10707
Deep Learning
Russ Salakhutdinov
Machine Learning Department
rsalakhu@cs.cmu.edu
http://www.cs.cmu.edu/~rsalakhu/10707/

Lecture 3
Bernoulli Distribution

• Consider a single binary random variable $x \in \{0, 1\}$. For example, x can describe the outcome of flipping a coin:

 Coin flipping: heads = 1, tails = 0.

• The probability of $x=1$ will be denoted by the parameter μ, so that:

 $$p(x = 1 | \mu) = \mu \quad 0 \leq \mu \leq 1.$$

• The probability distribution, known as Bernoulli distribution, can be written as:

 $$\text{Bern}(x | \mu) = \mu^x (1 - \mu)^{1-x}$$

 $$\mathbb{E}[x] = \mu$$

 $$\text{var}[x] = \mu(1 - \mu)$$
Parameter Estimation

• Suppose we observed a dataset $\mathcal{D} = \{x_1, \ldots, x_N\}$

• We can construct the likelihood function, which is a function of μ.

\[p(\mathcal{D}|\mu) = \prod_{n=1}^{N} p(x_n|\mu) = \prod_{n=1}^{N} \mu^{x_n} (1 - \mu)^{1-x_n} \]

• Equivalently, we can maximize the log of the likelihood function:

\[\ln p(\mathcal{D}|\mu) = \sum_{n=1}^{N} \ln p(x_n|\mu) = \sum_{n=1}^{N} \{x_n \ln \mu + (1 - x_n) \ln(1 - \mu)\} \]

• Note that the likelihood function depends on the N observations x_n only through the sum $\sum_n x_n$.
Parameter Estimation

• Suppose we observed a dataset $\mathcal{D} = \{x_1, \ldots, x_N\}$

\[
\ln p(\mathcal{D} | \mu) = \sum_{n=1}^{N} \ln p(x_n | \mu) = \sum_{n=1}^{N} \{x_n \ln \mu + (1 - x_n) \ln (1 - \mu)\}
\]

• Setting the derivative of the log-likelihood function w.r.t μ to zero, we obtain:

\[
\mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} x_n = \frac{m}{N}
\]

where m is the number of heads.
Binomial Distribution

• We can also work out the distribution of the number m of observations of x=1 (e.g. the number of heads).

• The probability of observing m heads given N coin flips and a parameter μ is given by:

$$p(m \text{ heads}|N, \mu) = \binom{N}{m} \mu^m (1 - \mu)^{N-m}$$

• The mean and variance can be easily derived as:

$$\mathbb{E}[m] \equiv \sum_{m=0}^{N} m \binom{N}{m} \mu^m (1 - \mu)^{N-m} = N \mu$$

$$\text{var}[m] \equiv \sum_{m=0}^{N} (m - \mathbb{E}[m])^2 \binom{N}{m} \mu^m (1 - \mu)^{N-m} = N \mu (1 - \mu)$$
Example

• Histogram plot of the Binomial distribution as a function of m for $N=10$ and $\mu = 0.25$.

$\text{Bin}(m|10, 0.25)$
Beta Distribution

- We can define a distribution over $\mu \in [0, 1]$ (e.g. it can be used a prior over the parameter μ of the Bernoullli distribution).

$$
\text{Beta}(\mu|a, b) = \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} \mu^{a-1}(1 - \mu)^{b-1}
$$

$$
\mathbb{E}[\mu] = \frac{a}{a + b}
$$

$$
\text{var}[\mu] = \frac{ab}{(a + b)^2(a + b + 1)}
$$

where the gamma function is defined as:

$$
\Gamma(x) \equiv \int_0^\infty u^{x-1} e^{-u} du.
$$

and ensures that the Beta distribution is normalized.
Beta Distribution

\[a = 0.1 \]
\[b = 0.1 \]

\[a = 1 \]
\[b = 1 \]

\[a = 2 \]
\[b = 3 \]

\[a = 8 \]
\[b = 4 \]
Multinomial Variables

- Consider a random variable that can take on one of K possible mutually exclusive states (e.g. roll of a dice).

- We will use so-called 1-of-K encoding scheme.

