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So far in the course

Reinforcement Learning: Learning policies guided by sparse rewards, e.g.,
win the game.

Good: simple, cheap form of supervision
Bad: High sample complexity

Where is it successful so far?
In simulation, where we can afford a lot of trials, easy to parallelize

Not in robotic systems:
- action execution takes long
- we cannot afford to fail

— safety concerns
/ Crusher robot

Learning from Demonstration for Autonomous Navigation in Complex Unstructured Terrain, Silver et al. 2010



Reward shaping

|deally we want dense in time rewards to closely guide the agent closely along the way.

Who will supply those shaped rewards?

1.We will manually design them: “cost function design by hand remains one of the ‘black
arts’ of mobile robotics, and has been applied to untold numbers of robotic systems”

2.We will learn them from demonstrations: ‘rather than having a human expert tune a
system to achieve desired behavior, the expert can demonstrate desired behavior and the

robot can tune itself to match the demonstration”

Learning from Demonstration for Autonomous Navigation in Complex Unstructured Terrain, Silver et al. 2010
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Imitation Learning

For taking this structure into account, numerous formulations have been
developed:

Direct: Supervised learning for policy (mapping states to actions)
using the demonstration trajectories as ground-truth (a.k.a. behavior
cloning)

Indirect: Learning the latent rewards/goals of the teacher and

planning under those rewards to get the policy, a.k.a. Inverse
Reinforcement Learning (later in class)

Experts can be:
- Humans

- Optimal or near Optimal Planners/Controllers



Outline

This lecture:
 Inverse reinforcement learning
«  Max margin planning
«  Maximum entropy IRL
- Adversarial Imitation learning

« Value lteration Networks



Inverse Reinforcement Learning

. )
Dynamics Z Probability
Model T distribution over next
states given current
Describes desirability state and action
of being in a state. \_ y
T~—

Reward Reinforcement Controller/
Function R Learning / Policy w*
Optimal Control
E / Prescribes action to
AT [Zt ! R(St)‘ﬂ-] { take for eam

Diagram: Pieter Abbeel

Given 7T, let’s recover R!



Problem Setup

* Given:
- State space, action space . Dynamics (sometimes) T 4 [St+1|8¢, a4]
No reward function - Teacher’s demonstration:

S0, ap,S1,Q1, S2,0a2, ...
(= trace of the teacher’s policy 7*)

* |nverse RL

- Can we recover R?
* Apprenticeship learning via inverse RL
Can we then use this R to find a good policy?

* Behavioral cloning (last lecture)

- Can we directly learn the teacher’s policy using supervised learning?



Assumptions (for now)

. Known Dynamics (transition model) 7T’
. Reward is a linear function over fixed state features ¢



Inverse RL with linear costs/rewards

v = (x1,a1) = (x3,a;) = (x3,a3) = - = (x, ap)

I _ _
T *Y) — T- T T
wf(y)—w- -I—W- -I—W--|— ......
Demonstration - - -
H B

Expert trajectory cost



Principle: Expert Is optimal

* Find a reward function R* which explains the expert behavior

* Find R* such that

E[} 7'R*(s)l*] 2 E[Y_v'R*(se)|n] V¥



Feature Based Reward Function

(We assume reward is linear over features)
Let R(s) =w'¢(s) where w € R® and ¢: 85 — R"

2 "Y' R(se)|m] = E[»  y'wT ¢ (se)|7]

oo




Feature Based Reward Function

(We assume reward is linear over features)
Let R(s) =w'¢(s) where w € R® and ¢: 85 — R"

D7 Bls)lm] = E[)_ 7' g(se)lm

:’wT*[ZW ¢(st)|m]

expected discounted sum of feature
values or feature expectations—

= w’” |pu(T) dependent on state visitation
distributions

Subfting into  E[Y _y*R*(s)|7*] > E[> y*R*(s¢)|x] Vr

*) > T

gives us:  Find w* such that w*! p(7*) > w*' pu(n) Vr



Challenges: Reward function is ambiguous

(We assume reward is linear over features)
Let R(s) =w'¢(s) where w € R® and ¢: 85 — R"

