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Deep Boltzmann Machines I	



Unsupervised	Learning	

Non-probabilisDc	Models	
Ø  Sparse	Coding	
Ø  Autoencoders	
Ø  Others	(e.g.	k-means)	

Explicit	Density	p(x)	

ProbabilisDc	(GeneraDve)	
Models	

Tractable	Models	
Ø  Fully	observed	

Belief	Nets	
Ø  NADE	
Ø  PixelRNN	

Non-Tractable	Models	
Ø  Boltzmann	Machines	
Ø  VariaDonal	

Autoencoders	
Ø  Helmholtz	Machines	
Ø  DBNs,	many	others…	

Ø  GeneraDve	Adversarial	
Networks	

Ø  Moment	Matching	
Networks	

Implicit	Density	
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Deep Belief Network Deep Boltzmann Machine

DBNs	vs.	DBMs	

DBNs	are	hybrid	models:		
• 	Inference	in	DBNs	is	problemaDc	due	to	explaining	away.	
• 	Only	greedy	pretrainig,	no	joint	op5miza5on	over	all	layers.		
• 	Approximate	inference	is	feed-forward:	no	bo;om-up	and	top-down.				

Introduce	a	new	class	of	models	called	Deep	Boltzmann	Machines.	



25,000	characters	from	50	
alphabets	around	the	world.	

• 	3,000	hidden	variables	
• 	784		observed	variables	
			(28	by	28	images)	
• 	About	2	million	parameters	

Model	P(image)	

Bernoulli	Markov	Random	Field	

Sanskrit	

Deep	GeneraDve	Model	



P(image|parDal	image)	 Bernoulli	Markov	Random	Field	

Deep	GeneraDve	Model	

CondiDonal	
SimulaDon	



CondiDonal	
SimulaDon	

P(image|parDal	image)	

Why	so	difficult?	

28	

28	

possible	images!	

Bernoulli	Markov	Random	Field	

Deep	GeneraDve	Model	



Fully	Observed	Models	

BRIEF ARTICLE

THE AUTHOR

Maximum likelihood
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• 	Explicitly	model	condiDonal	probabiliDes:	

Each	condiDonal	can	be	a	
complicated	neural	network	

• 	A	number	of	successful	models,	including		

Ø  NADE,	RNADE	(Larochelle,	et.al.	

20011)	

Ø  Pixel	CNN	(van	den	Ord	et.	al.	2016)	

Ø  Pixel	RNN	(van	den	Ord	et.	al.	2016)	

Pixel	CNN	



Restricted	Boltzmann	Machines	

RBM	is	a	Markov	Random	Field	with:	

• 	StochasDc	binary	hidden	variables																							
• 	BiparDte	connecDons.	

Pair-wise	 Unary	

• 	StochasDc	binary	visible	variables																										

Markov	random	fields,	Boltzmann	machines,	log-linear	models.		

Image						visible	variables	

		hidden	variables	



Model	Learning	

Difficult	to	compute:	exponenDally	many		
configuraDons	

Image						visible	units	

		Hidden	units	

Given	a	set	of	i.i.d.	training	examples		
	 	 	 														,	we	want	to	learn		

model	parameters 	 	 						.				

Maximize	log-likelihood	objecDve:	

DerivaDve	of	the	log-likelihood:	



Model	Learning	

Image						visible	variables	

		hidden	variables	

DerivaDve	of	the	log-likelihood:		

Easy	to	
compute	exactly	

Difficult	to	compute:	
exponenDally	many	
configuraDons.		

Approximate	maximum	likelihood	learning	

Use	MCMC	



Image	

Low-level	features:	
Edges	

Input:	Pixels	

Built	from	unlabeled	inputs.		

Deep	Boltzmann	Machines	

(Salakhutdinov 2008, Salakhutdinov & Hinton 2012)



Image	

Higher-level	features:	
CombinaDon	of	edges	

Low-level	features:	
Edges	

Input:	Pixels	

Built	from	unlabeled	inputs.		

Deep	Boltzmann	Machines	

Learn	simpler	representaDons,	
then	compose	more	complex	ones	

(Salakhutdinov 2008, Salakhutdinov & Hinton 2012)



MathemaDcal	FormulaDon	
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model	parameters	

•  Bo0om-up	and	Top-down:	

Deep	Boltzmann	Machine	

Bo0om-up	 Top-Down	

Unlike	many	exisDng	feed-forward	models:	ConvNet	(LeCun),	
HMAX	(Poggio	et.al.),	Deep	Belief	Nets	(Hinton	et.al.)	

•  Dependencies	between	hidden	variables.	
•  All	connecDons	are	undirected.	