- If a random variable can take on K=6 states, and a particular observation of the variable corresponds to the state $x_3=1$, then \mathbf{x} will be resented as:

$$\mathbf{x} = (0, 0, 1, 0, 0, 0)^T$$

1-of-K coding scheme:

- If we denote the probability of $x_k=1$ by the parameter μ_k, then the distribution over \mathbf{x} is defined as:

$$p(\mathbf{x} | \boldsymbol{\mu}) = \prod_{k=1}^{K} \mu_k^{x_k} \quad \forall k : \mu_k \geq 0 \quad \text{and} \quad \sum_{k=1}^{K} \mu_k = 1$$
Multinomial Variables

- Multinomial distribution can be viewed as a generalization of Bernoulli distribution to more than two outcomes.

\[p(x | \mu) = \prod_{k=1}^{K} \mu_k^{x_k} \]

- It is easy to see that the distribution is normalized:

\[\sum_{x} p(x | \mu) = \sum_{k=1}^{K} \mu_k = 1 \]

and

\[\mathbb{E}[x | \mu] = \sum_{x} p(x | \mu) x = (\mu_1, \ldots, \mu_K)^T = \mu \]
Maximum Likelihood Estimation

• Suppose we observed a dataset \(\mathcal{D} = \{x_1, \ldots, x_N\} \)

• We can construct the likelihood function, which is a function of \(\mu \).

\[
p(\mathcal{D} | \mu) = \prod_{n=1}^{N} \prod_{k=1}^{K} \mu_k^{x_{nk}} = \prod_{k=1}^{K} \mu_k^{(\sum_n x_{nk})} = \prod_{k=1}^{K} \mu_k^{m_k}
\]

• Note that the likelihood function depends on the \(N \) data points only though the following \(K \) quantities:

\[
m_k = \sum_n x_{nk}, \quad k = 1, \ldots, K.
\]

which represents the number of observations of \(x_k=1 \).

• These are called the sufficient statistics for this distribution.
Maximum Likelihood Estimation

\[p(D|\mu) = \prod_{n=1}^{N} \prod_{k=1}^{K} \mu_{k}^{x_{nk}} = \prod_{k=1}^{K} \mu_{k}^{(\sum_{n} x_{nk})} = \prod_{k=1}^{K} \mu_{k}^{m_{k}} \]

- To find a maximum likelihood solution for \(\mu \), we need to maximize the log-likelihood taking into account the constraint that \(\sum_{k} \mu_{k} = 1 \).

- Forming the Lagrangian:

\[
\sum_{k=1}^{K} m_{k} \ln \mu_{k} + \lambda \left(\sum_{k=1}^{K} \mu_{k} - 1 \right)
\]

\[
\mu_{k} = -m_{k}/\lambda \quad \mu_{k}^{\text{ML}} = \frac{m_{k}}{N} \quad \lambda = -N
\]

which is the fraction of observations for which \(x_{k}=1 \).
Multinomial Distribution

• We can construct the joint distribution of the quantities \{m_1, m_2, \ldots, m_k\} given the parameters \(\mu\) and the total number \(N\) of observations:

\[
\text{Mult}(m_1, m_2, \ldots, m_K|\mu, N) = \binom{N}{m_1 m_2 \ldots m_K} \prod_{k=1}^{K} \mu_k^{m_k}
\]

\[
\mathbb{E}[m_k] = N \mu_k
\]

\[
\text{var}[m_k] = N \mu_k (1 - \mu_k)
\]

\[
\text{cov}[m_j m_k] = -N \mu_j \mu_k
\]

• The normalization coefficient is the number of ways of partitioning \(N\) objects into \(K\) groups of size \(m_1, m_2, \ldots, m_k\).

• Note that

\[
\sum_k m_k = N.
\]
Dirichlet Distribution

• Consider a distribution over μ_k, subject to constraints:

\[\forall k : \mu_k \geq 0 \quad \text{and} \quad \sum_{k=1}^{K} \mu_k = 1 \]

• The Dirichlet distribution is defined as:

\[
\text{Dir}(\mu|\alpha) = \frac{\Gamma(\alpha_0)}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_K)} \prod_{k=1}^{K} \mu_k^{\alpha_k - 1}
\]

\[\alpha_0 = \sum_{k=1}^{K} \alpha_k \]

where $\alpha_1, \ldots, \alpha_k$ are the parameters of the distribution, and $\Gamma(x)$ is the gamma function.

