
10703 Deep Reinforcement !
Learning and Control!

Russ	Salakhutdinov	
Machine Learning Department

rsalakhu@cs.cmu.edu

Slides developed and borrowed from
Katerina Fragkiadaki!

	

Imitation Learning II 	

So far in the course!
Reinforcement Learning: Learning policies guided by sparse rewards, e.g.,
win the game.
•  Good: simple, cheap form of supervision
•  Bad: High sample complexity

Crusher robot!

Where is it successful so far?
•  In simulation, where we can afford a lot of trials, easy to parallelize
•  Not in robotic systems:

-  action execution takes long
-  we cannot afford to fail
-  safety concerns

Learning from Demonstration for Autonomous Navigation in Complex Unstructured Terrain, Silver et al. 2010

Reward shaping!
Ideally we want dense in time rewards to closely guide the agent closely along the way.

Who will supply those shaped rewards?
1. We will manually design them: “cost function design by hand remains one of the ’black

arts’ of mobile robotics, and has been applied to untold numbers of robotic systems”
2. We will learn them from demonstrations: “rather than having a human expert tune a

system to achieve desired behavior, the expert can demonstrate desired behavior and the
robot can tune itself to match the demonstration”

Learning from Demonstration for Autonomous Navigation in Complex Unstructured Terrain, Silver et al. 2010

Reward shaping!
Ideally we want dense in time rewards to closely guide the agent closely along the way.

Who will supply those shaped rewards?
1. We will manually design them: “cost function design by hand remains one of the ’black

arts’ of mobile robotics, and has been applied to untold numbers of robotic systems”
2. We will learn them from demonstrations: “rather than having a human expert tune a

system to achieve desired behavior, the expert can demonstrate desired behavior and the
robot can tune itself to match the demonstration”

Learning from Demonstration for Autonomous Navigation in Complex Unstructured Terrain, Silver et al. 2010

Imitation Learning !

For taking this structure into account, numerous formulations have been
developed:

•  Direct: Supervised learning for policy (mapping states to actions)
using the demonstration trajectories as ground-truth (a.k.a. behavior
cloning)

•  Indirect: Learning the latent rewards/goals of the teacher and
planning under those rewards to get the policy, a.k.a. Inverse
Reinforcement Learning (later in class)

 Experts can be:

•  Humans

•  Optimal or near Optimal Planners/Controllers

Outline!
Last lecture

•  Behavior Cloning: Imitation learning as supervised learning

•  Compounding errors

•  Demonstration augmentation techniques

•  DAGGER

•  Structured prediction as Decision Making (learning to search)

•  Imitating MCTS

This lecture:

•  Inverse reinforcement learning

•  Max margin planning

•  Maximum entropy IRL

•  Adversarial Imitation learning

•  Value Iteration Networks

Inverse Reinforcement Learning!

Diagram: Pieter Abbeel!

Given , let’s recover R!

High4level!picture!

Dynamics
Model T

 Reward
Function R

Reinforcement!
Learning /

Optimal Control!

Controller/
Policy π�!

Prescribes action to
take for each state

Probability
distribution over next
states given current

state and action Describes desirability
of being in a state.

Inverse RL:
 Given π*and T, can we recover R?
 More generally, given execution traces, can we recover R?

Problem Setup!

•  Inverse RL

•  Can we recover R?

•  Apprenticeship learning via inverse RL

•  Can we then use this R to find a good policy?

•  Behavioral cloning (last lecture)

•  Can we directly learn the teacher’s policy using supervised learning?

•  Given:

•  State space, action space

•  No reward function

•  Dynamics (sometimes)

•  Teacher’s demonstration:

Assumptions (for now)!

•  Known Dynamics (transition model)
•  Reward is a linear function over fixed state features

Inverse RL with linear costs/rewards!

Jain, Hu

IRL framework

Expert

𝜋∗: 𝑥 → 𝑎

Interacts

Demonstration

𝑦∗ = 𝑥1, 𝑎1 → 𝑥2, 𝑎2 → 𝑥3, 𝑎3 → ⋯ → 𝑥𝑛, 𝑎𝑛

…… + + + + 𝑓 𝑦∗ = 𝑤𝑇 𝑤𝑇 𝑤𝑇 𝑤𝑇 𝑤𝑇

Reward Expert trajectory cost!

Principle: Expert is optimal!

•  Find a reward function which explains the expert behavior

•  Find such that

(We assume reward is linear over features)
Let , where , and

Feature Based Reward Function!

