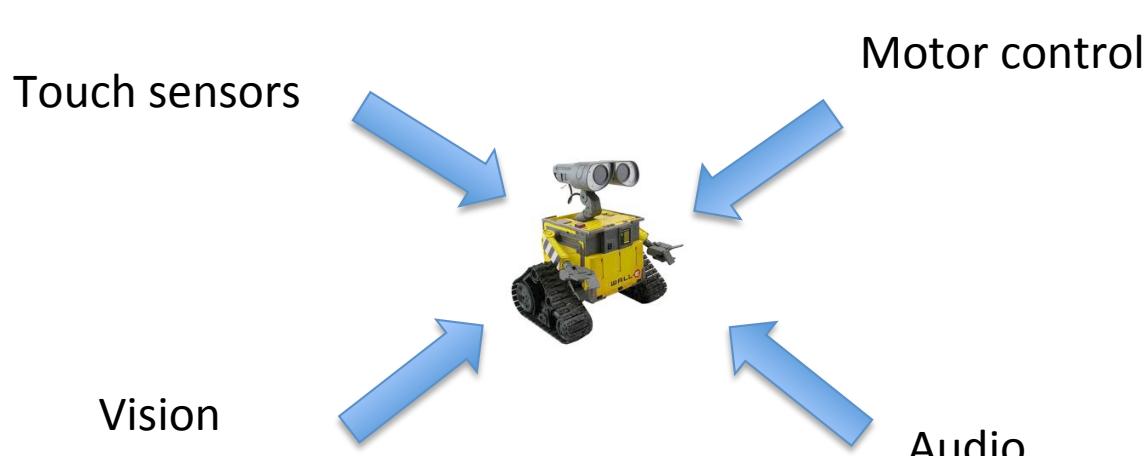
- 630 speaker TIMIT corpus: 3,696 training and 944 test utterances.
- 10 query keywords were randomly selected and 10 examples of each keyword were extracted from the training set.
- **Goal:** For each keyword, rank all 944 utterances based on the utterance's probability of containing that keyword.
- Performance measure: The average equal error rate (EER).

| Learning Algorithm | AVG EER |
|--------------------|---------|
| GMM Unsupervised   | 16.4%   |
| DBM Unsupervised   | 14.7%   |
| DBM (1% labels)    | 13.3%   |
| DBM (30% labels)   | 10.5%   |
| DBM (100% labels)  | 9.7%    |



# Data – Collection of Modalities

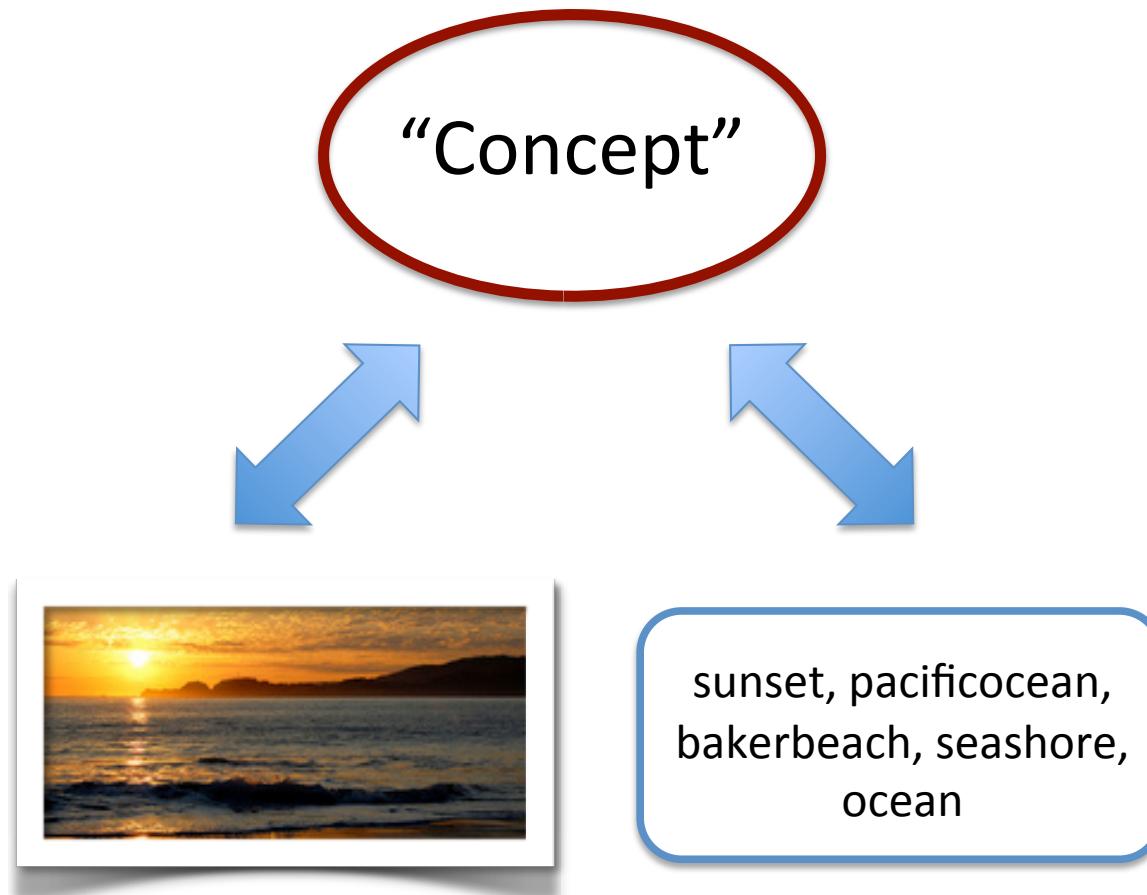
- Multimedia content on the web - image + text + audio.
- Product recommendation systems.
- Robotics applications.



Ngiam et. al. 2011  
Huiskes, Thomee, Lew 2010  
Guillaumin, Verbeek, Schmid 2010  
Xing, Yan, and Hauptmann. 2005

# Shared Concept

“Modality-free” representation



“Modality-full” representation

# Multi-Modal Input

- Improve Classification



pentax, k10d, kangarooisland  
southaustralia, sa australia  
australiansealion 300mm



SEA / NOT SEA

- Fill in Missing Modalities



beach, sea, surf,  
strand, shore,  
wave, seascape,  
sand, ocean, waves

- Retrieve data from one modality when queried using data from another modality

beach, sea, surf,  
strand, shore,  
wave, seascape,  
sand, ocean, waves



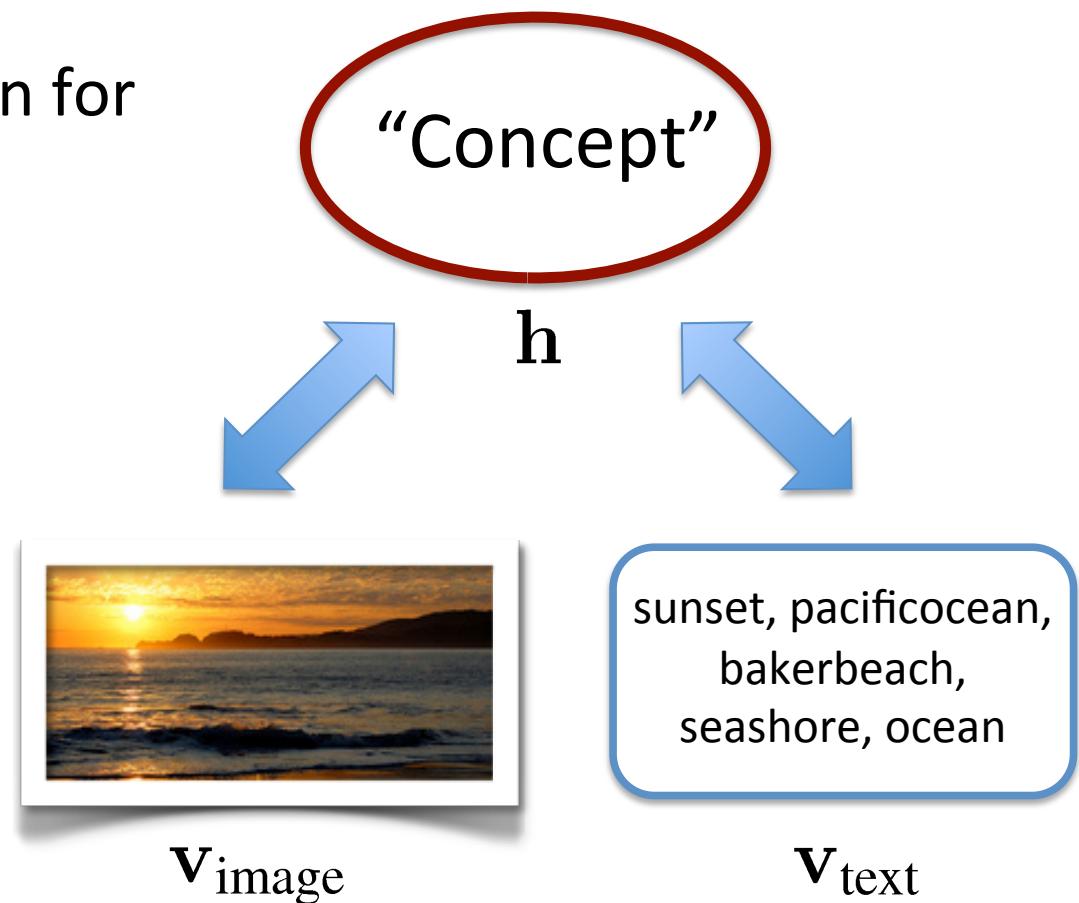
# Building a Probabilistic Model

- Learn a joint density model:

$$P(\mathbf{h}, \mathbf{v}_{\text{image}}, \mathbf{v}_{\text{text}}).$$

$$P(\mathbf{h} | \mathbf{v}_{\text{image}}, \mathbf{v}_{\text{text}})$$

- $\mathbf{h}$ : “fused” representation for classification, retrieval.



# Building a Probabilistic Model

- Learn a joint density model:

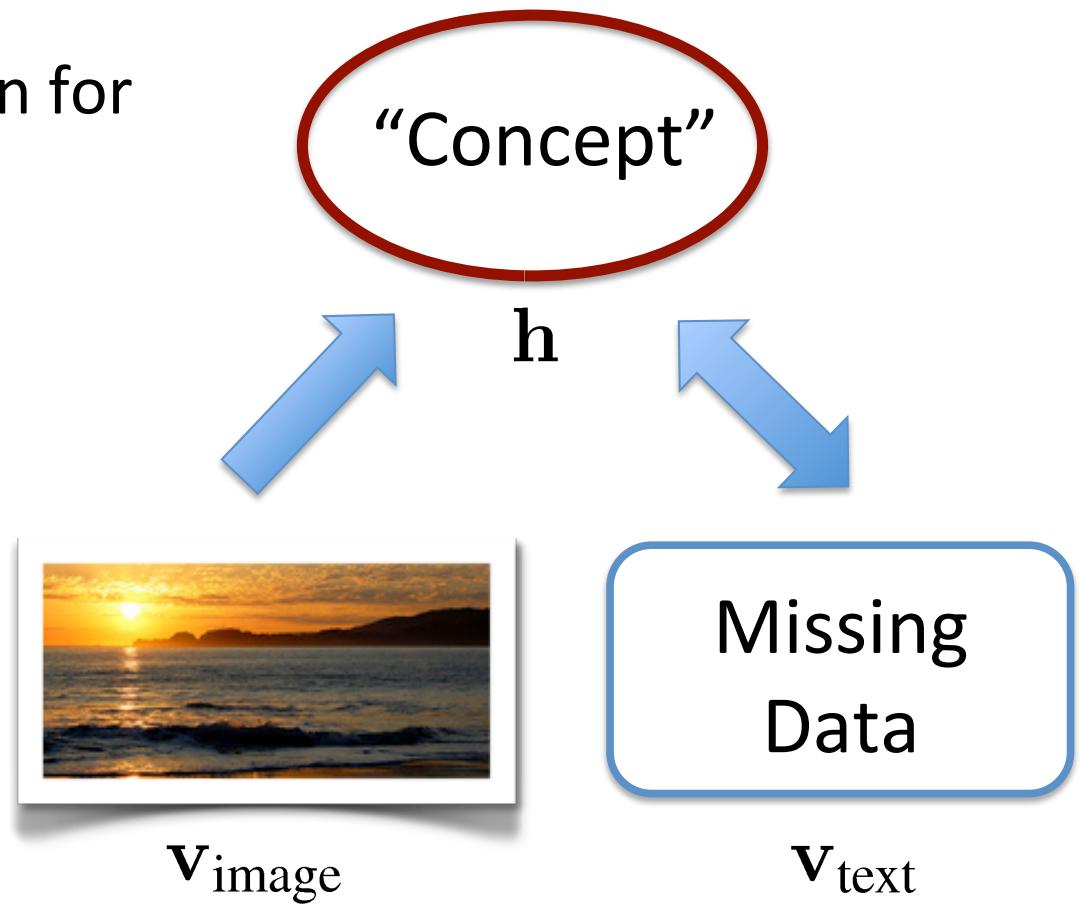
$$P(\mathbf{h}, \mathbf{v}_{\text{image}}, \mathbf{v}_{\text{text}}).$$

$$P(\mathbf{h}, \mathbf{v}_{\text{text}} | \mathbf{v}_{\text{image}})$$

- $\mathbf{h}$ : “fused” representation for classification, retrieval.