• The Dirichlet distribution is confined to a simplex as a consequence of the constraints.
Dirichlet Distribution

- Plots of the Dirichlet distribution over three variables.

\[\alpha_k = 10^{-1} \quad \alpha_k = 10^0 \quad \alpha_k = 10^1 \]
Gaussian Univariate Distribution

• In the case of a single variable x, the Gaussian distribution takes form:

$$
\mathcal{N}(x|\mu, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp \left\{ - \frac{1}{2\sigma^2} (x - \mu)^2 \right\}
$$

which is governed by two parameters:

- μ (mean)
- σ^2 (variance)

• The Gaussian distribution satisfies:

$$
\mathcal{N}(x|\mu, \sigma^2) > 0
$$

$$
\int_{-\infty}^{\infty} \mathcal{N}(x|\mu, \sigma^2) \, dx = 1
$$
Multivariate Gaussian Distribution

- For a D-dimensional vector \(\mathbf{x} \), the Gaussian distribution takes form:

\[
\mathcal{N}(\mathbf{x}|\mu, \Sigma) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} \exp \left\{ -\frac{1}{2} (\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu) \right\}
\]

which is governed by two parameters:

- \(\mu \) is a D-dimensional mean vector.
- \(\Sigma \) is a D by D covariance matrix.

and \(|\Sigma| \) denotes the determinant of \(\Sigma \).

- Note that the covariance matrix is a symmetric positive definite matrix.
Central Limit Theorem

• The distribution of the sum of N i.i.d. random variables becomes increasingly Gaussian as N grows.

• Consider N variables, each of which has a uniform distribution over the interval [0,1].

• Let us look at the distribution over the mean:

\[
\frac{x_1 + x_2 + \ldots + x_N}{N}.
\]

• As N increases, the distribution tends towards a Gaussian distribution.
Moments of the Gaussian Distribution

• The expectation of \(\mathbf{x} \) under the Gaussian distribution:

\[
\mathbb{E}[\mathbf{x}] = \frac{1}{(2\pi)^{D/2} |\Sigma|^{1/2}} \int \exp \left\{ -\frac{1}{2} (\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu) \right\} \mathbf{x} \, d\mathbf{x}
\]

= \frac{1}{(2\pi)^{D/2} |\Sigma|^{1/2}} \int \exp \left\{ -\frac{1}{2} \mathbf{z}^T \Sigma^{-1} \mathbf{z} \right\} (\mathbf{z} + \mu) \, d\mathbf{z}

The term in \(\mathbf{z} \) in the factor \((\mathbf{z}+\mu) \) will vanish by symmetry.

\[
\mathbb{E}[\mathbf{x}] = \mu
\]
Moments of the Gaussian Distribution

• The second order moments of the Gaussian distribution:

\[\mathbb{E}[\mathbf{x}\mathbf{x}^T] = \mu\mu^T + \Sigma \]

• The covariance is given by:

\[\text{cov}[\mathbf{x}] = \mathbb{E} \left[(\mathbf{x} - \mathbb{E}[\mathbf{x}]) (\mathbf{x} - \mathbb{E}[\mathbf{x}])^T \right] = \Sigma \]

\[\mathbb{E}[\mathbf{x}] = \mu \]

• Because the parameter matrix \(\Sigma \) governs the covariance of \(\mathbf{x} \) under the Gaussian distribution, it is called the covariance matrix.
Moments of the Gaussian Distribution

- Contours of constant probability density:

\(x_2 \)

(a) Covariance matrix is of general form.

(b) Diagonal, axis-aligned covariance matrix.