D" Rlso)lm] =B 'w g(su)l]

= wTE[Y " 7'(s)lm

t=0 expected discounted sum of feature
values or feature expectations—
= w” |u(m) dependent on state visitation
distributions

Subfting into  E[Y _y*R*(s)|7*] > E[> y*R*(s¢)|x] Vr
=0 =0

gives us:  Find w* such that w*! p(7*) > w*' pu(n) Vr



Max-margin Classifiers

"Minimize ||w|| subjectto y;(w - z; —b) > 1,fori =1, ..., n"



Max-margin Classifiers

* We are given a training dataset of n points of the form

(fla yl)a ooy (fn,yn)

* Where the y; are either 1 or -1, each indicating the class to which
the point Z; belongs. Each Z; is a p-dimensional real vector.

* We want to find the “maximum-margin hyperplane” that divides the
group of points Z; , for which y; = 1 from the group of points for

which y; = —1, which is defined so that the distance between the
hyperplane and the nearest point x; from either group is
maximized.

* Any hyperplane can be written as the set of points £ satisfying

w-x—b=0

where w is the normal vector the the hyperplane



Max Margin Planning

* Standard max margin:

min|w]3

s.t. wlp(m*) >wlpu(rn)+1 Vr

Maximum Margin Planning, Ratliff et al. 2006



Max Margin Planning

* Standard max margin:

min||w]3

s.t. wlp(m*) >wlpu(rn)+1 Vr
* “Structured prediction” max margin:

min|w||

T

s.t. w! pu(r*) > wlp(r) +m(r*, 7)) Vr

* Justification: margin should be larger for policies that are
very different from 7™

* Example: m(w*,w) = number of states in which 7™ and =
disagree

Maximum Margin Planning, Ratliff et al. 2006



Expert Suboptimality

* Structured prediction max margin with slack variables:

min||w||§ + C¢
w,§

s.t. wlp(r*) > wlp(r) +m(n*,n) — € Vr

* Can be generalized to multiple MDPs (could also be same MDP
with different initial state)

min |wfl; +C ) _€®

st wlp(r®*) > wl w(7m®) + m(r®*, 70) — @ g 7@



Complete Max-margin Formulation

minflw|f +C Y €O

st wl p(m@*) > wT (7@ + m(x®*, 7)) — 0O v 7@

* Challenge: very large number of constraints. Solutions:

iterative constraint generation

Maximum Margin Planning, Ratliff et al. 2006



Constraint Generation

* lterate II®®) = {} for all i and then iterate
* Solve mu1)n||w\|§ + CZ £@)
s.b. wl (@) > wl u(7m®) + m(r@* 7)) — €@ v 7 ¢ 1O

* For current w, find most violated constraint for all z by solving:

max w? p(7M) + m(x®*, 7))

(%)

Maximum Margin Planning, Ratliff et al. 2006



Constraint Generation

* lterate II®®) = {} for all i and then iterate
. : 2 (2)
Solve  minl|wl[3 + CZ §
7

st wlp(r®*) > wTu(r®) 4+ m(r@* 70y — O v 7 e 1O

* For current w, find most violated constraint for all z by solving:
4 )

\. WV,

e forall i add 7% to I

* |f no constraint violations were found, we are done

Assumes an RL algorithm that can find the optimal policy for a given reward
function! Nested RL problem. However, as we assumed known dynamics, it
IS more like a nested planning problem. Maximum Margin Planning, Ratliff et al. 2006



Max Margin Planning

trained to follow roads

mode 1 - traning mock2 1 - [ea'hed cost map over novel reglon made | - earmned path over nowel reglon

/

trained to hide in the trees

mode 2 - fraining mcdde 2 - learned cost mep cvar mode 2 - kamed path over nowvel recion

Maximum Margin Planning, Ratliff et al. 2006



L earning to step (mimicking footsteps)

Where should we place the foot next?