- Generate data from conditional distributions for

- Image Annotation



# Building a Probabilistic Model

- Learn a joint density model:

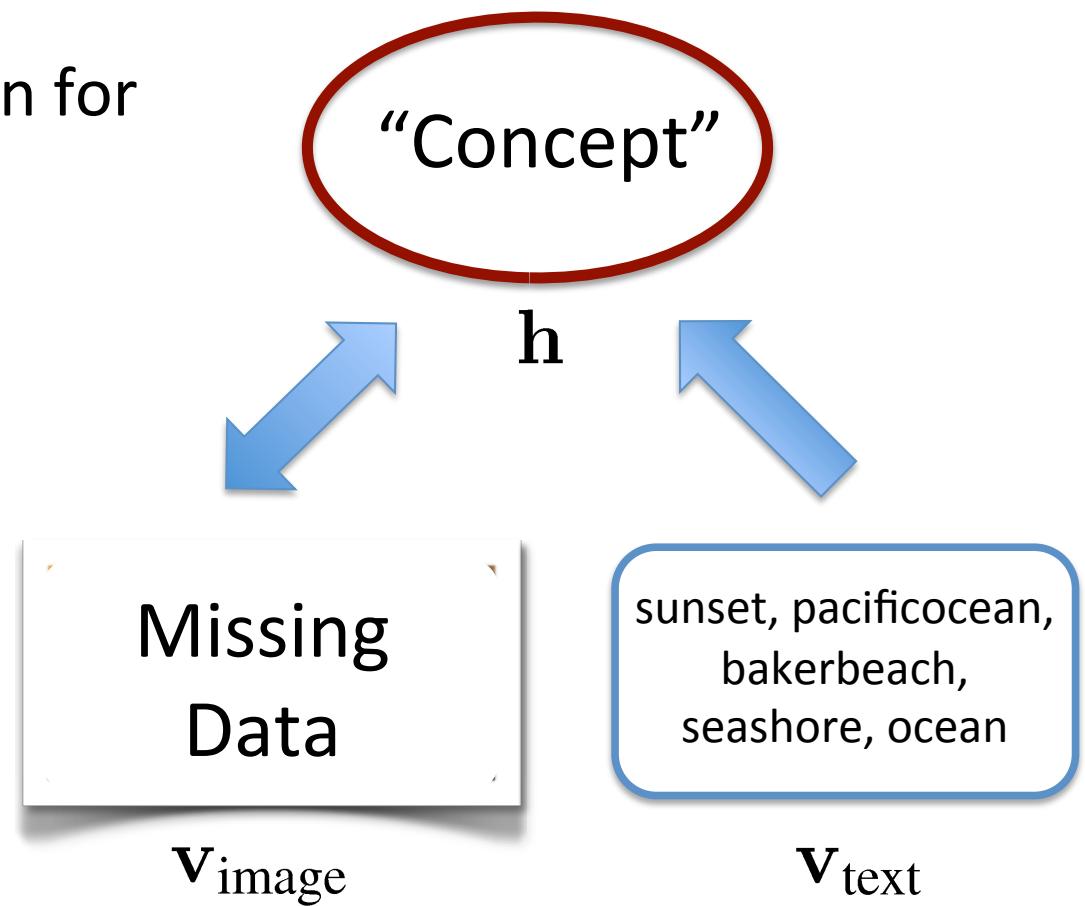
$$P(\mathbf{h}, \mathbf{v}_{\text{image}}, \mathbf{v}_{\text{text}}).$$

$$P(\mathbf{h}, \mathbf{v}_{\text{image}} | \mathbf{v}_{\text{text}})$$

- $\mathbf{h}$ : “fused” representation for classification, retrieval.

- Generate data from conditional distributions for

- Image Annotation
  - Image Retrieval

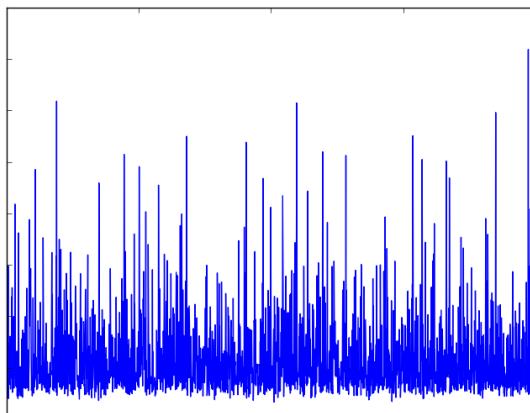


# Challenges - I

Image



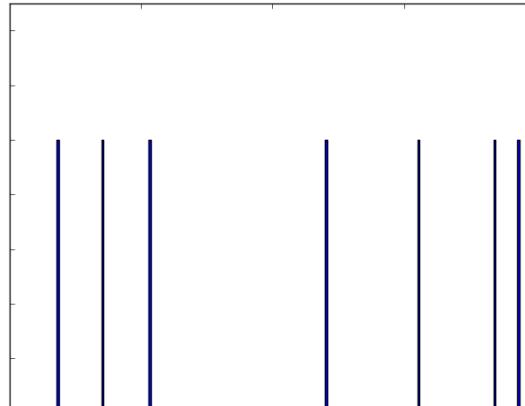
Dense



Text

sunset, pacificocean,  
bakerbeach, seashore,  
ocean

Sparse



Very different input representations

- Images – real-valued, dense
- Text – discrete, sparse

Difficult to learn cross-modal features from low-level representations.

# Challenges - II

## Image



## Text

pentax, k10d,  
pentaxda50200,  
kangarooisland, sa,  
australiansealion

Noisy and missing data



mickikrimmel,  
mickipedia,  
headshot



< no text>



unseulpixel,  
naturey,

# Challenges - II

## Image



pentax, k10d,  
pentaxda50200,  
kangarooisland, sa,  
australiansealion



mickikrimmel,  
mickipedia,  
headshot



< no text>



unseulpixel,  
naturey,

## Text generated by the model

beach, sea, surf, strand,  
shore, wave, seascape,  
sand, ocean, waves

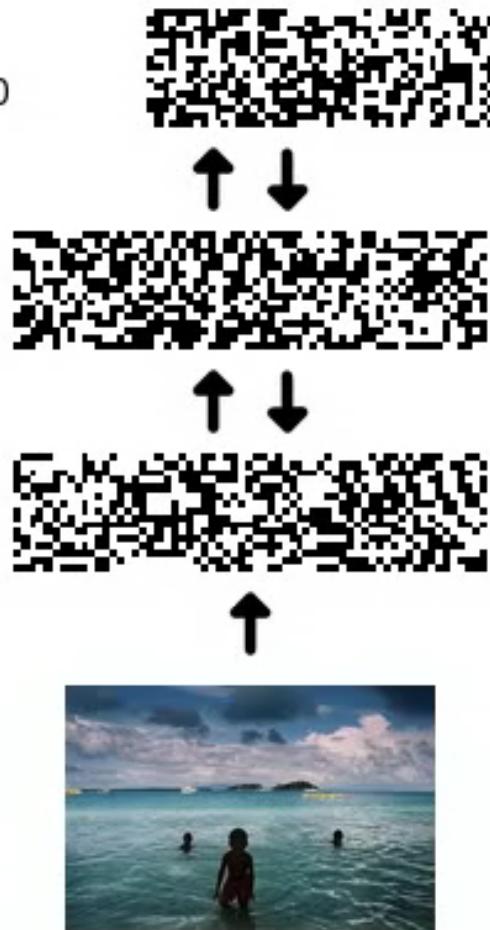
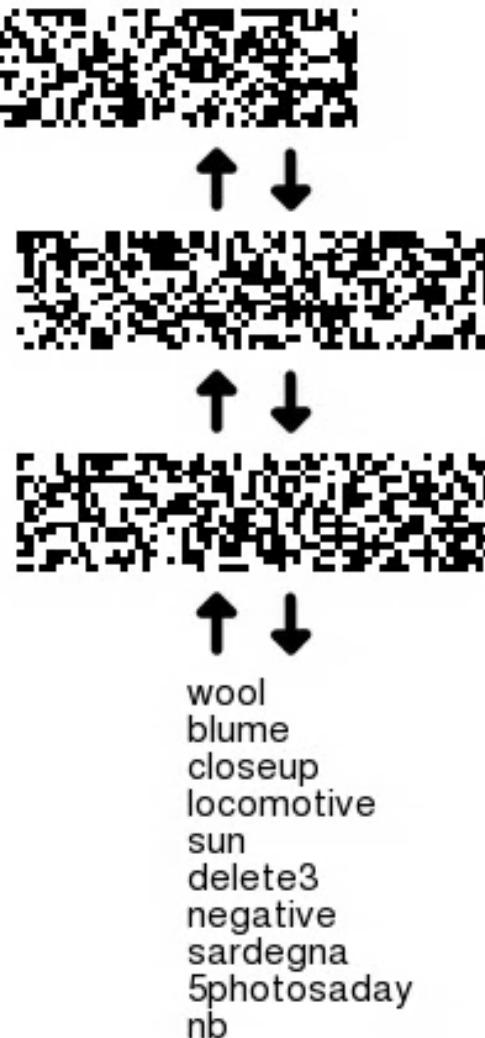
portrait, girl, woman, lady,  
blonde, pretty, gorgeous,  
expression, model

night, notte, traffic, light,  
lights, parking, darkness,  
lowlight, nacht, glow

fall, autumn, trees, leaves,  
foliage, forest, woods,  
branches, path

# Generating Text from Images

Step 0

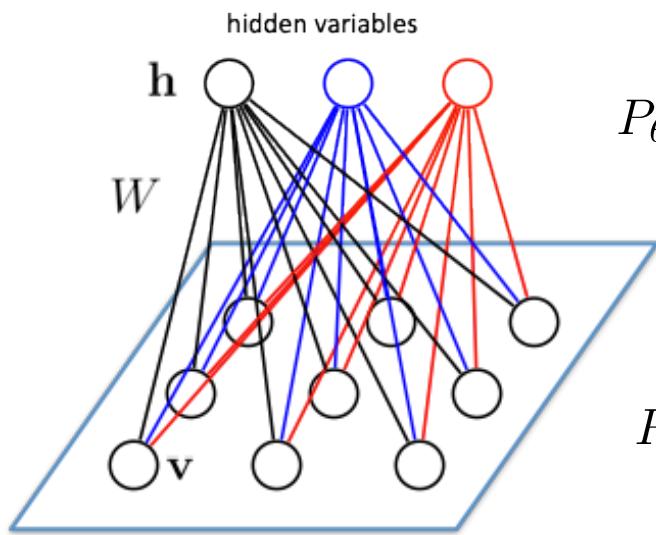


Samples drawn after  
every 50 steps of  
Gibbs updates

Sample at step 0

|             |
|-------------|
| wool        |
| blume       |
| closeup     |
| locomotive  |
| sun         |
| delete3     |
| negative    |
| sardegna    |
| 5photosaday |
| nb          |