Input	



MathemaDcal	FormulaDon	
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Deep	Boltzmann	Machine	
•  CondiDonal	DistribuDons:	

Input	
•  Note	that	exact	computaDon	of			
																															is	intractable.		
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Neural	Network		
Output	
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MathemaDcal	FormulaDon	

Deep	Boltzmann	Machine	
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Deep	Belief	Network	

Unlike	many	exisDng	feed-forward	models:	ConvNet	(LeCun),	
HMAX	(Poggio),	Deep	Belief	Nets	(Hinton)	

Input	
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MathemaDcal	FormulaDon	

Deep	Boltzmann	Machine	 Deep	Belief	Network	
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Unlike	many	exisDng	feed-forward	models:	ConvNet	(LeCun),	
HMAX	(Poggio),	Deep	Belief	Nets	(Hinton)	

inference	

Neural	Network		
Output	

Input	



MathemaDcal	FormulaDon	

model	parameters	

Maximum	likelihood	learning:	

Problem:	Both	expectaDons	are	
intractable!	

Learning	rule	for	undirected	graphical	models:		
MRFs,	CRFs,	Factor	graphs.		

•  Dependencies	between	hidden	variables.	

Deep	Boltzmann	Machine	
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Approximate	Learning	

(Approximate)	Maximum	Likelihood:	

Not	factorial	any	more!	
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•  Both	expectaDons	are	intractable!		



Data	

Approximate	Learning	

(Approximate)	Maximum	Likelihood:	h3

h2

h1

v

W3

W2

W1

Not	factorial	any	more!	



Approximate	Learning	

(Approximate)	Maximum	Likelihood:	

Not	factorial	any	more!	
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W1 VariaDonal	
	Inference	

StochasDc	
ApproximaDon		
(MCMC-based)	



Previous	Work	
Many	approaches	for	learning	Boltzmann	machines	have	been	
proposed	over	the	last	20	years:	
• 	Hinton	and	Sejnowski	(1983),	
• 	Peterson	and	Anderson	(1987)	
• 	Galland	(1991)		
• 	Kappen	and	Rodriguez	(1998)	
• 	Lawrence,	Bishop,	and	Jordan	(1998)	
• 	Tanaka	(1998)		
• 	Welling	and	Hinton	(2002)		
• 	Zhu	and	Liu	(2002)	
• 	Welling	and	Teh	(2003)	
• 	Yasuda	and	Tanaka	(2009)			

Many	of	the	previous	approaches	were	not	successful	for	learning	
general	Boltzmann	machines	with	hidden	variables.	

Real-world	applicaDons	–	thousands		
of	hidden	and	observed	variables	
with	millions	of	parameters.	

Algorithms	based	on	ContrasDve	Divergence,	Score	Matching,	Pseudo-
Likelihood,	Composite	Likelihood,	MCMC-MLE,	Piecewise	Learning,	cannot	
handle	mulDple	layers	of	hidden	variables.			



New	Learning	Algorithm	

CondiDonal	 UncondiDonal	

Posterior	Inference	 Simulate	from	the	Model	

Approximate	
condiDonal	

Approximate	the	
joint	distribuDon	

(Salakhutdinov, 2008; NIPS 2009)



CondiDonal	 UncondiDonal	

Posterior	Inference	 Simulate	from	the	Model	

Approximate	the	
joint	distribuDon	

Data-dependent	

Approximate	
condiDonal	

New	Learning	Algorithm	

Data-independent	

density	 Match		

(Salakhutdinov, 2008; NIPS 2009)



CondiDonal	 UncondiDonal	

Posterior	Inference	 Simulate	from	the	Model	

Approximate	the	
joint	distribuDon	

Data-dependent	

Approximate	
condiDonal	

New	Learning	Algorithm	

Data-independent	

Match		

Key	Idea	of	Our	Approach:	

Markov	Chain	
Monte	Carlo	

Data-dependent:					Varia5onal	Inference,	mean-field	theory	
Data-independent:		Stochas5c	Approxima5on,	MCMC	based	

Mean-Field	



Sampling	from	DBMs	
Sampling	from	two-hidden	layer	DBM	by	running	a	Markov	chain:	

…	
Sample	

Randomly	
iniDalize	
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•  Generate 	 	 	 	 						by	simulaDng	from	a	Markov	chain	
that	leaves									invariant	(e.g.	Gibbs	or	M-H	sampler)	

•  Update 						by	replacing	intractable		 	 								with	a	point	
esDmate		

In	pracDce	we	simulate	several	Markov	chains	in	parallel.	
Robbins	and	Monro,	Ann.	Math.	Stats,	1957	
	L.	Younes,		Probability	Theory	1989	

Update						and						sequenDally,		where	



Learning	Algorithm	
Update	rule	decomposes:	

True	gradient	 PerturbaDon	term	
Almost	sure	convergence	guarantees	as	learning	rate			

Problem:	High-dimensional	data:	
the	probability	landscape	is		
highly	mulDmodal.	

ConnecDons	to	the	theory	of	stochasDc	approximaDon	and	adapDve	MCMC.	

Key	insight:	The	transiDon	operator	can	be		
any	valid	transiDon	operator	–	Tempered		
TransiDons,	Parallel/Simulated	Tempering.	

Markov	Chain	
Monte	Carlo	



Posterior	Inference	

Mean-Field	

VariaDonal	Inference	
Approximate	intractable	distribuDon																	with	simpler,	tractable	
distribuDon 	 					:	

(Salakhutdinov, 2008; Salakhutdinov & Larochelle, AI & Statistics 2010)

VariaDonal	Lower	Bound	

Minimize	KL	between	approximaDng	and	true	
distribuDons	with	respect	to	variaDonal	parameters					.		



