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Non-probabilistic Models

> Sparse Coding
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DBNSs vs. DBMs

Deep Belief Network Deep Boltzmann Machine

DBNs are hybrid models:
* Inference in DBNs is problematic due to explaining away.
* Only greedy pretrainig, no joint optimization over all layers.
* Approximate inference is feed-forward: no bottom-up and top-down.

Introduce a new class of models called Deep Boltzmann Machines.



Deep Generative Model

Sanskrit Model P(image)
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25,000 characters from 50
alphabets around the world.

* 3,000 hidden variables
» 784 observed variables
(28 by 28 images)
e About 2 million parameters

Bernoulli Markov Random Field



Deep Generative Model

Conditional
Simulation

P(image [ partial image) Bernoulli Markov Random Field



Deep Generative Model

Conditional
Simulation

Why so difficult?
28

28
. 928X28 nossible images!

P(image [ partial image) Bernoulli Markov Random Field




Fully Observed Models

* Explicitly model conditional probabilities:

n

pmodel(w) — pmodel(xl) Hpmodel(mi ’ L1y... 73373—1)

=2 \
Each conditional can be a
complicated neural network

* A number of successful models, including
.f“’:.}.‘d ngﬂ
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Pixel CNN

>  NADE, RNADE (Larochelle, et.al.
20011)

>  Pixel CNN (van den Ord et. al. 2016)

>  Pixel RNN (van den Ord et. al. 2016)




Restricted Boltzmann Machines

Pair-wise Unary
hidden variables
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Image visible variables

RBM is a Markov Random Field with:

* Stochastic binary visible variables v € {0,1}".
* Stochastic binary hidden variables h € {0,1}".

* Bipartite connections.

Markov random fields, Boltzmann machines, log-linear models.



Model Learning

Hidden units P*(v
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Given a set of i.i.d. training examples
D ={v) v® v, wewantto learn
model parameters § = {W, a, b}.
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Maximize log-likelihood objective:

N
1
L(0) = N Z log Py(v(™)
n=1

Image  visible units

Derivative of the log-likelihood:

OL(B) 1~ 0 ()T Tr T o(n) 0
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Piata(v,h;0) = P(h|v;0) Para(V) Difficult to compute: exponentially many

1 configurations
Piata(V) = > 5(v—vi)




Model Learning

hidden variables

\//l \ ‘ Derivative of the log-likelihood:
% ‘\\\\,,44@55\0//
VA
AR OL(0) _ 4 N
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/‘ > " vih;Py(v,h)

Image visible variables
Easy to /

compute exactly
Difficult to compute:

Piata(v,h;0) = P(h|v;0)Paata(V) exponentially many
1 configurations.
Pda,ta(v) — AT 5(V — V(n))
N zn: Use MCMC

Approximate maximum likelihood learning



Deep Boltzmann Machines

Low-level features:
Edges

®,
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VXNV
ﬁ}}g‘%@ Built from unlabeled inputs.
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Input: Pixels

(Salakhutdinov 2008, Salakhutdinov & Hinton 2012)



Deep Boltzmann Machines

Learn simpler representations,
then compose more complex ones

Higher-level features:
Combination of edges

> Low-level features:
Edges

AT
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Image

S

Built from unlabeled inputs.

Input: Pixels

(Salakhutdinov 2008, Salakhutdinov & Hinton 2012)



Mathematical Formulation

P*(v) 1 Tl 17 117212 2T 11731.3
P — — h h h h h
9 (V) Z(0) Z(0) hl%:hg exp [V %% + %4 - %%

Deep Boltzmann Machine 0 = {W' W? W?>} model parameters

 Dependencies between hidden variables.
* All connections are undirected.

* Bottom-up and Top-down:

P(h? =1|h',h?) = U(Z Wik + ) Wg’mh;>
7 m

7 ™

Bottom-up Top-Down

Input Unlike many existing feed-forward models: ConvNet (LeCun),
HMAX (Poggio et.al.), Deep Belief Nets (Hinton et.al.)