# Restricted Boltzmann Machines



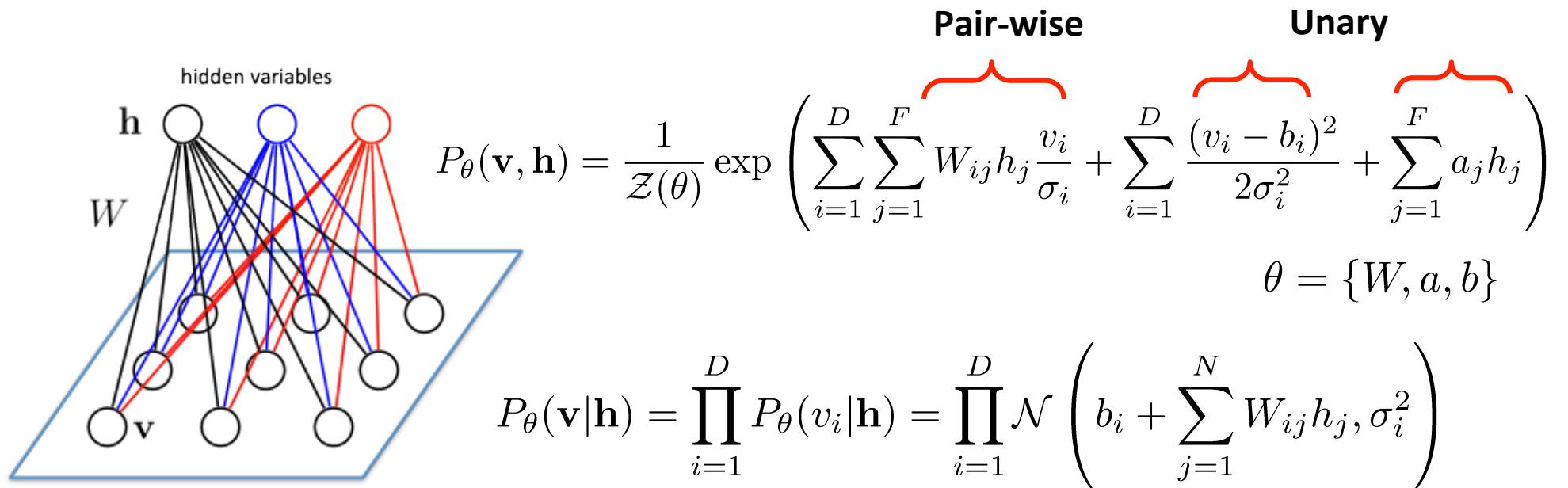
$$P_{\theta}(\mathbf{v}, \mathbf{h}) = \frac{1}{\mathcal{Z}(\theta)} \exp \left( \sum_{i=1}^D \sum_{j=1}^F W_{ij} v_i h_j + \sum_{i=1}^D v_i b_i + \sum_{j=1}^F h_j a_j \right)$$
$$\theta = \{W, a, b\}$$

$$P_{\theta}(\mathbf{v}|\mathbf{h}) = \prod_{i=1}^D P_{\theta}(v_i|\mathbf{h}) = \prod_{i=1}^D \frac{1}{1 + \exp(-\sum_{j=1}^F W_{ij} v_i h_j - b_i)}$$

RBM is a Markov Random Field with:

- Stochastic binary visible variables  $\mathbf{v} \in \{0, 1\}^D$ .
- Stochastic binary hidden variables  $\mathbf{h} \in \{0, 1\}^F$ .
- Bipartite connections.

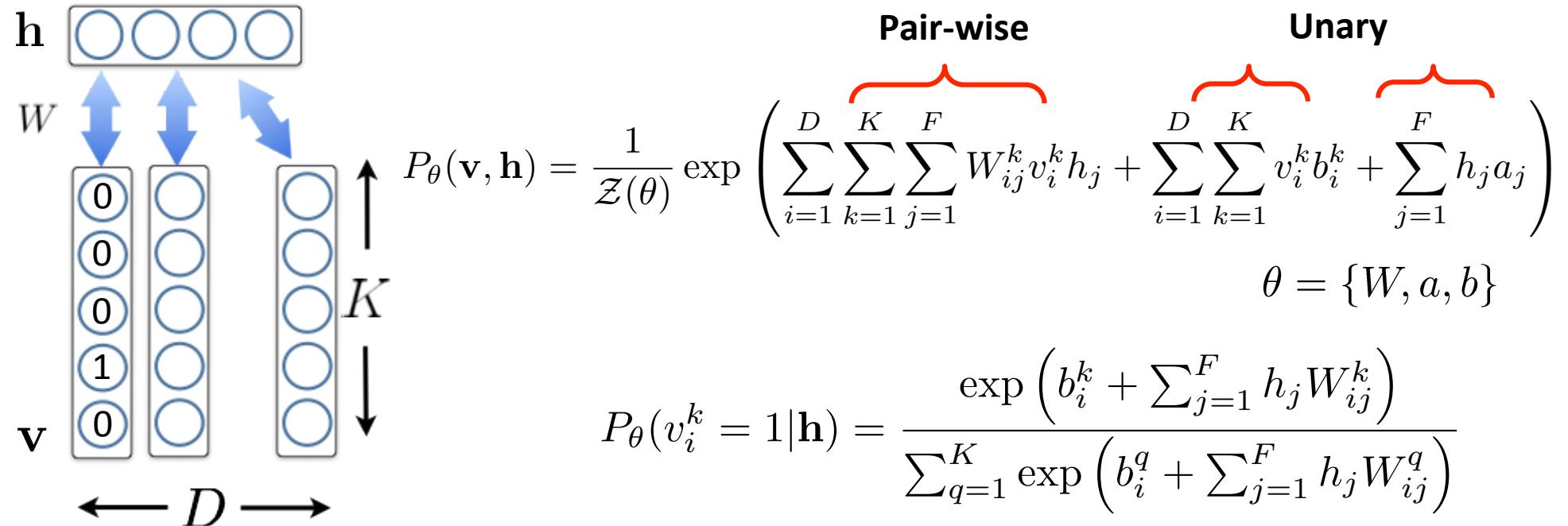
# RBMs for Real-valued Data



Gaussian-Bernoulli RBM:

- Stochastic real-valued visible variables  $\mathbf{v} \in \mathbb{R}^D$ .
- Stochastic binary hidden variables  $\mathbf{h} \in \{0, 1\}^F$ .
- Bipartite connections.

# RBMs for Word Counts



RBM Replicated Softmax Model: undirected topic model:

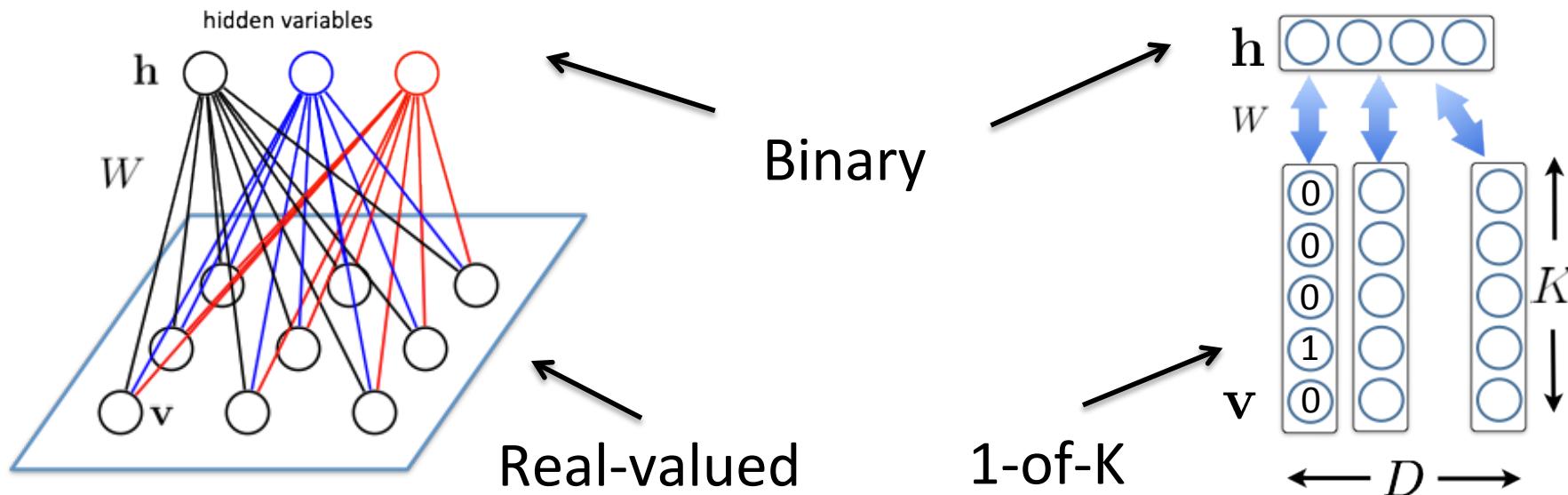
- Stochastic 1-of- $K$  visible variables.
- Stochastic binary hidden variables  $\mathbf{h} \in \{0, 1\}^F$ .
- Bipartite connections.

# A Nice Thing about RBMs

- It is easy to infer the states of the hidden variables:

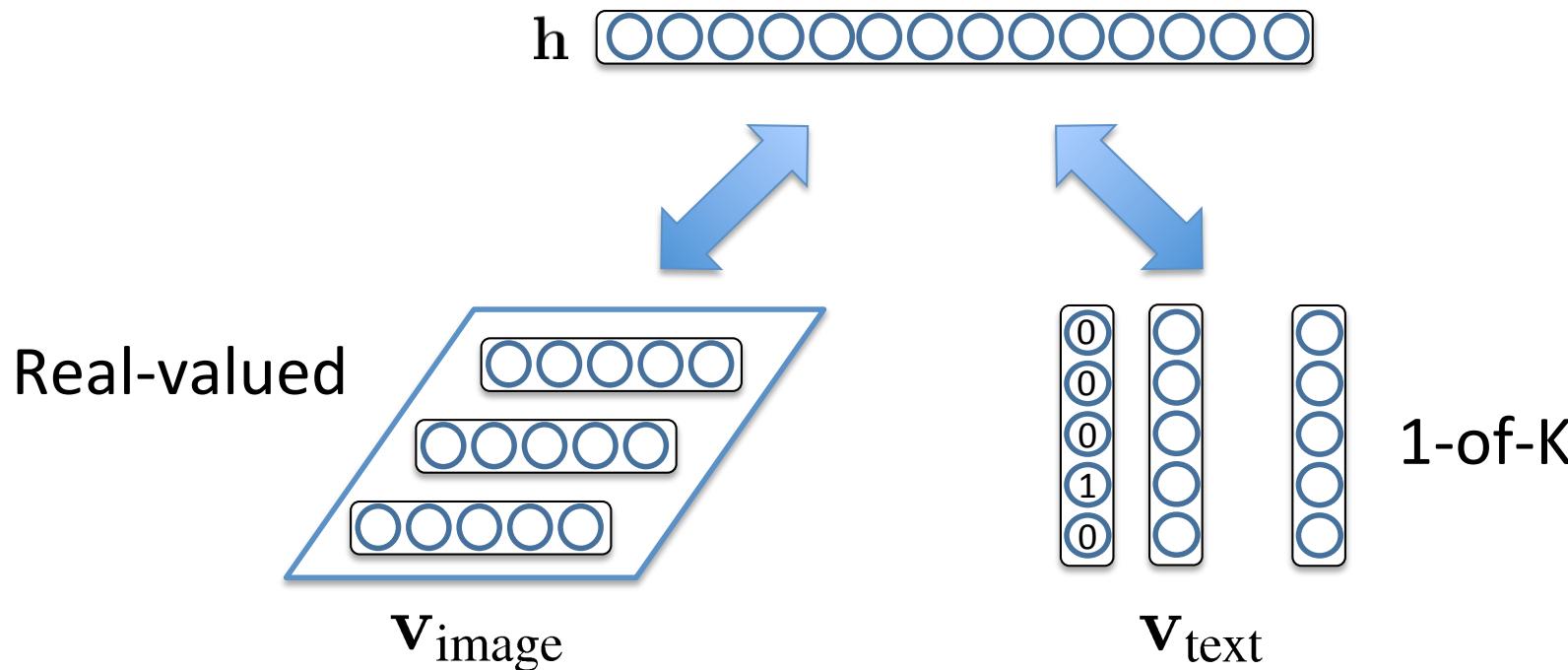
$$P_{\theta}(\mathbf{h}|\mathbf{v}) = \prod_{j=1}^F P_{\theta}(h_j|\mathbf{v}) = \prod_{j=1}^F \frac{1}{1 + \exp(-a_j - \sum_{i=1}^D W_{ij} v_i)}$$

- Binary/Gaussian/Softmax RBMs: All have binary hidden variables but use them to model different kinds of data.



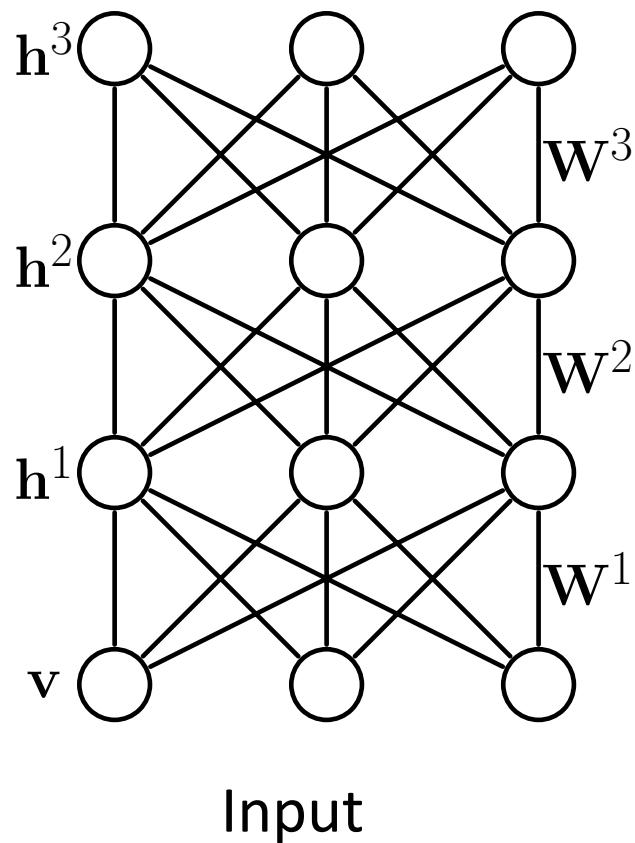
# A Simple Multimodal Model

- Use a joint binary hidden layer.
- **Problem:** Inputs have very different statistical properties.
- Difficult to learn cross-modal features.



# Deep Boltzmann Machines

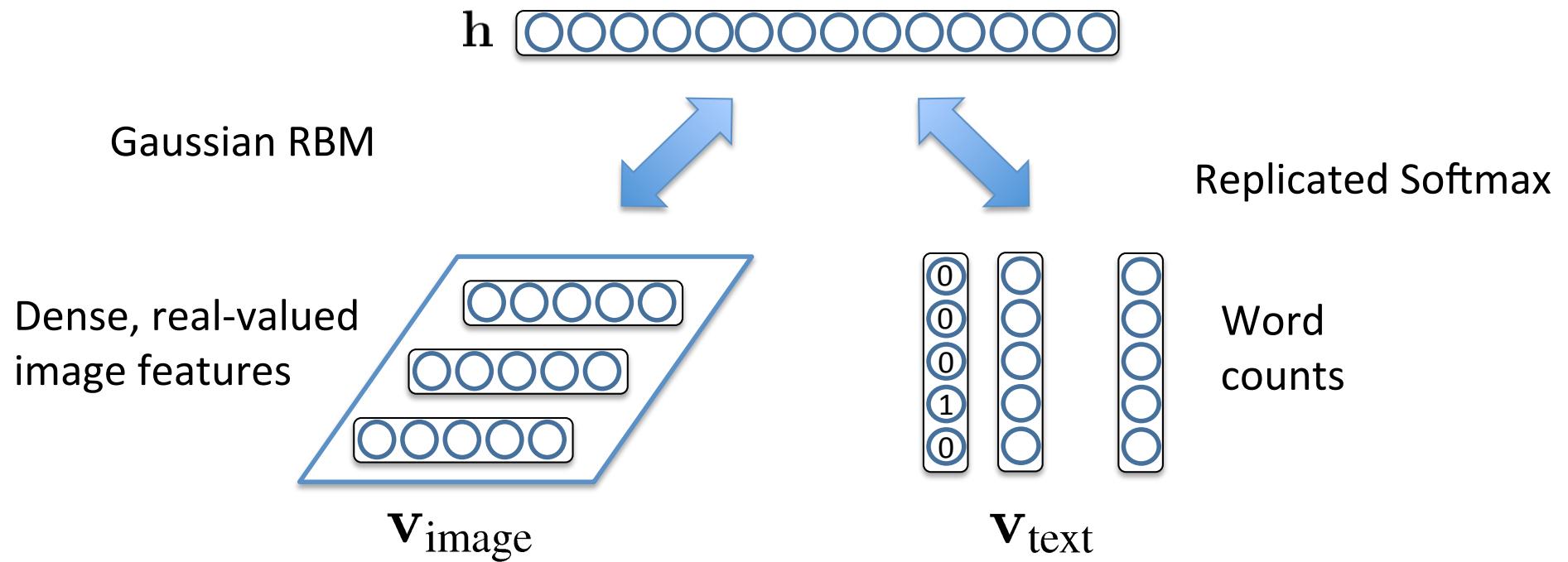
$$P_{\theta}(\mathbf{v}, \mathbf{h}^{(1)}, \mathbf{h}^{(2)}, \mathbf{h}^{(3)}) = \frac{1}{\mathcal{Z}(\theta)} \exp \left[ \underbrace{\mathbf{v}^{\top} W^{(1)} \mathbf{h}^{(1)}}_{\text{Same as RBMs}} + \underbrace{\mathbf{h}^{(1)\top} W^{(2)} \mathbf{h}^{(2)}}_{\text{Same as RBMs}} + \underbrace{\mathbf{h}^{(2)\top} W^{(3)} \mathbf{h}^{(3)}}_{\text{Same as RBMs}} \right]$$



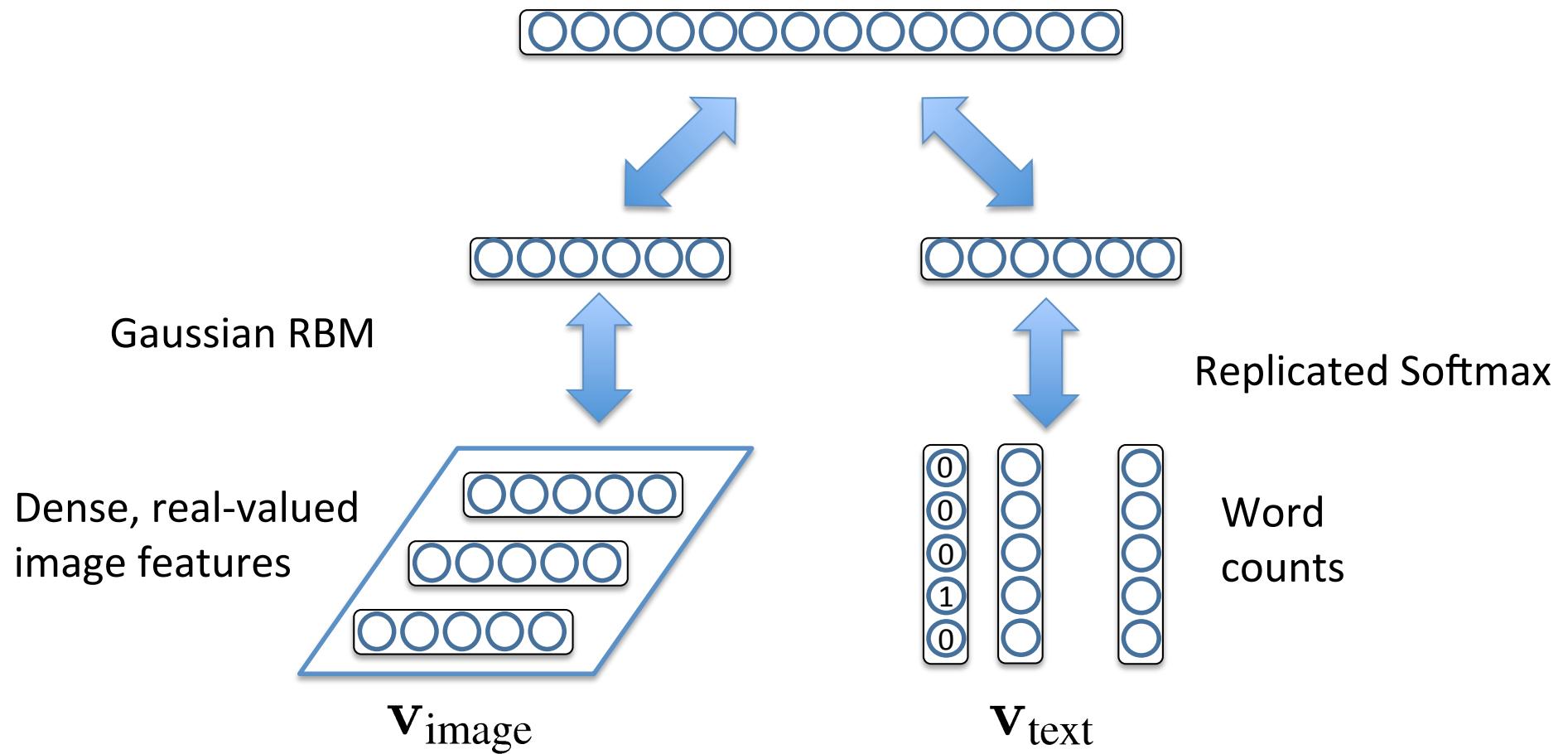
$$\theta = \{W^1, W^2, W^3\} \text{ model parameters.}$$

- Dependencies between hidden variables.
- All connections are undirected.
- Hidden variables are dependent even when **conditioned on the input**.