Learned Cost Function Examples




Learned Cost Function Examples




Learned Cost Function Examples




https://www.youtube.com/watch”?v=mKLRNIIChrk




Feature Matching

* Inverse RL starting point: find a reward function such that the
expert outperforms other policies

Let R(s) = wl ¢(s), where w € R", and ¢: S — R"

Find w* such that w*? u(7*) > w*T pu(n) Vr

Abbeel and Ng 2004



Feature Matching

* Inverse RL starting point: find a reward function such that the
expert outperforms other policies

Let R(s) = wl ¢(s), where w € R", and ¢: S — R"

Find w* such that w*? u(7*) > w*  pu(n) V=

* QObservation in Abbeel and Ng, 2004: for a policy 7 to be
guaranteed to perform as well as the expert policy ux, it suffices
that the feature expectations match:

() — p(m™) ]|y < e

Implies that for all w with ||w||ee < 1:

w* () — w* ()| < €

Abbeel and Ng 2004



Apprenticeship Learning [Abbeel & Ng, 2004]

* Assume R, (s) = wl¢(s) for afeature map ¢: S — R”
* Initialize: pick some policy g

* |teratefor 1 =1,2,...:

* “Guess’ the reward function:
Find a reward function such that the teacher maximally
outperforms all previously found policies

max ’}’
Y, Ww: ”w”2sl

s.t. wlhp(*) >wlu(m)+v Vr e {mg, 71, ..., i1}

- Find optimal control policy 7 for the current guess of the reward
function R,

- v < e/2 exit the algorithm



Maximum Entropy Inverse Optimal Control

Roads have unknown costs linear in features




Maximum Entropy Inverse Optimal Control

Roads have unknown costs linear in features
Paths have unknown costs, sum of road costs

R .
N =




Maximum Entropy Inverse Optimal Control

Roads have unknown costs linear in features
Paths have unknown costs, sum of road costs

Let's marry probabilistic reasonmg W|th optlmal control and reward functions:
- the costs induce a distribution over paths! P(Mau)
- path probability based on unknown cost



Feature matching using path probabilities

Features f can be:

- # Bridges crossed

Feature matching:

Z P(TZ)sz :%

Pathr;




Which path distribution to pick?

Features f can be:

# Bridges crossed

Feature matching:

Y # Miles of interstate -
r‘\. Z P(Ti)fn =1
| Pathr;

“If a driver uses 136.3 miles of interstate and
crosses 12 bridges in a month’s worth of trips,
the model should also use 136.3 miles of
interstate and 12 bridges in expectation for
those same start-destination pairs.”



Which path distribution to pick?

Features f can be:

# Bridges crossed

Feature matching:

Y # Miles of interstate -
r‘\. Z P(Ti)fn =1
| Pathr;

“Many distributions over paths can match
feature counts, and some will be very different
from observed behavior. In our simple example,
the model could produce plans that avoid the
interstate and bridges for all routes except one,
which drives in circles on the interstate for 136
miles and crosses 12 bridges”



Which path distribution to pick?

Features f can be:

# Bridges crossed

Feature matching:

# Miles of interstate ~
Z P(TZ)sz =1

Pathr;

# Stoplights The one that satisfies feature count constraints
without over-committing!




Maximum Entropy Inverse Optimal Control

* Maximizing the entropy over paths:  Ag Uniform As possible

4 N

max — Zr: P(7)log P(7)

\.

* While matching feature counts (and being a probability distribution):

Y,

ZP(T)fT = fdem

ZP(T) =1



Maximum Entropy Principle

* Maximizing the entropy of the distribution over paths subject to the feature
constraints from observed data implies that we maximize the likelihood of

the observed data under the maximum entropy (exponential family)
distribution (Jaynes 1957)

T
! eeTsz' — L ez‘sjeﬁ:e fsj

Z(0) Z(0)

Z(@, S) _ ZQGT]‘}S
TS

P(r|0) =

Strong Preference for Low Cost Paths
Equal Cost Paths Equally Probable



MaxEntlOC: Learning \theta

* Maximizing the entropy of the distribution over paths subject to the
feature constraints from observed data implies that we maximize
the likelihood of the observed data under the maximum entropy

(exponential family) distribution (Jaynes 1957)

6" = argmax L(0) = arg max Z log P(7|0)

6
examples



MaxEntlOC: Learning \theta

* Maximizing the entropy of the distribution over paths subject to the
feature constraints from observed data implies that we maximize
the likelihood of the observed data under the maximum entropy
(exponential family) distribution (Jaynes 1957)

0" = arg max L(0) = arg max exmzples log P(7|0)

* The gradient is the difference between expected empirical feature
counts and the learner’s expected feature counts, which can be
expressed in terms of expected state visitation frequencies,

VLO)=f—-) P(rl0)fr=f - ZD:fsz-

state visitation frequencies!