Mathematical Formulation

_ (V) 1

Tl 1T 11721.2 2T 11731.3
= exp|v. W-h™+h" W°h“ +h Wh]
Z(0)  Z(0) Z [

Pg (V)

Deep Boltzmann Machine

 Conditional Distributions:
P(h} =1v,h?) =0 ( > Whoi+) Wf@i)
7 k
P(h} = 1|ht, h?) J(Z Whhy + ) ngh;)

J
a(zwgmhz)
k

P(h3 = 1|h?)

* Note that exact computation of
P(h',h? h3|v) isintractable.

Input



Mathematical Formulation

Pr(v) 1

V=20 Tz

> exp [valhl +h' W2h?+h? Wins
6)) hl h2 h3

Neural Network
Output

Deep Boltzmann Machine Deep Belief Network

Input Unlike many existing feed-forward models: ConvNet (LeCun),
HMAX (Poggio), Deep Belief Nets (Hinton)



Mathematical Formulation

P*(v)

PH(V) — Z(@)

1
=0 N exp [valhl +ht'Wn? + h2TW3h3]
h! h2, h3

Neural Network
Output

Deep Boltzmann Machine Deep Belief Network

ouUaJdul -

Input




Mathematical Formulation

P*(v) 1 Tl 17 117212 2T 11731.3
P — — h h h h h
9 (V) Z(0) Z(0) hl%:hg exp [V %% + %4 - %%

Deep Boltzmann Machine 0 = {W' W? W?>} model parameters

 Dependencies between hidden variables.

Maximum likelihood learning:

0log Py(v)

oW1 [Vth] —Ep, [Vth]

— Ep

data

Problem: Both expectations are
intractable!

Learning rule for undirected graphical models:
MRFs, CRFs, Factor graphs.



Approximate Learning

1
Z(0)

Py(v,hD h® h®) = exp [vTW<1>h<1> L hO T WOR® L @ KRG

(Approximate) Maximum Likelihood:

0log Py(v) T T
oW1 — Epdata [Vhl ] - EP@ [Vhl ]

* Both expectations are intractable!

§(V — Vn) Not factorial any more!




Py(v, h) h®), h(3)) _
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Approximate Learning

1
Z(0)

exp [VTw(l)h(l) + h(l)TW(2)h(2) 4 h(Q)TW(g)h(g)]

(Approximate) Maximum Likelihood:

0log Py(v)
oW1l

1T

= Ep,,,.[vh' |- E [h”]

ANAANRY

Data

\

§(V — Vn) Not factorial any more!



Approximate Learning

Py(v,h® h® h®) = _]

T WD L D) @1 L h@) ! 1GIRG)
exp |[v. W'"Vh'" 4+ h W' h'* + h Wh

Z(0)
(Approximate) Maximum Likelihood:
810g Pg A% T
8W1( ) — Epdata [Vhl ) EP@ [Vhl ]
Variational Stochastic
Inference Approximation
X (MCMC-based)
Pdata(va h ) :data (V)
N
Paata (V) = % 6(v — vn)\ Not factorial any more!

n=1



Previous Work

Many approaches for learning Boltzmann machines have been
proposed over the last 20 years:

* Hinton and Sejnowski (1983),

* Peterson and Anderson (1987) . _
» Galland (1991) Real-world applications — thousands

* Kappen and Rodriguez (1998) of hidden and observed variables

* Lawrence, Bishop, and Jordan (1998) ith milli f
* Tanaka (1998) with millions of parameters.

* Welling and Hinton (2002)
e Zhu and Liu (2002)

* Welling and Teh (2003)

* Yasuda and Tanaka (2009)

Many of the previous approaches were not successful for learning
general Boltzmann machines with hidden variables.

Algorithms based on Contrastive Divergence, Score Matching, Pseudo-
Likelihood, Composite Likelihood, MCMC-MLE, Piecewise Learning, cannot
handle multiple layers of hidden variables.