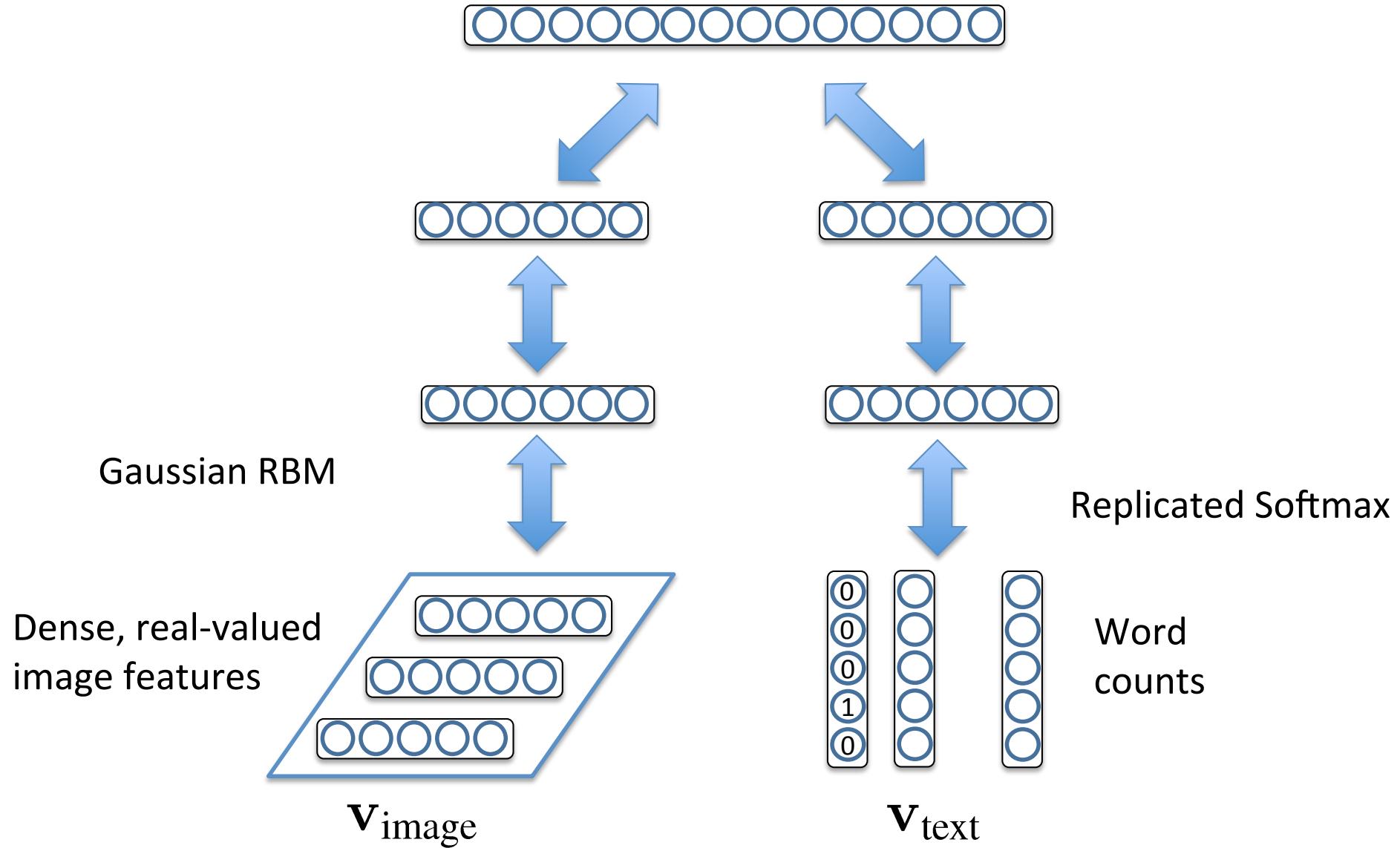
# Multimodal DBM



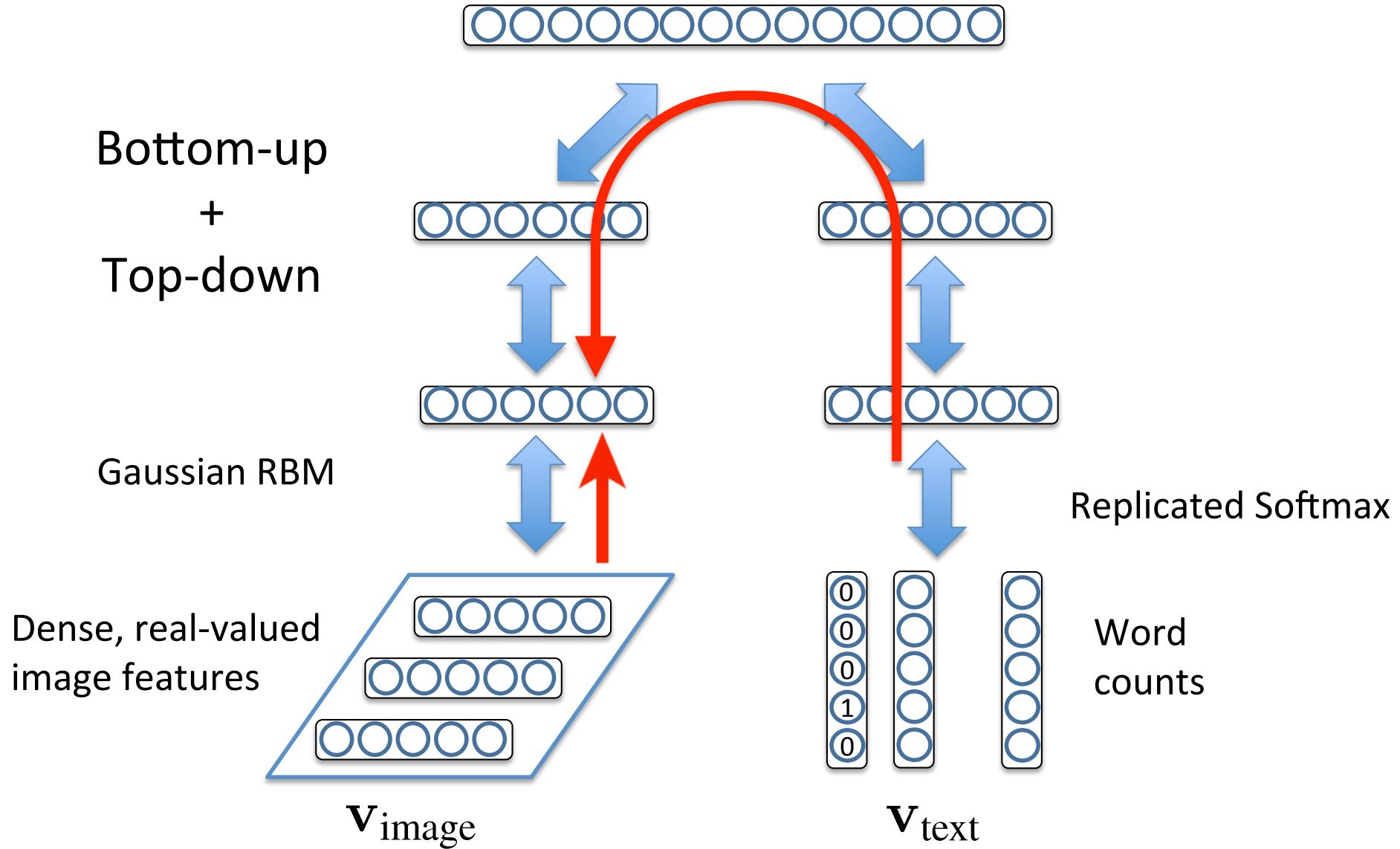
# Multimodal DBM



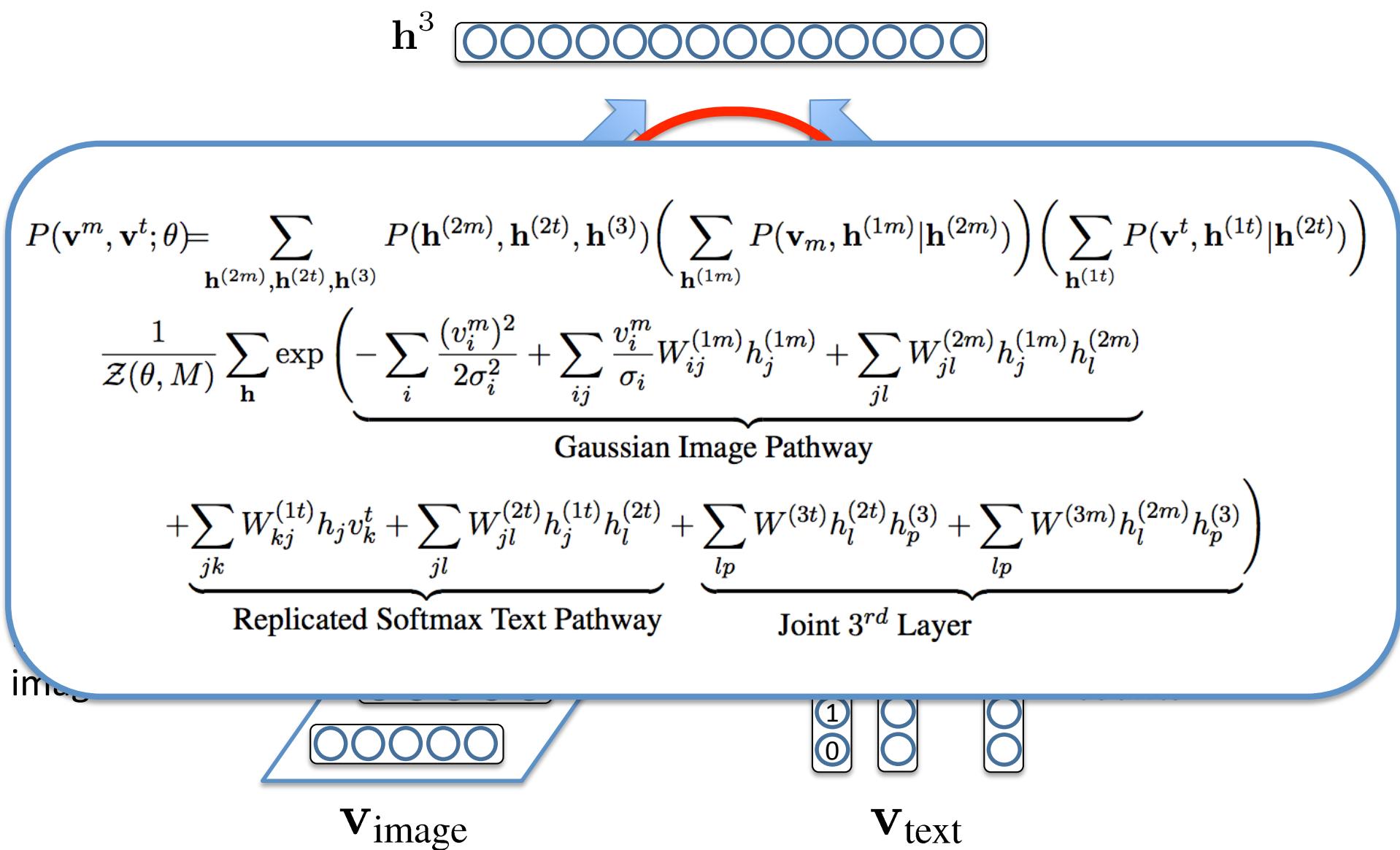
# Multimodal DBM



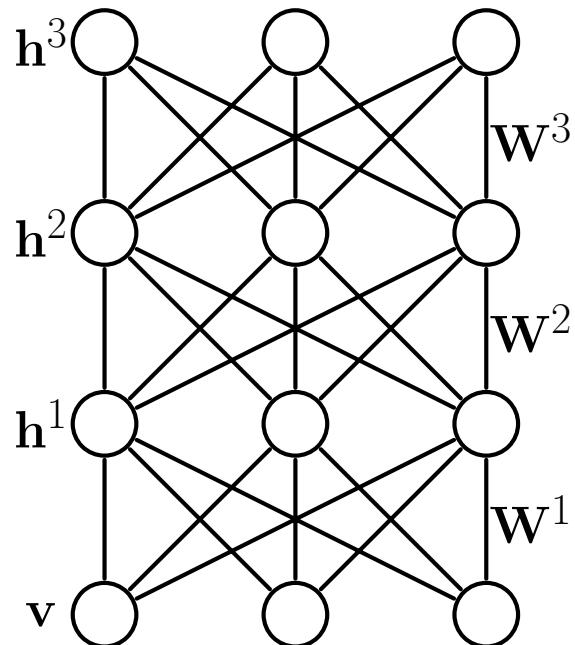
# Multimodal DBM



# Multimodal DBM



# Learning DBMs



(Approximate) Maximum Likelihood:

$$\frac{\partial \log P_\theta(\mathbf{v})}{\partial W^1} = \mathbb{E}_{P_{data}} [\mathbf{v} \mathbf{h}^1 \top] - \mathbb{E}_{P_\theta} [\mathbf{v} \mathbf{h}^1 \top]$$

Mean-field

MCMC

(Gibbs sampling)

$$P_{data}(\mathbf{v}, \mathbf{h}^1) = P_\theta(\mathbf{h}^1 | \mathbf{v}) P_{data}(\mathbf{v})$$

$$P_{data}(\mathbf{v}) = \frac{1}{N} \sum_{n=1}^N \delta(\mathbf{v} - \mathbf{v}_n)$$

Not factorial any more!