(c) Spherical (proportional to identity) covariance matrix.
Partitioned Gaussian Distribution

• Consider a D-dimensional Gaussian distribution:
\[p(x) = \mathcal{N}(x|\mu, \Sigma) \]

• Let us partition \(x \) into two disjoint subsets \(x_a \) and \(x_b \):

\[
x = \begin{pmatrix} x_a \\ x_b \end{pmatrix} \quad \mu = \begin{pmatrix} \mu_a \\ \mu_b \end{pmatrix} \quad \Sigma = \begin{pmatrix} \Sigma_{aa} & \Sigma_{ab} \\ \Sigma_{ba} & \Sigma_{bb} \end{pmatrix}
\]

• In many situations, it will be more convenient to work with the precision matrix (inverse of the covariance matrix):

\[
\Lambda \equiv \Sigma^{-1} \quad \Lambda = \begin{pmatrix} \Lambda_{aa} & \Lambda_{ab} \\ \Lambda_{ba} & \Lambda_{bb} \end{pmatrix}
\]

• Note that \(\Lambda_{aa} \) is not given by the inverse of \(\Sigma_{aa} \).
Conditional Distribution

- It turns out that the conditional distribution is also a Gaussian distribution:

\[p(x_a | x_b) = \mathcal{N}(x_a | \mu_{a|b}, \Sigma_{a|b}) \]

Covariance does not depend on \(x_b \).

\[
\Sigma_{a|b} = \Lambda_{aa}^{-1} = \Sigma_{aa} - \Sigma_{ab}\Sigma_{bb}^{-1}\Sigma_{ba}
\]

\[
\mu_{a|b} = \Sigma_{a|b} \left\{ \Lambda_{aa}\mu_a - \Lambda_{ab}(x_b - \mu_b) \right\}
\]

\[
= \mu_a - \Lambda_{aa}^{-1}\Lambda_{ab}(x_b - \mu_b)
\]

\[
= \mu_a + \Sigma_{ab}\Sigma_{bb}^{-1}(x_b - \mu_b)
\]

Linear function of \(x_b \).
Marginal Distribution

• It turns out that the marginal distribution is also a Gaussian distribution:

\[
p(x_a) = \int p(x_a, x_b) \, dx_b
\]

\[
= \mathcal{N}(x_a | \mu_a, \Sigma_{aa})
\]

• For a marginal distribution, the mean and covariance are most simply expressed in terms of partitioned covariance matrix.

\[
x = \begin{pmatrix} x_a \\ x_b \end{pmatrix}
\]

\[
\mu = \begin{pmatrix} \mu_a \\ \mu_b \end{pmatrix}
\]

\[
\Sigma = \begin{pmatrix} \Sigma_{aa} & \Sigma_{ab} \\ \Sigma_{ba} & \Sigma_{bb} \end{pmatrix}
\]
Conditional and Marginal Distributions

\[p(x_a, x_b) \]

\[p(x_a | x_b = 0.7) \]

\[x_b = 0.7 \]
Maximum Likelihood Estimation

• Suppose we observed i.i.d data $\mathbf{X} = \{x_1, \ldots, x_N\}$.

• We can construct the log-likelihood function, which is a function of μ and Σ:

$$\ln p(\mathbf{X}|\mu, \Sigma) = -\frac{ND}{2} \ln(2\pi) - \frac{N}{2} \ln |\Sigma| - \frac{1}{2} \sum_{n=1}^{N} (x_n - \mu)^T \Sigma^{-1} (x_n - \mu)$$

• Note that the likelihood function depends on the N data points only though the following sums:

Sufficient Statistics

$$\sum_{n=1}^{N} x_n$$

$$\sum_{n=1}^{N} x_n x_n^T$$
Maximum Likelihood Estimation

• To find a maximum likelihood estimate of the mean, we set the derivative of the log-likelihood function to zero:

\[
\frac{\partial}{\partial \mu} \ln p(X|\mu, \Sigma) = \sum_{n=1}^{N} \Sigma^{-1}(x_n - \mu) = 0
\]

and solve to obtain:

\[
\mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} x_n.
\]

• Similarly, we can find the ML estimate of \(\Sigma \):

\[
\Sigma_{ML} = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{ML})(x_n - \mu_{ML})^T.
\]
Maximum Likelihood Estimation

- Evaluating the expectation of the ML estimates under the true distribution, we obtain:

 \[
 \mathbb{E}[\mu_{ML}] = \mu \\
 \mathbb{E}[\Sigma_{ML}] = \frac{N - 1}{N} \Sigma.
 \]

 - Note that the maximum likelihood estimate of \(\Sigma \) is biased.