(We assume reward is linear over features)
Let , where , and

Sub/ting into

gives us: Find such that

Feature Based Reward Function!

expected discounted sum of feature
values or feature expectations—
dependent on state visitation
distributions

(We assume reward is linear over features)
Let , where , and

Sub/ting into

gives us: Find such that

Challenges: Reward function is ambiguous!

expected discounted sum of feature
values or feature expectations—
dependent on state visitation
distributions

Max-margin Classifiers!

Max-margin Classifiers!

•  We are given a training dataset of n points of the form

•  Where the are either 1 or -1, each indicating the class to which
the point belongs. Each is a p-dimensional real vector.

•  We want to find the “maximum-margin hyperplane” that divides the
group of points , for which from the group of points for
which , which is defined so that the distance between the
hyperplane and the nearest point from either group is
maximized.

•  Any hyperplane can be written as the set of points satisfying

where is the normal vector the the hyperplane

Max Margin Planning !

Maximum Margin Planning, Ratliff et al. 2006

•  Standard max margin:

Max Margin Planning !
•  Standard max margin:

•  “Structured prediction” max margin:

•  Justification: margin should be larger for policies that are
very different from

•  Example: number of states in which and
disagree

Maximum Margin Planning, Ratliff et al. 2006

Expert Suboptimality!

•  Structured prediction max margin with slack variables:

•  Can be generalized to multiple MDPs (could also be same MDP
with different initial state)

Complete Max-margin Formulation!

•  Challenge: very large number of constraints. Solutions:

•  iterative constraint generation

Maximum Margin Planning, Ratliff et al. 2006

Constraint Generation!
•  Iterate for all and then iterate

•  Solve

•  For current , find most violated constraint for all by solving:

Maximum Margin Planning, Ratliff et al. 2006

Constraint Generation!
•  Iterate for all and then iterate

•  Solve

•  For current , find most violated constraint for all by solving:

•  for all add to

•  If no constraint violations were found, we are done

Assumes an RL algorithm that can find the optimal policy for a given reward
function! Nested RL problem. However, as we assumed known dynamics, it
is more like a nested planning problem. Maximum Margin Planning, Ratliff et al. 2006

Max Margin Planning!

Maximum Margin Planning, Ratliff et al. 2006

trained to follow roads

trained to hide in the trees

Learning to step (mimicking footsteps)!
Mimicking footsteps

Where should we place the foot next?

c1
 c2

c3
c4

c5
c6

c7

https://www.youtube.com/watch?v=mKLRNllChrk!

Feature Matching!
•  Inverse RL starting point: find a reward function such that the

expert outperforms other policies

Abbeel and Ng 2004!

Feature Matching!
•  Inverse RL starting point: find a reward function such that the

expert outperforms other policies

•  Observation in Abbeel and Ng, 2004: for a policy to be
guaranteed to perform as well as the expert policy , it suffices
that the feature expectations match: 

Implies that for all with

Abbeel and Ng 2004!

Apprenticeship Learning [Abbeel & Ng, 2004]!

•  Assume for a feature map

•  Initialize: pick some policy

•  Iterate for
•  “Guess” the reward function:

Find a reward function such that the teacher maximally
outperforms all previously found policies

•  Find optimal control policy for the current guess of the reward
function

•  exit the algorithm

Maximum Entropy Inverse Optimal Control!

Roads have unknown costs linear in features

Maximum Entropy Inverse Optimal Control!
Roads have unknown costs linear in features
Paths have unknown costs, sum of road costs

Maximum Entropy Inverse Optimal Control!
Roads have unknown costs linear in features
Paths have unknown costs, sum of road costs

Let's marry probabilistic reasoning with optimal control and reward functions:
•  the costs induce a distribution over paths! P(\tau)
•  path probability based on unknown cost

Feature matching using path probabilities!

Bridges crossed

Miles of interstate

Stoplights

Features f can be:

Feature matching:
X

Path⌧i

P (⌧i)f⌧i = f̃

Which path distribution to pick?!

Bridges crossed

Miles of interstate

Stoplights

Features f can be:

Feature matching:

“If a driver uses 136.3 miles of interstate and
crosses 12 bridges in a month’s worth of trips,
the model should also use 136.3 miles of
interstate and 12 bridges in expectation for
those same start-destination pairs.”

X

Path⌧i

P (⌧i)f⌧i = f̃

Which path distribution to pick?!