Pretraining using a stack of PCD trained RBMs.

# Text Generated from Images

Given



Generated

dog, cat, pet, kitten, puppy, ginger, tongue, kitty, dogs, furry



sea, france, boat, mer, beach, river, bretagne, plage, brittany



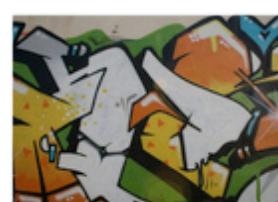
portrait, child, kid, ritratto, kids, children, boy, cute, boys, italy

Given



Generated

insect, butterfly, insects, bug, butterflies, lepidoptera



graffiti, streetart, stencil, sticker, urbanart, graff, sanfrancisco



canada, nature, sunrise, ontario, fog, mist, bc, morning

# Text Generated from Images

Given



Generated

portrait, women, army, soldier,  
mother, postcard, soldiers

Given

A photograph of a white heron with long legs and a long beak, standing on a wire mesh structure that appears to be a bridge or dock. It is positioned on a small patch of land or a wire mesh. The background is a bright blue sky and water.

Generated

obama, barackobama, election,  
politics, president, hope, change,  
sanfrancisco, convention, rally



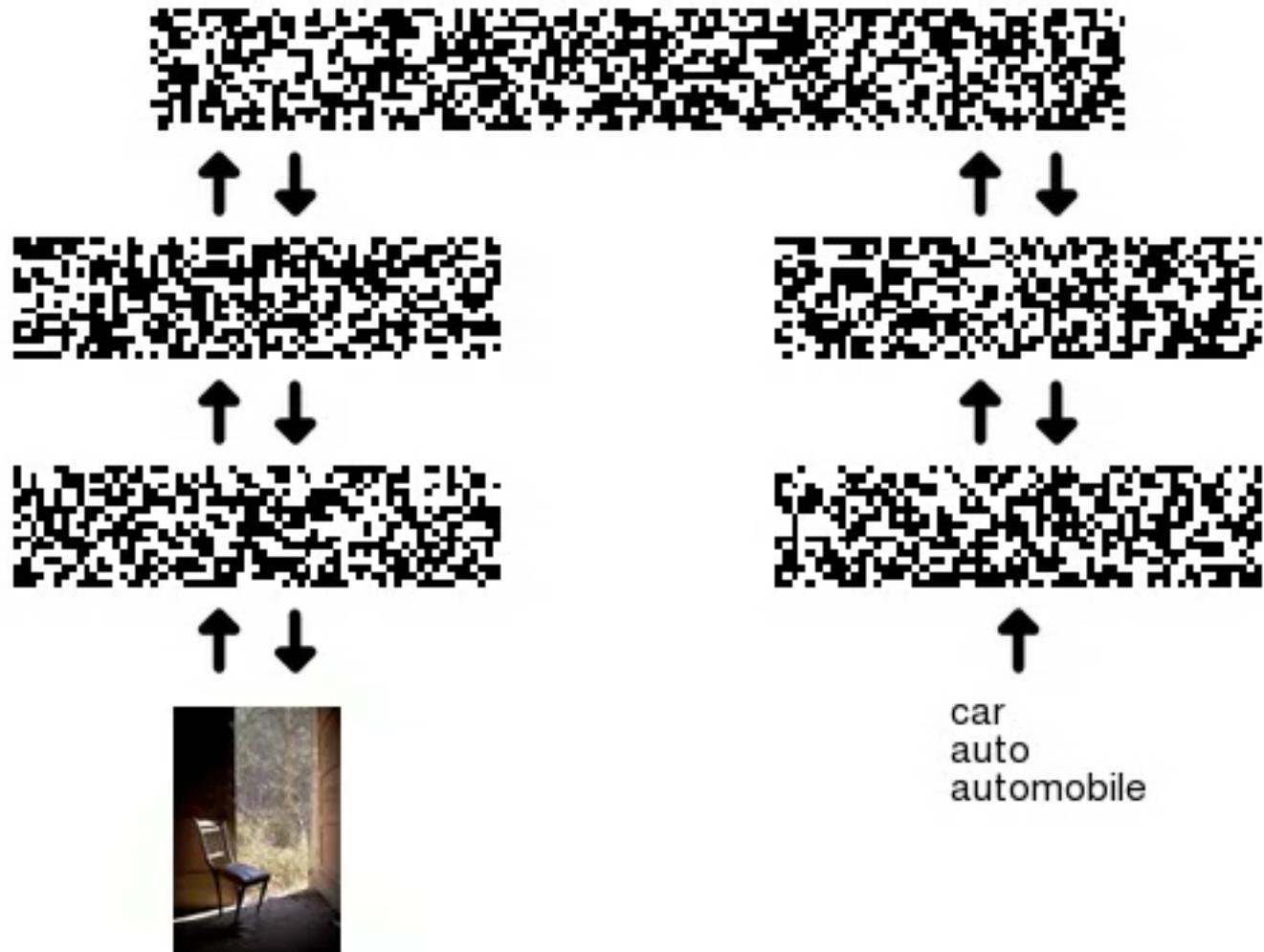
Generated

water, glass, beer, bottle,  
drink, wine, bubbles, splash,  
drops, drop

# Images from Text

Step 0

Sample drawn after  
every 50 steps of  
Gibbs sampling



# Images from Text

Given

water, red,  
sunset

Retrieved



nature, flower,  
red, green



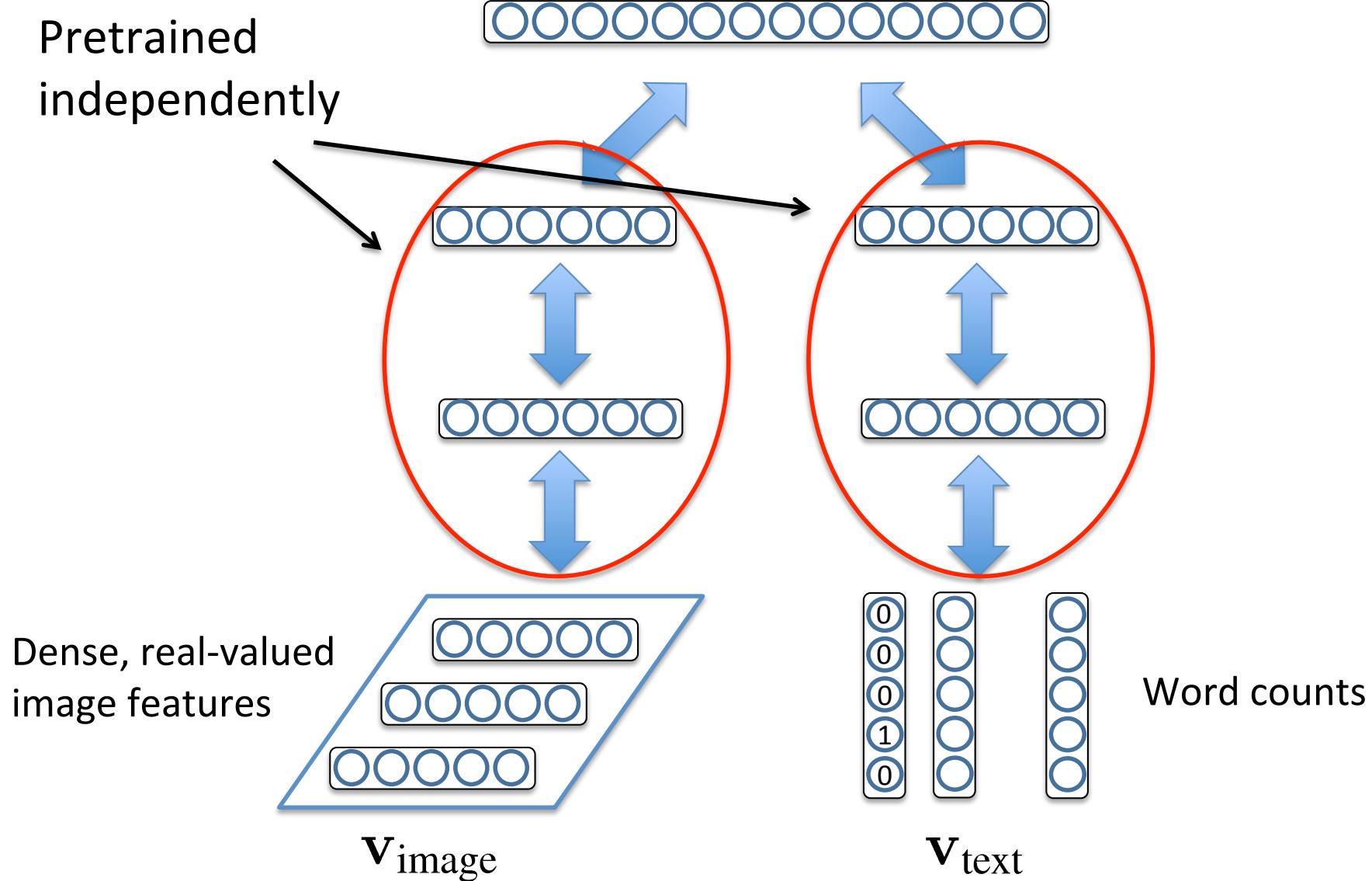
blue, green,  
yellow, colors



chocolate, cake



# Pretraining



# MIR-Flickr Dataset

- 1 million images along with user-assigned tags.