Posterior	Inference	

Mean-Field	

VariaDonal	Inference	
Approximate	intractable	distribuDon																	with	simpler,	tractable	
distribuDon 	 					:	

Mean-Field:	Choose	a	fully	factorized	distribuDon:	

with	

Nonlinear	fixed-	
point	equaDons:	

Varia5onal	Inference:	Maximize	the	lower	bound	w.r.t.	
VariaDonal	parameters					.		

VariaDonal	Lower	Bound	



Posterior	Inference	

Mean-Field	

VariaDonal	Inference	
Approximate	intractable	distribuDon																	with	simpler,	tractable	
distribuDon 	 					:	

1.	Varia5onal	Inference:	Maximize	the	lower		
bound	w.r.t.	variaDonal	parameters						

Markov	Chain	
Monte	Carlo	

2.	MCMC:	Apply	stochasDc	approximaDon		
to	update	model	parameters					 										

Almost	sure	convergence	guarantees	to	an	asymptoDcally	
stable	point.	

UncondiDonal	SimulaDon	VariaDonal	Lower	Bound	



Posterior	Inference	

Mean-Field	

VariaDonal	Inference	
Approximate	intractable	distribuDon																	with	simpler,	tractable	
distribuDon 	 					:	

1.	Varia5onal	Inference:	Maximize	the	lower		
bound	w.r.t.	variaDonal	parameters						

Markov	Chain	
Monte	Carlo	

2.	MCMC:	Apply	stochasDc	approximaDon		
to	update	model	parameters					 										

Almost	sure	convergence	guarantees	to	an	asymptoDcally	
stable	point.	

UncondiDonal	SimulaDon	

Fast	Inference	

Learning	can	scale	to	
millions	of	examples	

VariaDonal	Lower	Bound	



Good	GeneraDve	Model?	
Handwri0en	Characters	



Good	GeneraDve	Model?	
Handwri0en	Characters	



Good	GeneraDve	Model?	
Handwri0en	Characters	

Real	Data	Simulated	



Good	GeneraDve	Model?	
Handwri0en	Characters	

Real	Data	 Simulated	



Good	GeneraDve	Model?	
Handwri0en	Characters	



Good	GeneraDve	Model?	
MNIST	Handwri0en	Digit	Dataset	



HandwriDng	RecogniDon	

Learning	Algorithm	 Error	

LogisDc	regression	 12.0%	
K-NN		 3.09%	
Neural	Net	(Pla0	2005)	 1.53%	
SVM	(Decoste	et.al.	2002)	 1.40%	
Deep	Autoencoder	
(Bengio	et.	al.	2007)		

1.40%	

Deep	Belief	Net	
(Hinton	et.	al.	2006)		

1.20%	

DBM		 0.95%	

Learning	Algorithm	 Error	

LogisDc	regression	 22.14%	
K-NN		 18.92%	
Neural	Net	 14.62%	
SVM	(Larochelle	et.al.	2009)	 9.70%	
Deep	Autoencoder	
(Bengio	et.	al.	2007)		

10.05%	

Deep	Belief	Net	
(Larochelle	et.	al.	2009)		

9.68%	

DBM	 8.40%	

MNIST	Dataset	 OpDcal	Character	RecogniDon	
60,000	examples	of	10	digits	 42,152	examples	of	26	English	le0ers		

PermutaDon-invariant	version.	



GeneraDve	Model	of	3-D	Objects	

24,000	examples,	5	object	categories,	5	different	objects	within	each		
category,	6	lightning	condiDons,	9	elevaDons,	18	azimuths.			



3-D	Object	RecogniDon	

Learning	Algorithm	 Error	
LogisDc	regression	 22.5%	
K-NN	(LeCun	2004)	 18.92%	
SVM	(Bengio	&	LeCun		2007)	 11.6%	
Deep	Belief	Net	(Nair	&	
Hinton		2009)		

9.0%	

DBM	 7.2%	

Pa0ern	CompleDon	

PermutaDon-invariant	version.	



Learning	Hierarchical	RepresentaDons	
Deep	Boltzmann	Machines:		

Learning	Hierarchical	Structure		
in	Features:	edges,	combinaDon		
of	edges.		

• 	Performs	well	in	many	applicaDon	domains	
• 	Fast	Inference:	fracDon	of	a	second	
• 	Learning	scales	to	millions	of	examples	



Learning	Hierarchical	RepresentaDons	
Deep	Boltzmann	Machines:		

Learning	Hierarchical	Structure		
in	Features:	edges,	combinaDon		
of	edges.		

The	Shape	Boltzmann	Machine:	a	
Strong	Model	of	Object	Shape			
(Eslami,	Heess,	Winn,	CVPR	2012).		

Hallucina5ons	in	Charles	Bonnet	
Syndrome	Induced	by	Homeostasis:	
a	Deep	Boltzmann	Machine	Model	
(Reichert,	Series,	Storkey,	NIPS	2012)	

Need	more	structured	
and	robust	models	

Demo	DBM			