- We can correct the bias by defining a different estimator:

 \[
 \tilde{\Sigma} = \frac{1}{N - 1} \sum_{n=1}^{N} (x_n - \mu_{ML})(x_n - \mu_{ML})^T.
 \]
Student’s t-Distribution

• Consider Student’s t-Distribution

\[
p(x|\mu, a, b) = \int_0^\infty \mathcal{N}(x|\mu, \tau^{-1}) \text{Gam}(\tau|a, b) \, d\tau
\]

\[
= \int_0^\infty \mathcal{N}(x|\mu, (\eta\lambda)^{-1}) \text{Gam}(\eta|\nu/2, \nu/2) \, d\eta
\]

\[
= \frac{\Gamma(\nu/2 + 1/2)}{\Gamma(\nu/2)} \left(\frac{\lambda}{\pi \nu}\right)^{1/2} \left[1 + \frac{\lambda(x - \mu)^2}{\nu}\right]^{-\nu/2 - 1/2}
\]

\[
= \text{St}(x|\mu, \lambda, \nu)
\]

where

\[
\lambda = a/b \quad \eta = \tau b/a \quad \nu = 2a.
\]

Sometimes called the precision parameter.

Degrees of freedom

Infinite mixture of Gaussians
Student’s t-Distribution

- Setting $\nu = 1$ recovers Cauchy distribution
- The limit $\nu \to \infty$ corresponds to a Gaussian distribution.

<table>
<thead>
<tr>
<th>$\nu = 1$</th>
<th>$\nu \to \infty$</th>
</tr>
</thead>
<tbody>
<tr>
<td>St$(x</td>
<td>\mu, \lambda, \nu)$</td>
</tr>
</tbody>
</table>

\[\nu \to \infty \]
\[\nu = 1.0 \]
\[\nu = 0.1 \]
Student’s t-Distribution

• Robustness to outliers: Gaussian vs. t-Distribution.
Student’s t-Distribution

• The multivariate extension of the t-Distribution:

\[
\text{St}(x|\mu, \Lambda, \nu) = \int_0^\infty \mathcal{N}(x|\mu, (\eta \Lambda)^{-1}) \text{Gam}(\eta|\nu/2, \nu/2) \, d\eta
\]

\[
= \frac{\Gamma(D/2 + \nu/2)}{\Gamma(\nu/2)} \frac{|\Lambda|^{1/2}}{(\pi \nu)^{D/2}} \left[1 + \frac{\Delta^2}{\nu} \right]^{-D/2-\nu/2}
\]

where \(\Delta^2 = (x - \mu)^T \Lambda (x - \mu)\)

• Properties:

\[\mathbb{E}[x] = \mu, \quad \text{if } \nu > 1\]

\[\text{cov}[x] = \frac{\nu}{(\nu - 2)} \Lambda^{-1}, \quad \text{if } \nu > 2\]

\[\text{mode}[x] = \mu\]
Mixture of Gaussians

- When modeling real-world data, Gaussian assumption may not be appropriate.

- Consider the following example: Old Faithful Dataset
Mixture of Gaussians

• We can combine simple models into a complex model by defining a superposition of K Gaussian densities of the form:

$$p(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x | \mu_k, \Sigma_k)$$

• Note that each Gaussian component has its own mean μ_k and covariance Σ_k. The parameters π_k are called mixing coefficients.

• More generally, mixture models can comprise linear combinations of other distributions.

\[\forall k : \pi_k \geq 0 \quad \sum_{k=1}^{K} \pi_k = 1 \]
Mixture of Gaussians

- Illustration of a mixture of 3 Gaussians in a 2-dimensional space:

(a) Contours of constant density of each of the mixture components, along with the mixing coefficients

(b) Contours of marginal probability density \(p(x) = \sum_{k=1}^{K} \pi_k N(x | \mu_k, \Sigma_k) \)

(c) A surface plot of the distribution \(p(x) \).
Maximum Likelihood Estimation

• Given a dataset D, we can determine model parameters μ_k, Σ_k, π_k by maximizing the log-likelihood function:

$$\ln p(X|\pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(x_n|\mu_k, \Sigma_k) \right\}$$

Log of a sum: no closed form solution

• **Solution**: use standard, iterative, numeric optimization methods or the Expectation Maximization algorithm.
The Exponential Family