Learning from Demonstration

Demonstrated Behavior Model Behavior (Expectation)
Bridges Bridges
crossed: 3 crossed: ?

Miles of Miles of
Interstate: Interstate:
20.7 ?




Learning from Demonstration

Demonstrated Behavior Model Behavior (Expectation)

Bridges
crossed:

Bridges
crossed: 3

Miles of
Interstate:
20.7

Stoplights

7.4 .. 1

-2.6




Limitations of MaxEntlOC

* Cost was assumed linear over features f

* Dynamics T were assumed known

Next:

- General function approximations for cost ¢g: Finn et al. 2016

- Unknown Dynamics -> sample based approximations for the

partition function Z: Boularias et al. 2011, Kalakrishnan et al. 2013,
Finn et al. 2016



MaxEnt |OC general cost function

TED
1
p(r) = — exp(—C(7))
Cost of a trajectory is \
decomposed over costs 4 = / exp(—Cp(7))dT

of individual states

Co(T) = co(me, up)

t



MaxEnt |OC general cost function

TED
1
p(r) = — exp(—C(7))
Cost of a trajectory is \
decomposed over costs 4 = / exp(—Cp(7))dT

of individual states

Co(T) = co(me, up)

t

/

Before:

C@(ut, llt) — 9Tf(ut, Xt)



MaxEnt |OC general cost function

max Z log pe, (T)

TED
1
p(r) = — exp(—Cy(7))
Cost of a trajectory is \
decomposed over costs Z = [ exp(=Cy(7))d7
of individual states
Co(T) = co(as, ur)
i
f In the form of a loss function
Lioc(0) = N Z co(i) + log Z
Before: 7+ € Ddermo

Cg(ut, ut) — 9Tf(ut, Xt)



Approximating Z with Importance Sampling




MaxEntlOC with Importance Sampling




MaxEntlOC with Importance Sampling

LIOC(0> — Z 69(7_72) + IOgZ

T4 EDdemo

Z co(Ti) -HOg]Vi[ Z eXp(—Ce(Tj))

T
TiEDdemo T EDsamp Q( ])

¢

2‘*—‘ 2‘*—*




MaxEntlOC with Importance Sampling

exp(—ce(75))
q(75)

w4y =

dﬁIOC o 1 dC@ 1 dCQ
d ~ N Z d_g(TZ)—Z Z w]d_H(T])



Adapting the sampling distribution g

What should be the background sampling distribution q?

- Uniform: Boularias et al. 2011

- In the vicinity of demonstrations: Kalakrishnan et al. 2013
- Refine it over time! Finn et al. 2016



MaxEntlOC with Adaptive Importance Sampling

1: Initialize qx(7) as either a random initial controller or from
demonstrations
for iteration 2 = 1to I do
Generate samples Dy,j from g (7)
Append samples: Dgamp <— Dsamp U Dihraj
(Use Dsamp to update cost c using gradient descent )

l Update qi (7) using Dy, and the method from (Levine & J
e

SAIN A R

Abbeel, 2014) to obtain g1 (7)

Sl

. return optimized cost parameters 6 and trajectory distribu-
tion q(7)

This can be any RL, planning algorithm that given rewards computes a policy
(the forward RL problem), e.g. Ho and Ermon 2016 used TRPO

Given expert demonstrations and policy sampled trajectories improve
rewards/costs (Inverse RL)



MaxEntlOC with Adaptive Importance Sampling

éa )
initial human
distribution q demonstrations

1' /\k l@ ’

generate policy
samples from g

Update cost using

\/samples & demos

update q w.r.t. cost
policy g cost C

Diagram from Chelsea Finn



MaxEntlOC with Adaptive Importance Sampling

éa )
initial human
distribution q demonstrations

l /\k l@ 7

generate policy
samples from g

Update cost using
samples & demos

| generator

l dlscrlmmator ﬁ

update q w.r.t. cost
policy g (partially optimize) cost C

Diagram from Chelsea Finn



Generative Adversarial Networks

Real Data X

Discriminator

Generator

z ~ uniform([0, I])

Goodfellow et. al.



