10703 Deep Reinforcement Learning and Control Russ Salakhutdinov Machine Learning Department rsalakhu@cs.cmu.edu Slides developed and borrowed from Katerina Fragkiadaki Imitation Learning II #### So far in the course Reinforcement Learning: Learning policies guided by sparse rewards, e.g., win the game. - Good: simple, cheap form of supervision - Bad: High sample complexity Where is it successful so far? - In simulation, where we can afford a lot of trials, easy to parallelize - Not in robotic systems: - action execution takes long - we cannot afford to fail - safety concerns Crusher robot Learning from Demonstration for Autonomous Navigation in Complex Unstructured Terrain, Silver et al. 2010 ## Reward shaping Ideally we want dense in time rewards to closely guide the agent closely along the way. Who will supply those shaped rewards? - 1.We will manually design them: "cost function design by hand remains one of the 'black arts' of mobile robotics, and has been applied to untold numbers of robotic systems" - 2.We will learn them from demonstrations: "rather than having a human expert tune a system to achieve desired behavior, the expert can demonstrate desired behavior and the robot can tune itself to match the demonstration" Learning from Demonstration for Autonomous Navigation in Complex Unstructured Terrain, Silver et al. 2010 ## Reward shaping Ideally we want dense in time rewards to closely guide the agent closely along the way. Who will supply those shaped rewards? - 1.We will manually design them: "cost function design by hand remains one of the 'black arts' of mobile robotics, and has been applied to untold numbers of robotic systems" - 2.We will learn them from demonstrations: "rather than having a human expert tune a system to achieve desired behavior, the expert can demonstrate desired behavior and the robot can tune itself to match the demonstration" Learning from Demonstration for Autonomous Navigation in Complex Unstructured Terrain, Silver et al. 2010 ### Imitation Learning For taking this structure into account, numerous formulations have been developed: - Direct: Supervised learning for policy (mapping states to actions) using the demonstration trajectories as ground-truth (a.k.a. behavior cloning) - Indirect: Learning the latent rewards/goals of the teacher and planning under those rewards to get the policy, a.k.a. Inverse Reinforcement Learning (later in class) #### Experts can be: - Humans - Optimal or near Optimal Planners/Controllers ### Outline #### Last lecture - · Behavior Cloning: Imitation learning as supervised learning - Compounding errors - Demonstration augmentation techniques - DAGGER - Structured prediction as Decision Making (learning to search) - Imitating MCTS #### This lecture: - Inverse reinforcement learning - Max margin planning - Maximum entropy IRL - Adversarial Imitation learning - Value Iteration Networks ## Inverse Reinforcement Learning Diagram: Pieter Abbeel ## Problem Setup #### Given: - State space, action space - No reward function - Dynamics (sometimes) $T_{s,a}[s_{t+1}|s_t,a_t]$ - Teacher's demonstration: $$s_0, a_0, s_1, a_1, s_2, a_2, ...$$ (= trace of the teacher's policy π^*) #### Inverse RL Can we recover R? #### Apprenticeship learning via inverse RL Can we then use this R to find a good policy? #### Behavioral cloning (last lecture) Can we directly learn the teacher's policy using supervised learning? ## Assumptions (for now) - Known Dynamics (transition model) T - Reward is a linear function over fixed state features ϕ ### Inverse RL with linear costs/rewards Expert trajectory cost ## Principle: Expert is optimal - Find a reward function R^* which explains the expert behavior - Find R^* such that $$\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R^*(s_t) | \pi^*\right] \ge \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R^*(s_t) | \pi\right] \quad \forall \pi$$ #### Feature Based Reward Function (We assume reward is linear