New Learning Algorithm

Posterior Inference Simulate from the Model

Unconditional

Approximate Approximate the m
conditional joint distribution

Pdata(h’V) Pmodel(h7 V)

(Salakhutdinov, 2008; NIPS 2009)



New Learning Algorithm

Posterior Inference Simulate from the Model

Approximate Approximate the
conditional joint distribution

Pdata(h’V) Pmodel(h7 V)

EPdata [Vh—r] Epmodel [Vh—r
Data-dependent Data-independe
1\ J
Y
ensity Match /
N\
.\QQ x v

(Salakhutdinov, 2008; NIPS 2009)



New Learning Algorithm

Posterior Inference Simulate from the Model

Markov Chain
[I\/Iean-FieId} _Monte Carlo

m v : L
EPdata [Vh—r] Epmodel VhT'
Da

Data-dep
A\S Data-inde




Sampling from DBMs

Sampling from two-hidden layer DBM by running a Markov chain:

h2|h1

h° OOO | OOO OOO
\P (h'}v, h/

.T\?ESEZ'V h! OO OO OO
v OOO OOO . OOO

Sample

P(hL =1|v,h?)

1+ exp(—>_, VV1 v — . W2 h?)
1

1 +exp(—>_,, W iht,)
1

1 +exp(=>., Wi hl)

m MMM

P(hi =1/h")

P(v; = 1|hY)




Stochastic Approximation

Time t=1 t=2 t=3
h? h?
Update 6 Update 65
@ ) — @ ) — G
01
X1 Tgl (X1 %X()) Xo v T92 (X2 %X1> X3 v T93 (Xg %Xg)

Update ¢, and x; sequentially, where x = {v,h' h*}

* Generate x; ~ Ty, (Xs < X;_1) by simulating from a Markov chain
that leaves Py, invariant (e.g. Gibbs or M-H sampler)

* Update 6; by replacing intractable Ep,, [VhT] with a point
estimate [v;h, ]

In practice we simulate several Markov chains in parallel.

Robbins and Monro, Ann. Math. Stats, 1957
L. Younes, Probability Theory 1989



Learning Algorithm

Update rule decomposes:

.
9t—|—1 — et -+ Ot (Epdata [VhT] _Epet [VhT]) + o (EPQ VhT Z V(m) hgm) )
§ J 4 J
Y Y
True gradient Perturbation term €;

Almost sure convergence guarantees as learning rate oy — 0

Problem: High-dimensional data: " n15rkov Chain
the probability landscape is

highly multimodal. Monte Carlo

Key insight: The transition operator can t
any valid transition operator — Tempered
Transitions, Parallel/Simulated Tempering

Connections to the theory of stochastic approximation and adaptive MCMC.



Variational Inference

Approximate intractable distribution Py(h|v) with simpler, tractable
distribution @, (h|v):
Po(h, v)

log Py(v logZPg (h,v) logZQu h|v) 0, (b[v)
7

Posterj ference
PQ(ha V)
> h|v)1
Mean-Field 1
— Z Q. (h|v)log Py(h,v) —log Z(6) + Z Qu(h|v)log
h |\ ~ J h Q'u(h|V)

E . v W'h! + h! 'W2h? + h?' Wh? ,
Y

Variational Lower Bound

= log Pp(v) — KL(Q,(h[v)||Py(h|v))

Q(z)

Pl) dx

KL(QIIP) = [ Qo)log
Minimize KL between approximating and true

distributions with respect to variational parameters 1 .

(Salakhutdinov, 2008; Salakhutdinov & Larochelle, Al & Statistics 2010)



Variational Inference

Approximate intractable distribution P,(h|v) with simpler, tractable

distribution @, (h|v): Q(z)

%dx

KL(QIP) = [ Q(o)log

log Ps(v) > log Ps(v) — KL(Q,(h|v)| Pa(h[v))

(& J
Y

Posterj ference o
/m Variational Lower Bound
2 . 14, : e
Mean-Field: Choose a fully factorized distribution:

Mean-Field

F
Qu(hlv) = H q(h;|v) with q(h; =1|v) =
j=1
E Variational Inference: Maximize the lower bound w.r.t.
Variational parameters (¢ .