MaxEntlOC with Adaptive Importance Sampling

éa )
initial human
distribution q demonstrations

l /\k l@ 7

generate policy
samples from g

Update cost using
samples & demos

| generator

l dlscrlmmator ﬁ

update q w.r.t. cost
policy g (partially optimize) cost C

Diagram from Chelsea Finn



Performance (scaled)

Case Study: Generative Adversarial Imitation Learning

1.0
0.8
0.6

04}
0.2}

0.0

- demonstrations from TRPO-optimized policy
- use TRPO as a policy optimizer
- OpenAl gym tasks
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* Why we need to have this separate optimization over cost, and
then separately planning/RL over this cost to find the policy?
Because the dynamics where unknown..

* Let’s assume they are known.

* Can we imitate the expert and backdrop through all the way till the
rewards simply by imitating expert behavior (e.g., through
supervised learning), in an end-to-end fashion?



Value lteration Sub-Network

Each iteration of VI may be seen as passing the previous value function V.
and reward function R through a convolution layer and max-pooling layer.

Qn(s,a) = R(s,a) +7v> ., P(s'|s,a)V,(s)

Vai1(s) = max, Q,(s,a)

Value lteration Networks, Tamar et al. 2016



Value lteration Sub-Network

Each iteration of VI may be seen as passing the previous value function V.
and reward function R through a convolution layer and max-pooling layer.

Qn(s,a) = R(s,a) +~v> ,, P(s'|s,a)V,(s)

Vas1(s) = max, Qn(s,a)
Each channel in the convolution layer
orresponds to the Q -function for a
/gpecific action

VIModu7/
e ol | -Max-pooling
' Rewardl Q New%,
R 1= S | o
] . | convolution kernel
| weights correspond to
e the discounted

By recurrently applying a convolution layer K times, (r@nsition probabilities

K iterations of VI are effectively performed.

Value lteration Networks, Tamar et al. 2016



Value lteration Network

* Notice that the optimal action at each state depends only on the
value function of its immediate neighbors->locality->attention

7*(5) = argmax; R(5,a) + 7). P(3|5,a)V*(3).

Value Iteration Network VI Module
fl e ode e Ve . —
2] = ~{moe T _’V'”“ (1| Rewer L9 v
Observation | g EE ,'“:R =T Etth e O
o(s) o e o e O
O T | | —
* To estimate the optimal action in each state, | only need to use the

value functions in the vicinity of the state, then train and CNN with
a standard architecture

Value lteration Networks, Tamar et al. 2016



Value lteration Network

Value Iteration Network VI Module
P - Vi Module [ Prev. Vaive | :
{ ] 1
*R _|Planon | e . —_ - New Value
el p o mop 7| | e v
11
Observation £ N I = I e B | £ N
- o(s) >| Attention o '--r:l“ 5
— = I ! e '
t2(8)— Reactive Policy :
Trelald(s),40(s)) K recurrence

Domain VIN CNN FCN
Prediction | Success | Traj. | Pred. | Succ. | Traj. | Pred. | Succ. | Tra;j.
loss rate diff. loss rate diff. loss rate diff.

8 X 8 0.004 99.6% | 0.001 | 0.02 | 97.9% | 0.006 | 0.01 | 97.3% | 0.004
16 x 16 0.05 99.3% | 0.089 | 0.10 | 87.6% | 0.06 | 0.07 | 88.3% | 0.05

28 X 28 0.11 97 % 0.086 | 0.13 | 74.2% | 0.078 | 0.09 | 76.6% | 0.08

Value lteration Networks, Tamar et al. 2016