- The exponential family of distributions over \(\mathbf{x} \) is defined to be a set of distributions of the form:

\[
p(x|\eta) = h(x)g(\eta) \exp \{ \eta^T u(x) \}
\]

where

- \(\eta \) is the vector of natural parameters
- \(u(x) \) is the vector of sufficient statistics

- The function \(g(\eta) \) can be interpreted as the coefficient that ensures that the distribution \(p(x|\eta) \) is normalized:

\[
g(\eta) \int h(x) \exp \{ \eta^T u(x) \} \, dx = 1
\]
Bernoulli Distribution

• The Bernoulli distribution is a member of the exponential family:

\[
p(x|\mu) = \text{Bern}(x|\mu) = \mu^x(1-\mu)^{1-x}
= \exp\{x \ln \mu + (1-x) \ln(1-\mu)\}
= (1-\mu) \exp\left\{\ln \left(\frac{\mu}{1-\mu}\right)x\right\}
\]

• Comparing with the general form of the exponential family:

\[
p(x|\eta) = h(x)g(\eta)\exp\{\eta^T u(x)\}
\]

we see that

\[
\eta = \ln \left(\frac{\mu}{1-\mu}\right) \quad \text{and so} \quad \mu = \sigma(\eta) = \frac{1}{1 + \exp(-\eta)}.
\]

Logistic sigmoid
Bernoulli Distribution

• The Bernoulli distribution is a member of the exponential family:

\[
p(x|\mu) = \text{Bern}(x|\mu) = \mu^x (1 - \mu)^{1-x} = \exp \left\{ x \ln \mu + (1 - x) \ln(1 - \mu) \right\} = (1 - \mu) \exp \left\{ \ln \left(\frac{\mu}{1 - \mu} \right) x \right\}
\]

\[
p(x|\eta) = h(x)g(\eta) \exp \left\{ \eta^T u(x) \right\}
\]

• The Bernoulli distribution can therefore be written as:

\[
p(x|\eta) = \sigma(-\eta) \exp(\eta x)
\]

where

\[
u(x) = x
\]
\[
h(x) = 1
\]
\[
g(\eta) = 1 - \sigma(\eta) = \sigma(-\eta).
\]
Multinomial Distribution

• The Multinomial distribution is a member of the exponential family:

\[p(\mathbf{x} | \mathbf{\mu}) = \prod_{k=1}^{M} \mu_{k}^{x_{k}} = \exp \left\{ \sum_{k=1}^{M} x_{k} \ln \mu_{k} \right\} = h(\mathbf{x})g(\boldsymbol{\eta}) \exp \left(\boldsymbol{\eta}^{T} \mathbf{u}(\mathbf{x}) \right) \]

where \(\mathbf{x} = (x_{1}, \ldots, x_{M})^{T} \) \(\boldsymbol{\eta} = (\eta_{1}, \ldots, \eta_{M})^{T} \)

and

\[\eta_{k} = \ln \mu_{k} \]
\[\mathbf{u}(\mathbf{x}) = \mathbf{x} \]
\[h(\mathbf{x}) = 1 \]
\[g(\boldsymbol{\eta}) = 1. \]

NOTE: The parameters \(\eta_{k} \) are not independent since the corresponding \(\mu_{k} \) must satisfy \(\sum_{k=1}^{M} \mu_{k} = 1. \)

• In some cases it will be convenient to remove the constraint by expressing the distribution over the M-1 parameters.
Multinomial Distribution

• The Multinomial distribution is a member of the exponential family:

\[p(x|\mu) = \prod_{k=1}^{M} \mu_k^{x_k} = \exp \left\{ \sum_{k=1}^{M} x_k \ln \mu_k \right\} = h(x)g(\eta) \exp (\eta^T u(x)) \]

• Let \(\mu_M = 1 - \sum_{k=1}^{M-1} \mu_k \)

• This leads to:

\[\eta_k = \ln \left(\frac{\mu_k}{1 - \sum_{j=1}^{M-1} \mu_j} \right) \quad \text{and} \quad \mu_k = \frac{\exp(\eta_k)}{1 + \sum_{j=1}^{M-1} \exp(\eta_j)} . \]

• Here the parameters \(\eta_k \) are independent.