Bridges crossed

Miles of interstate

Stoplights

Features f can be:

Feature matching:

“Many distributions over paths can match
feature counts, and some will be very different
from observed behavior. In our simple example,
the model could produce plans that avoid the
interstate and bridges for all routes except one,
which drives in circles on the interstate for 136
miles and crosses 12 bridges”

X

Path⌧i

P (⌧i)f⌧i = f̃

Which path distribution to pick?!

Bridges crossed

Miles of interstate

Stoplights

Features f can be:

Feature matching:

The one that satisfies feature count constraints
without over-committing!

X

Path⌧i

P (⌧i)f⌧i = f̃

Maximum Entropy Inverse Optimal Control!

•  Maximizing the entropy over paths:

•  While matching feature counts (and being a probability distribution):

As Uniform As possible!

Maximum Entropy Principle!

Strong Preference for Low Cost Paths  
Equal Cost Paths Equally Probable

•  Maximizing the entropy of the distribution over paths subject to the feature
constraints from observed data implies that we maximize the likelihood of
the observed data under the maximum entropy (exponential family)
distribution (Jaynes 1957)

P (⌧i|✓) =
1

Z(✓)
e✓

T f⌧i =
1

Z(✓)
e
P

sj2⌧i
✓T fsj

Z(✓, s) =
X

⌧S

e✓
T f⌧S

•  Maximizing the entropy of the distribution over paths subject to the
feature constraints from observed data implies that we maximize
the likelihood of the observed data under the maximum entropy
(exponential family) distribution (Jaynes 1957)

MaxEntIOC: Learning \theta!

•  Maximizing the entropy of the distribution over paths subject to the
feature constraints from observed data implies that we maximize
the likelihood of the observed data under the maximum entropy
(exponential family) distribution (Jaynes 1957)

•  The gradient is the difference between expected empirical feature
counts and the learner’s expected feature counts, which can be
expressed in terms of expected state visitation frequencies,

MaxEntIOC: Learning \theta!

state visitation frequencies!!

Learning from DemonstraGon

Demonstrated Behavior

Bridges

crossed: 3

Miles of

interstate:

20.7

Stoplights:

10

Model Behavior (ExpectaIon)

Bridges

crossed: ?

Cost

Weight:

5.0

Miles of

interstate:

?

Cost

Weight:

3.0

Stoplights

:

? 31

Learning from DemonstraGon

Demonstrated Behavior

Bridges

crossed: 3

Miles of

interstate:

20.7

Stoplights:

10

Model Behavior (ExpectaIon)

Bridges

crossed: 4.7

 +1.7

Cost Weight:

5.0

Miles of

interstate:

16.2

 ‐4.5

Cost

Weight:

3.0

Stoplights

:

7.4

 ‐2.6

34

Limitations of MaxEntIOC!

•  Cost was assumed linear over features f

•  Dynamics T were assumed known

Next:

•  General function approximations for cost : Finn et al. 2016

•  Unknown Dynamics -> sample based approximations for the
partition function Z: Boularias et al. 2011, Kalakrishnan et al. 2013,
Finn et al. 2016

guided cost learning
update cost in inner loop of policy optimization

MaxEnt IOC objective (Ziebart et al. ’08)

sample adaptively to estimate Z
[by constructing a policy]

max
✓

X

⌧2D
log pc✓ (⌧)

⌧ = {x0, u0, ..., xt, ut, ..., xT }
C✓(⌧) =

X

t

c✓(xt, ut)

p(⌧) =
1

Z
exp(�C✓(⌧))

Z =

Z
exp(�C✓(⌧))d⌧

sample to estimate Z

MaxEnt IOC general cost function!

Cost of a trajectory is
decomposed over costs
of individual states

guided cost learning
update cost in inner loop of policy optimization

MaxEnt IOC objective (Ziebart et al. ’08)

sample adaptively to estimate Z
[by constructing a policy]

max
✓

X

⌧2D
log pc✓ (⌧)

⌧ = {x0, u0, ..., xt, ut, ..., xT }
C✓(⌧) =

X

t

c✓(xt, ut)

p(⌧) =
1

Z
exp(�C✓(⌧))

Z =

Z
exp(�C✓(⌧))d⌧

sample to estimate Z

MaxEnt IOC general cost function!