sculpture, beauty, stone



d80



nikon, abigfave, goldstaraward, d80, nikond80



food, cupcake, vegan



anawesomeshot, theperfectphotographer, flash, damniwishidtakenthat, spiritofphotography



nikon, green, light, photoshop, apple, d70



white, yellow, abstract, lines, bus, graphic

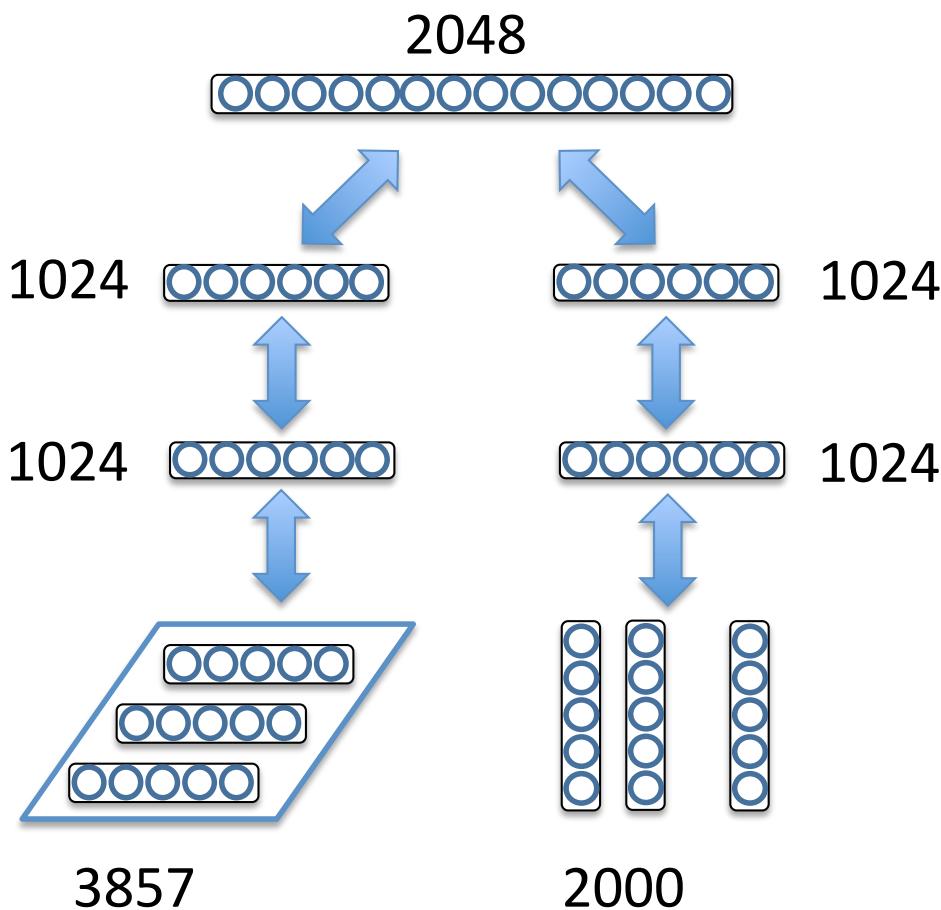


sky, geotagged, reflection, cielo, bilbao, reflejo

Huiskes et. al.

# Data and Architecture

≈ 12 Million parameters



- Image features: Gist, SIFT, MPEG-7 descriptors - 3857-dims.
- 200 most frequent tags.
- 25K labeled subset (15K training, 10K testing)
- 38 classes - *sky, tree, baby, car, cloud* ...

# Results

- Logistic regression on top-level representation.
- Multimodal Inputs

Mean Average Precision

| Learning Algorithm    | MAP   | Precision@50 |
|-----------------------|-------|--------------|
| Random                | 0.124 | 0.124        |
| LDA [Huiskes et. al.] | 0.492 | 0.754        |
| SVM [Huiskes et. al.] | 0.475 | 0.758        |
| DBM-Labelled          | 0.526 | 0.791        |

Same Features, 25K

# Results

- Logistic regression on top-level representation.
- Multimodal Inputs

| Learning Algorithm    | MAP   | Precision@50 |
|-----------------------|-------|--------------|
| Random                | 0.124 | 0.124        |
| LDA [Huiskes et. al.] | 0.492 | 0.754        |
| SVM [Huiskes et. al.] | 0.475 | 0.758        |
| DBM-Labelled          | 0.526 | 0.791        |
| DBM-Unlabelled        | 0.585 | 0.836        |

Mean Average Precision

MAP



Similar  
Features,  
25K  
+ 1 Million  
unlabelled

# Results

- Logistic regression on top-level representation.

- Multimodal Inputs

Mean Average Precision

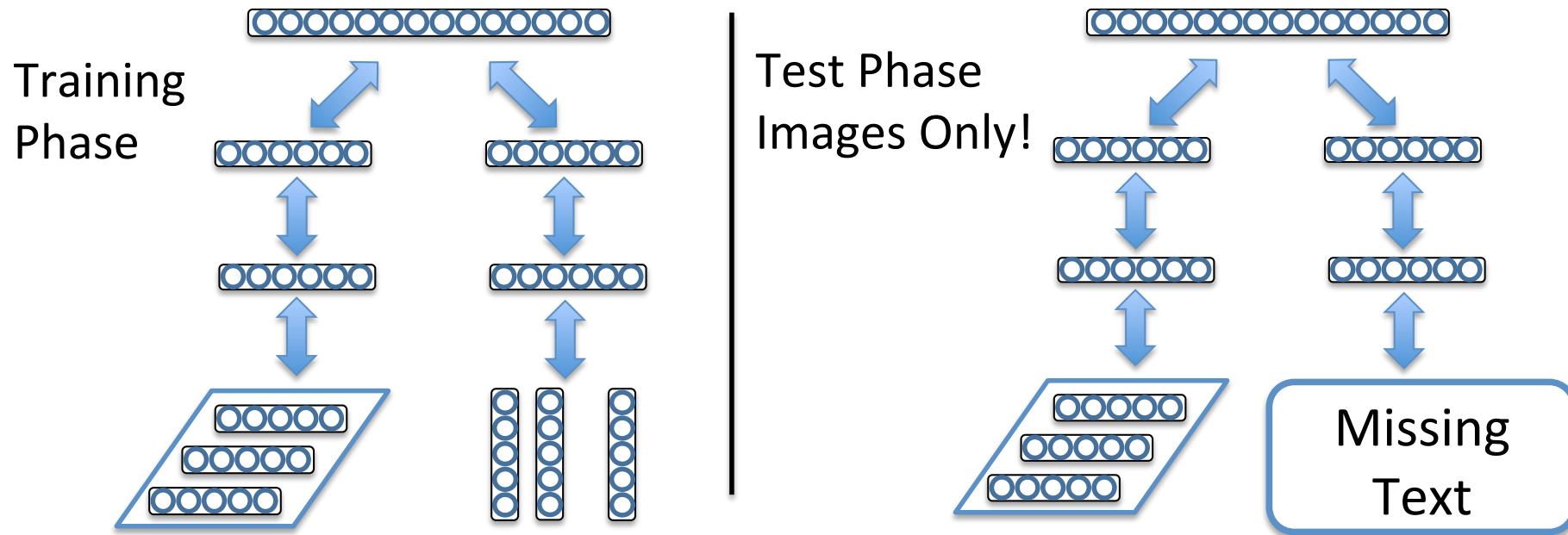
| Learning Algorithm    | MAP   | Precision@50 |
|-----------------------|-------|--------------|
| Random                | 0.124 | 0.124        |
| LDA [Huiskes et. al.] | 0.492 | 0.754        |
| SVM [Huiskes et. al.] | 0.475 | 0.758        |
| DBM-Labelled          | 0.526 | 0.791        |
| DBM-Unlabelled        | 0.585 | 0.836        |
| Deep Belief Net       | 0.599 | 0.867        |
| Autoencoder           | 0.600 | 0.875        |
| DBM                   | 0.609 | 0.873        |