• Note that:

\[0 \leq \mu_k \leq 1 \quad \text{and} \quad \sum_{k=1}^{M-1} \mu_k \leq 1. \]
Multinomial Distribution

- The Multinomial distribution is a member of the exponential family:

\[p(x|\mu) = \prod_{k=1}^{M} \mu_k^{x_k} = \exp \left\{ \sum_{k=1}^{M} x_k \ln \mu_k \right\} = h(x)g(\eta)\exp(\eta^T u(x)) \]

- The Multinomial distribution can therefore be written as:

\[p(x|\mu) = h(x)g(\eta)\exp(\eta^T u(x)) \]

where

\[\eta = (\eta_1, \ldots, \eta_{M-1}, 0)^T \]

\[u(x) = x \]

\[h(x) = 1 \]

\[g(\eta) = \left(1 + \sum_{k=1}^{M-1} \exp(\eta_k) \right)^{-1} \]
Gaussian Distribution

• The Gaussian distribution can be written as:

\[
p(x|\mu, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp \left\{ -\frac{1}{2\sigma^2} (x - \mu)^2 \right\}
\]

\[
= \frac{1}{(2\pi\sigma^2)^{1/2}} \exp \left\{ -\frac{1}{2\sigma^2} x^2 + \frac{\mu}{\sigma^2} x - \frac{1}{2\sigma^2} \mu^2 \right\}
\]

\[
= h(x) g(\eta) \exp \left\{ \eta^T u(x) \right\}
\]

where

\[
\eta = \begin{pmatrix} \mu/\sigma^2 \\ -1/2\sigma^2 \end{pmatrix} \quad h(x) = (2\pi)^{-1/2}
\]

\[
u(x) = \begin{pmatrix} x \\ x^2 \end{pmatrix} \quad g(\eta) = (-2\eta_2)^{1/2} \exp \left(\frac{\eta_1^2}{4\eta_2} \right).
\]
ML for the Exponential Family

- Remember the Exponential Family:
 \[p(x|\eta) = h(x)g(\eta) \exp \left\{ \eta^T u(x) \right\} \]

- From the definition of the normalizer \(g(\eta) \):
 \[g(\eta) \int h(x) \exp \left\{ \eta^T u(x) \right\} \, dx = 1 \]

- We can take a derivative w.r.t \(\eta \):
 \[\nabla g(\eta) \int h(x) \exp \left\{ \eta^T u(x) \right\} \, dx + g(\eta) \int h(x) \exp \left\{ \eta^T u(x) \right\} u(x) \, dx = 0 \]

- Thus
 \[-\nabla \ln g(\eta) = \mathbb{E}[u(x)] \]
ML for the Exponential Family

- Remember the Exponential Family:
 \[p(x|\eta) = h(x)g(\eta) \exp \{ \eta^T u(x) \} \]

- We can take a derivative w.r.t \(\eta \):
 \[
 \nabla g(\eta) \int h(x) \exp \{ \eta^T u(x) \} \, dx + g(\eta) \int h(x) \exp \{ \eta^T u(x) \} \, u(x) \, dx = 0
 \]

 \[
 1/g(\eta) \quad \text{and} \quad \mathbb{E}[u(x)]
 \]

- Thus
 \[
 -\nabla \ln g(\eta) = \mathbb{E}[u(x)]
 \]

- Note that the covariance of \(u(x) \) can be expressed in terms of the second derivative of \(g(\eta) \), and similarly for the higher moments.
ML for the Exponential Family

• Suppose we observed i.i.d data \(X = \{x_1, \ldots, x_N\} \).

• We can construct the log-likelihood function, which is a function of the natural parameter \(\eta \).

\[
p(x|\eta) = h(x)g(\eta) \exp \left\{ \eta^T u(x) \right\}
\]

\[
p(X|\eta) = \left(\prod_{n=1}^{N} h(x_n) \right) g(\eta)^N \exp \left\{ \eta^T \sum_{n=1}^{N} u(x_n) \right\}.
\]

• Therefore we have

\[
-\nabla \ln g(\eta_{ML}) = \frac{1}{N} \sum_{n=1}^{N} u(x_n)
\]

Sufficient Statistic