Cost of a trajectory is
decomposed over costs
of individual states

Before:!

guided cost learning
update cost in inner loop of policy optimization

MaxEnt IOC objective (Ziebart et al. ’08)

sample adaptively to estimate Z
[by constructing a policy]

max
✓

X

⌧2D
log pc✓ (⌧)

⌧ = {x0, u0, ..., xt, ut, ..., xT }
C✓(⌧) =

X

t

c✓(xt, ut)

p(⌧) =
1

Z
exp(�C✓(⌧))

Z =

Z
exp(�C✓(⌧))d⌧

sample to estimate Z

MaxEnt IOC general cost function!

Cost of a trajectory is
decomposed over costs
of individual states

Before:!

In the form of a loss function!

Approximating Z with Importance Sampling!

MaxEntIOC with Importance Sampling!

MaxEntIOC with Importance Sampling!

MaxEntIOC with Importance Sampling!

Adapting the sampling distribution q!

What should be the background sampling distribution q?
•  Uniform: Boularias et al. 2011
•  In the vicinity of demonstrations: Kalakrishnan et al. 2013
•  Refine it over time! Finn et al. 2016

23

What about unknown dynamics?
Adaptive importance sampling

MaxEntIOC with Adaptive Importance Sampling!

This can be any RL, planning algorithm that given rewards computes a policy
(the forward RL problem), e.g. Ho and Ermon 2016 used TRPO
Given expert demonstrations and policy sampled trajectories improve
rewards/costs (Inverse RL)

MaxEntIOC with Adaptive Importance Sampling!

Diagram from Chelsea Finn!

Update cost using
samples & demos

generate policy
samples from q

update q w.r.t. cost

x

x

x

1

2

n

h

h

h

1

2

k

h

h

h

1

2

p

(1)

(1)

(1)

(2)

(2)

(2)

h

h

h

1

2

m

(3)

(3)

(3)

c (x)θ
2

policy q cost c

guided cost learning algorithm

MaxEntIOC with Adaptive Importance Sampling!

Diagram from Chelsea Finn!

Update cost using
samples & demos

generate policy
samples from q

update q w.r.t. cost
(partially optimize)

generator

x

x

x

1

2

n

h

h

h

1

2

k

h

h

h

1

2

p

(1)

(1)

(1)

(2)

(2)

(2)

h

h

h

1

2

m

(3)

(3)

(3)

c (x)θ
2

policy q cost c

discriminator

guided cost learning algorithm

update cost in inner loop of policy optimization

Generative Adversarial Networks!

Generator

Discriminator

z ~ uniform([0, 1])

Real Data x!

Goodfellow et. al. !

MaxEntIOC with Adaptive Importance Sampling!

Diagram from Chelsea Finn!

Update cost using
samples & demos

generate policy
samples from q

update q w.r.t. cost
(partially optimize)

generator

x

x

x

1

2

n

h

h

h

1

2

k

h

h

h

1

2

p

(1)

(1)

(1)

(2)

(2)

(2)

h

h

h

1

2

m

(3)

(3)

(3)

c (x)θ
2

policy q cost c

discriminator

guided cost learning algorithm

update cost in inner loop of policy optimization

37

Case Study: Generative Adversarial Imitation Learning

- demonstrations from TRPO-optimized policy
- use TRPO as a policy optimizer
- OpenAI gym tasks

Q: !

•  Why we need to have this separate optimization over cost, and
then separately planning/RL over this cost to find the policy?
Because the dynamics where unknown..

•  Let’s assume they are known.

•  Can we imitate the expert and backdrop through all the way till the
rewards simply by imitating expert behavior (e.g., through
supervised learning), in an end-to-end fashion?

Value Iteration Sub-Network!
Each iteration of VI may be seen as passing the previous value function Vn
and reward function R through a convolution layer and max-pooling layer.

Value Iteration Networks, Tamar et al. 2016!

Value Iteration Sub-Network!
Each iteration of VI may be seen as passing the previous value function Vn
and reward function R through a convolution layer and max-pooling layer.

convolution kernel
weights correspond to
the discounted
transition probabilities

Each channel in the convolution layer
corresponds to the Q -function for a
specific action

Max-pooling

By recurrently applying a convolution layer K times,
K iterations of VI are effectively performed.

Value Iteration Networks, Tamar et al. 2016!

Value Iteration Network!

•  Notice that the optimal action at each state depends only on the
value function of its immediate neighbors->locality->attention

•  To estimate the optimal action in each state, I only need to use the
value functions in the vicinity of the state, then train and CNN with
a standard architecture

Value Iteration Networks, Tamar et al. 2016!

Value Iteration Network!

Value Iteration Networks, Tamar et al. 2016!