Similar Features, 25K

+ 1 Million unlabelled

+ SIFT features

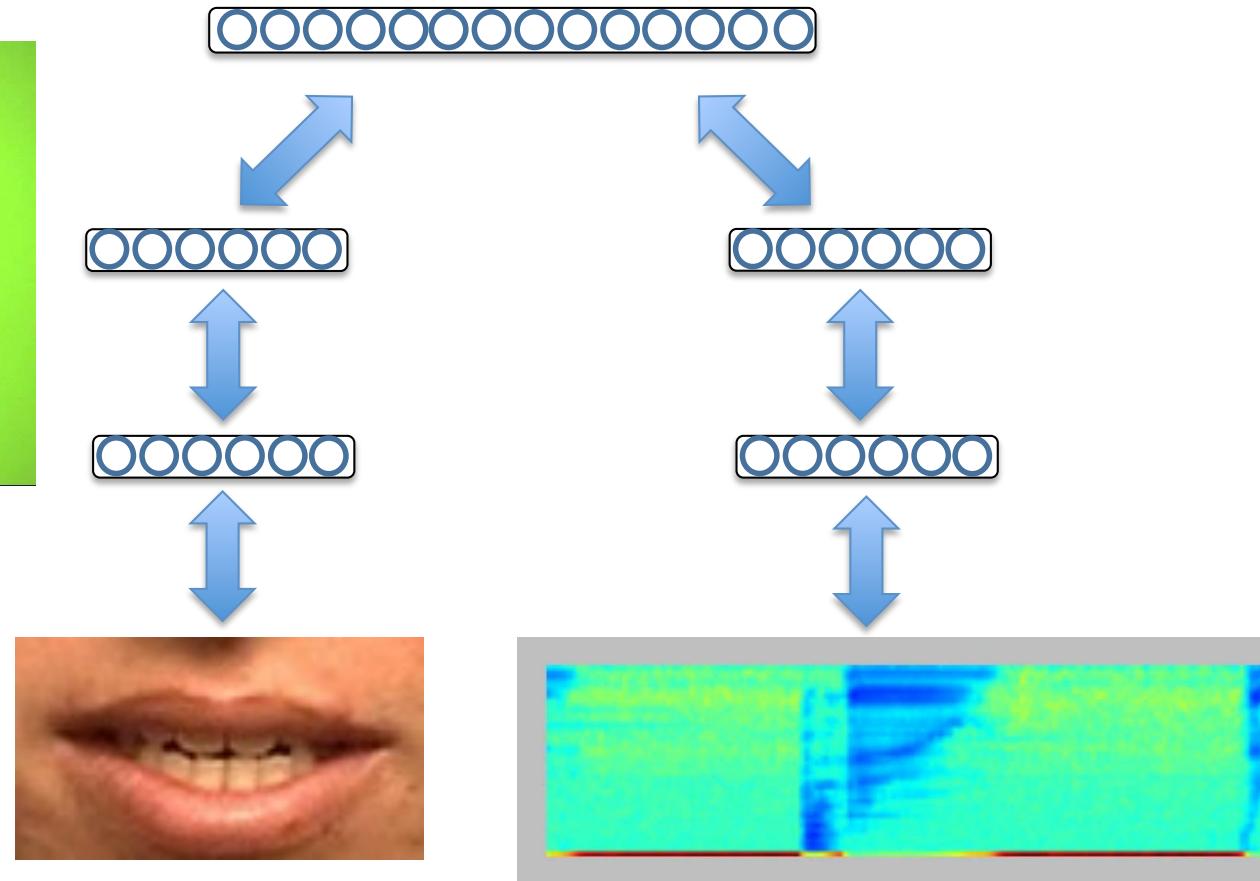
# Results



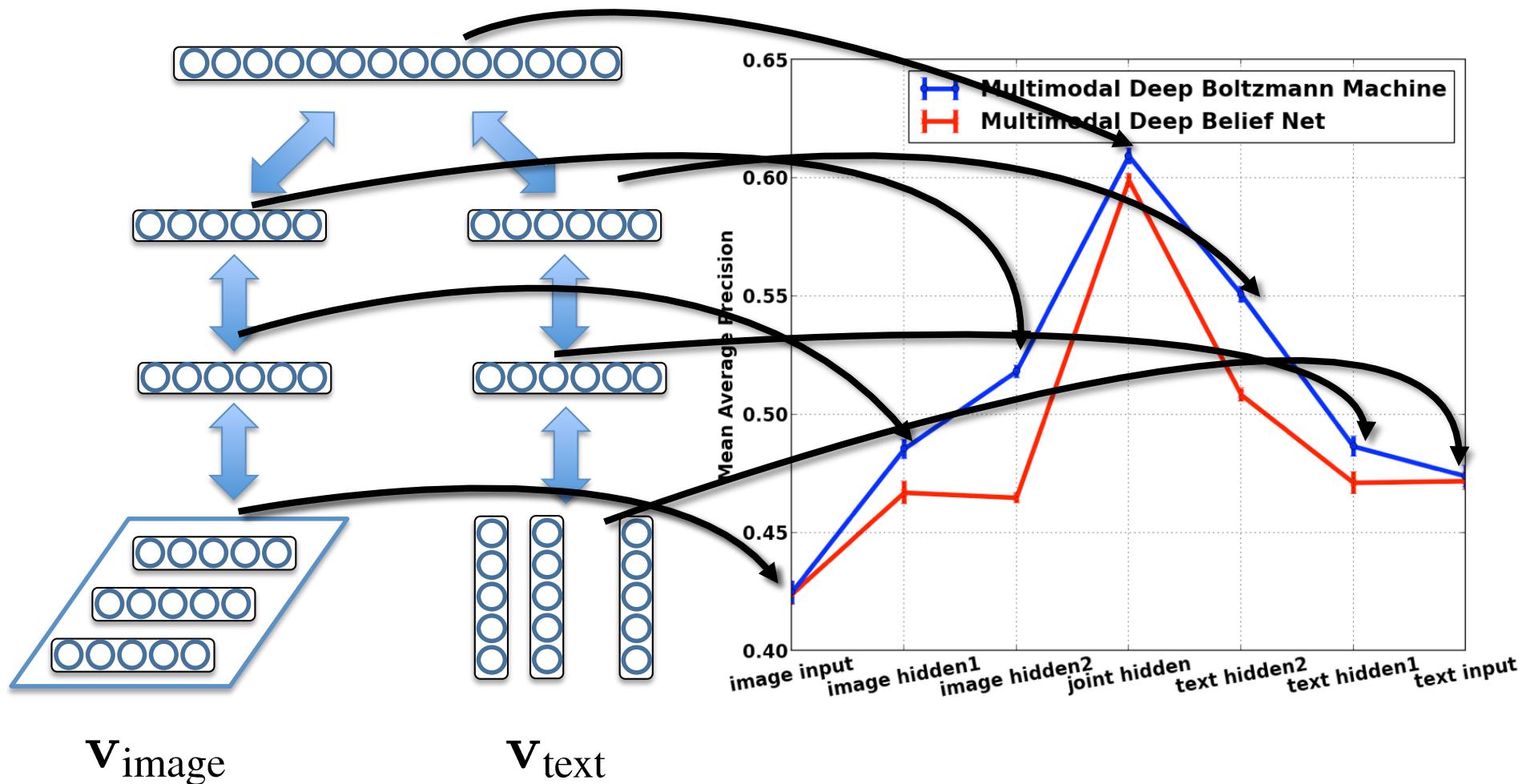
| Learning Algorithm            | MAP   | Precision@50 |
|-------------------------------|-------|--------------|
| Image-LDA [Huiskes et. al.]   | 0.315 | -            |
| Image-SVM [Huiskes et. al.]   | 0.375 | -            |
| Image-DBM                     | 0.469 | 0.803        |
| Multimodal-DBM (missing text) | 0.531 | 0.832        |

# Video and Audio

Cuave Dataset



# Classification Layer-wise

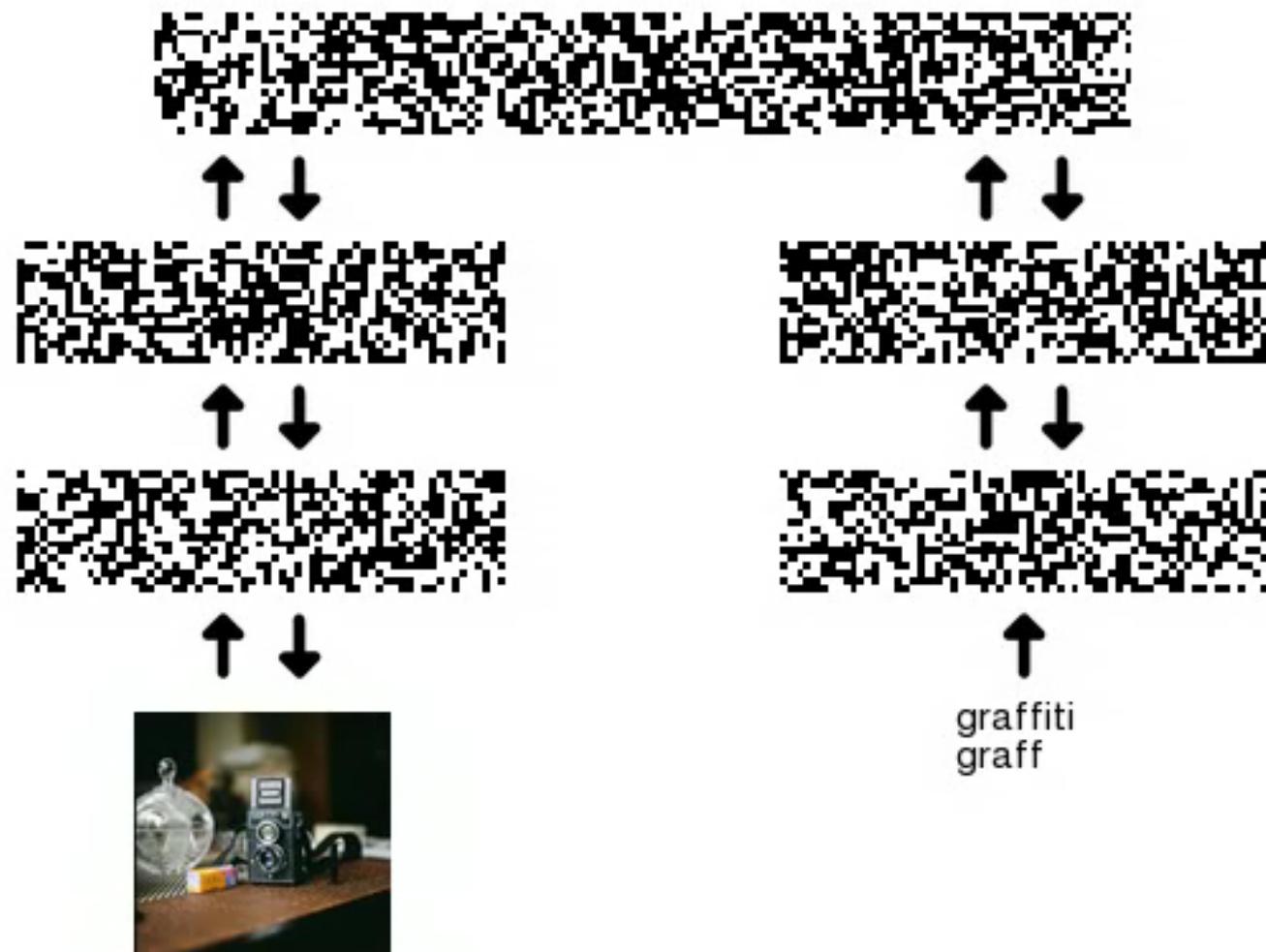


# Images from Text

Step 0

Sample drawn after  
every 50 steps of  
Gibbs sampling

Sample at step 0

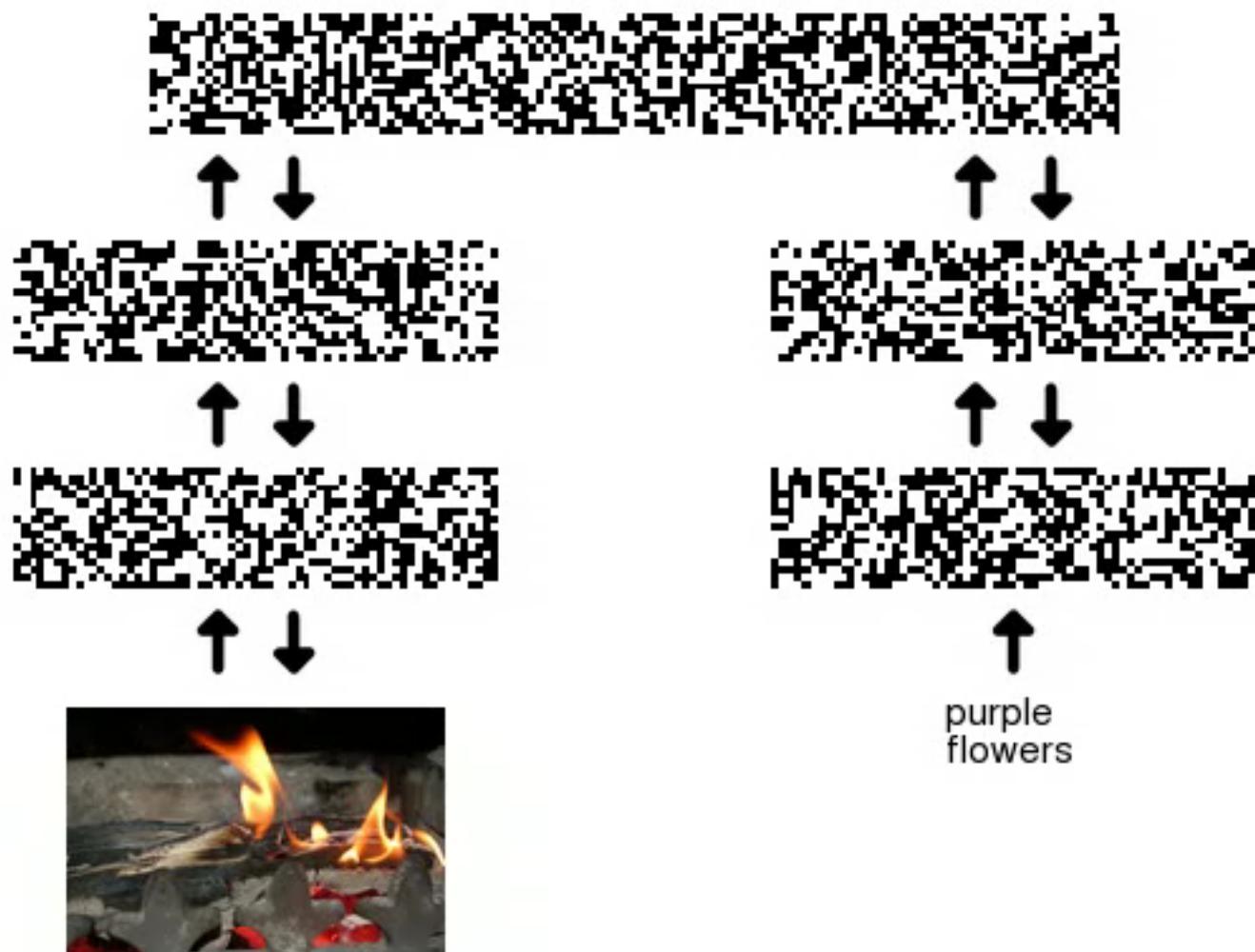


# More Videos

Step 0

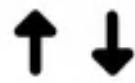
Sample drawn after  
every 50 steps of  
Gibbs sampling

Sample at step 0



# More Videos

Step 0



westcoast  
rosso  
vintage  
28mm  
madrid  
vegan  
hot  
flowerotica  
poppy  
amsterdam

Samples drawn after  
every 50 steps of  
Gibbs updates



Sample at step 0  
westcoast  
rosso  
vintage  
28mm  
madrid  
vegan  
hot  
flowerotica  
poppy  
amsterdam

# More Videos

Step 0



buildings  
insect  
international  
mirror  
save3  
f28  
airplane  
french  
luna  
macrolife

Samples drawn after  
every 50 steps of  
Gibbs updates



Sample at step 0  
buildings  
insect  
international  
mirror  
save3  
f28  
airplane  
french  
luna  
macrolife