over features) Let $$R(s) = w^T \phi(s)$$, where $w \in \mathbb{R}^n$, and $\phi: S \to \mathbb{R}^n$ $$\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}) | \pi\right] = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} w^{T} \phi(s_{t}) | \pi\right]$$ $$= w^{T} \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \phi(s_{t}) | \pi\right]$$ $$= w^{T} \mu(\pi)$$ #### Feature Based Reward Function (We assume reward is linear over features) Let $$R(s) = w^T \phi(s)$$, where $w \in \mathbb{R}^n$, and $\phi: S \to \mathbb{R}^n$ $$\mathbb{E}[\sum_{t=0}^{\infty} \gamma^t R(s_t) | \pi] = \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t w^T \phi(s_t) | \pi]$$ $$= w^T \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t \phi(s_t) | \pi]$$ $$= w^T \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t \phi(s_t) | \pi]$$ $$=w^T \mu(\pi)$$ expected discounted sum of feature values or feature expectations—dependent on state visitation distributions Sub/ting into $$\mathbb{E}[\sum_{t=0}^{\infty} \gamma^t R^*(s_t) | \pi^*] \ge \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t R^*(s_t) | \pi] \quad \forall \pi$$ gives us: Find w^* such that $w^{*T}\mu(\pi^*) \geq w^{*T}\mu(\pi) \quad \forall \pi$ ### Challenges: Reward function is ambiguous (We assume reward is linear over features) Let $$R(s) = w^T \phi(s)$$, where $w \in \mathbb{R}^n$, and $\phi: S \to \mathbb{R}^n$ $$\mathbb{E}[\sum_{t=0}^{\infty} \gamma^t R(s_t) | \pi] = \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t w^T \phi(s_t) | \pi]$$ $$= w^T \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t \phi(s_t) | \pi]$$ $$= w^T \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t \phi(s_t) | \pi]$$ $$=w^T \mu(\pi)$$ expected discounted sum of feature values or feature expectations—dependent on state visitation distributions Sub/ting into $$\mathbb{E}[\sum_{t=0}^{\infty} \gamma^t R^*(s_t) | \pi^*] \ge \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t R^*(s_t) | \pi] \quad \forall \pi$$ gives us: Find w^* such that $w^{*T}\mu(\pi^*) \geq w^{*T}\mu(\pi) \quad \forall \pi$ ## Max-margin Classifiers "Minimize $\| ec{w} \|$ subject to $y_i (ec{w} \cdot ec{x}_i - b) \geq 1,$ for $i = 1, \, \dots, \, n$ " ## Max-margin Classifiers We are given a training dataset of n points of the form $$(\vec{x}_1, y_1), ..., (\vec{x}_n, y_n)$$ - Where the y_i are either 1 or -1, each indicating the class to which the point $\vec{x_i}$ belongs. Each $\vec{x_i}$ is a p-dimensional real vector. - We want to find the "maximum-margin hyperplane" that divides the group of points \vec{x}_i , for which $y_i=1$ from the group of points for which $y_i=-1$, which is defined so that the distance between the hyperplane and the nearest point \vec{x}_i from either group is maximized. - Any hyperplane can be written as the set of points $ec{x}$ satisfying $$\vec{w} \cdot \vec{x} - b = 0$$ where \vec{w} is the normal vector the the hyperplane ## Max Margin Planning Standard max margin: $$\min_{w} \|w\|_2^2$$ s.t. $$w^T \mu(\pi^*) \ge w^T \mu(\pi) + 1 \quad \forall \pi$$ ## Max Margin Planning Standard max margin: $$\min_{w} \|w\|_2^2$$ s.t. $$w^T \mu(\pi^*) \ge w^T \mu(\pi) + 1 \quad \forall \pi$$ "Structured prediction" max margin: $$\min_{w} \|w\|_{2}^{2}$$ s.t. $w^{T} \mu(\pi^{*}) \geq w^{T} \mu(\pi) + m(\pi^{*}, \pi) \quad \forall \pi$ - Justification: margin should be larger for policies that are very different from π^* - Example: $m(\pi^*,\pi)=$ number of states in which π^* and π disagree ## **Expert Suboptimality** Structured prediction max margin with slack variables: $$\min_{w,\xi} \lVert w \rVert_2^2 + C\xi$$ s.t. $$w^T \mu(\pi^*) \ge w^T \mu(\pi) + m(\pi^*, \pi) - \xi \quad \forall \pi$$ Can be generalized to multiple MDPs (could also be same MDP with different initial state) $$\min_{w,\xi^{(i)}} \lVert w Vert_2^2 + C \sum_i \xi^{(i)}$$ s.t. $$w^T \mu(\pi^{(i)*}) \ge w^T \mu(\pi^{(i)}) + m(\pi^{(i)*}, \pi^{(i)}) - \xi^{(i)} \quad \forall