(1) _ 1 w2 2
Nonlinear fixed-  # _"(ZW Vi Z kP )
: L ,
point equations: M;ﬁ) _ U(Z fkﬁ{gl) +ZW mugg))

()




Variational Inference

Approximate intractable distribution P,(h|v) with simpler, tractable

distribution @, (h|v): Q(z)
u( ‘ ) KL(Q||P) :/Q(:U) log %dw‘
log Py(v) > log Py(v) — KL(Q, (h[v)|| Py(h[v))
| 1\ ~ J
Posterior Inference L
Variational Lower Bound Unconditional Simulation

t o 4
Mean-Field

Markov Chain
Monte Carlo

1. Variational Inference: Maximize the lower
bound w.r.t. variational parameters

2. MCMC: Apply stochastic approximation
E to update model parameters

Almost sure convergence guarantees to an asymptotically
stable point.



Variational Inference

Approximate intractable distribution P,(h|v) with simpler, tractable

distribution @, (h|v): Q(z)

KL(Q||P) = /Q@) log 5y da
log Py(v) > log Py(v) — KL(Q(h|v)||Pa(h|v))
| 1\ ~ J
Posterior Inference L
Variational Lower Bound Unconditional Simulation

o
Mean-Field

2.\ . N
w{ Learning can scale to

_ millions of examples |

Almost sure convergence guarantees to an asymptotically
stable point.




Good Generative Model?

Handwritten Characters



Good Generative Model?

Handwritten Characters
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Good Generative Model?

Handwritten Characters

Simulated Real Data



Good Generative Model?

Handwritten Characters

Real Data Simulated



Good Generative Model?

Handwritten Characters

e ac elMan oo
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Good Generative Model?

MNIST Handwritten Digit Dataset
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Handwriting Recognition

MNIST Dataset Optical Character Recognition
60,000 examples of 10 digits 42,152 examples of 26 English letters

Learning Algorithm Error Learning Algorithm Error
Logistic regression 12.0% Logistic regression 22.14%
K-NN 3.09% K-NN 18.92%
Neural Net (platt 2005) 1.53% Neural Net 14.62%
SVM (Decoste et.al. 2002) 1.40% SVM (Larochelle et.al. 2009) 9.70%
Deep Autoencoder 1.40% Deep Autoencoder 10.05%
(Bengio et. al. 2007) (Bengio et. al. 2007)

Deep Belief Net 1.20% Deep Belief Net 9.68%
(Hinton et. al. 2006) (Larochelle et. al. 2009)

DBM 0.95% DBM 8.40%

Permutation-invariant version.



Generative Model of 3-D Objects

£ L X s K «
AR S e
=N (= E =

24,000 examples, 5 object categories, 5 different objects within each
category, 6 lightning conditions, 9 elevations, 18 azimuths.



3-D Object Recognition

Pattern Completion

Learning Algorithm Error & l ‘
Logistic regression 22.5% I
= LT

K-NN (LeCun 2004) 18.92%
SVM (Bengio & LeCun 2007) 11.6%

Deep Belief Net (Nair & 9.0% e .
Hinton 2009) w \)rj ﬁ‘

DBM 7.2%

Permutation-invariant version.



Learning Hierarchical Representations

Deep Boltzmann Machines:

Learning Hierarchical Structure - | roream
in Features: edges, combination Ll
of edges. “

* Performs well in many application domains
* Fast Inference: fraction of a second
* Learning scales to millions of examples



Learning Hierarchical Representations

Deep Boltzmann Machines:

. ~ Y e
-eaming M) Need more structured [ -
In Features
ofedges. | and robust models

The Shape Boltzmann Machine: a Hallucinations in Charles Bonnet
Strong Model of Object Shape Syndrome Induced by Homeostasis:
(Eslami, Heess, Winn, CVPR 2012). a Deep Boltzmann Machine Model

(Reichert, Series, Storkey, NIPS 2012)

perception loss of input