i, \pi^{(i)}$$ ## Complete Max-margin Formulation $$\min_{w} \|w\|_{2}^{2} + C \sum_{i} \xi^{(i)}$$ s.t. $$w^T \mu(\pi^{(i)*}) \ge w^T \mu(\pi^{(i)}) + m(\pi^{(i)*}, \pi^{(i)}) - \xi^{(i)} \quad \forall i, \pi^{(i)}$$ - Challenge: very large number of constraints. Solutions: - iterative constraint generation #### Constraint Generation • Iterate $\Pi^{(i)} = \{\}$ for all i and then iterate • Solve $$\min_{w} \lVert w \rVert_2^2 + C \sum_{i} \xi^{(i)}$$ s.t. $$w^T \mu(\pi^{(i)*}) \ge w^T \mu(\pi^{(i)}) + m(\pi^{(i)*}, \pi^{(i)}) - \xi^{(i)} \quad \forall i, \pi^{(i)} \in \Pi^{(i)}$$ • For current w, find most violated constraint for all i by solving: $$\max_{\pi^{(i)}} w^T \mu(\pi^{(i)}) + m(\pi^{(i)*}, \pi^{(i)})$$ #### Constraint Generation • Iterate $\Pi^{(i)} = \{\}$ for all i and then iterate • Solve $$\min_{w} \lVert w \rVert_2^2 + C \sum_{i} \xi^{(i)}$$ s.t. $$w^T \mu(\pi^{(i)*}) \ge w^T \mu(\pi^{(i)}) + m(\pi^{(i)*}, \pi^{(i)}) - \xi^{(i)} \quad \forall i, \pi^{(i)} \in \Pi^{(i)}$$ • For current w, find most violated constraint for all i by solving: $$\max_{\pi^{(i)}} w^T \mu(\pi^{(i)}) + m(\pi^{(i)*}, \pi^{(i)})$$ - for all i add $\pi^{(i)}$ to $\Pi^{(i)}$ - If no constraint violations were found, we are done Assumes an RL algorithm that can find the optimal policy for a given reward function! Nested RL problem. However, as we assumed known dynamics, it is more like a nested planning problem. Maximum Margin Planning, Ratliff et al. 2006 # Max Margin Planning #### trained to follow roads mode 1 - training made 1 - learned cost map over novel region mode 1 - learned path over novel region trained to hide in the trees mode 2 - training mode 2 - learned cost map over novel region mode 2 - learned path over novel region ## Learning to step (mimicking footsteps) Where should we place the foot next? #### Learned Cost Function Examples #### Learned Cost Function Examples #### Learned Cost Function Examples ## Feature Matching Inverse RL starting point: find a reward function such that the expert outperforms other policies Let $$R(s) = w^T \phi(s)$$, where $w \in \mathbb{R}^n$, and $\phi : S \to \mathbb{R}^n$ Find w^* such that $w^{*T} \mu(\pi^*) \ge w^{*T} \mu(\pi) \quad \forall \pi$ ## Feature Matching Inverse RL starting point: find a reward function such that the expert outperforms other policies Let $$R(s) = w^T \phi(s)$$, where $w \in \mathbb{R}^n$, and $\phi : S \to \mathbb{R}^n$ Find w^* such that $w^{*T} \mu(\pi^*) \ge w^{*T} \mu(\pi) \quad \forall \pi$ • Observation in Abbeel and Ng, 2004: for a policy π to be guaranteed to perform as well as the expert policy μ *, it suffices that the feature expectations match: $$\|\mu(\pi) - \mu(\pi^*)\|_1 \le \epsilon$$ Implies that for all w with $||w||_{\infty} \leq 1$: $$|w^{*T}\mu(\pi) - w^{*T}\mu(\pi^*)| \le \epsilon$$ ### Apprenticeship Learning [Abbeel & Ng, 2004] - Assume $R_w(s) = w^T \phi(s)$ for a feature map $\phi: S \to \mathbb{R}^n$ - Initialize: pick some policy π_0 - Iterate for $i = 1, 2, \dots$: - "Guess" the reward function: Find a reward function such that the teacher maximally outperforms all previously found policies $$\begin{aligned} \max_{\gamma, w: \|w\|_2 \le 1} \gamma \\ \text{s.t.} \quad w^T \mu(\pi^*) \ge w^T \mu(\pi) + \gamma \quad \forall \pi \in \{\pi_0, \pi_1, ..., \pi_{i-1}\} \end{aligned}$$ - Find optimal control policy π for the current guess of the reward function R_w - $\gamma \le \varepsilon/2$ exit the algorithm ### Maximum Entropy Inverse Optimal Control Roads have unknown costs linear in features ### Maximum Entropy Inverse Optimal Control Roads have unknown costs linear in features Paths have unknown costs, sum of road costs ### Maximum Entropy Inverse Optimal Control Roads have unknown costs linear in features Paths have unknown costs, sum of road costs Let's marry probabilistic reasoning with optimal control and reward functions: - the costs induce a distribution over paths! P(\tau) - path probability based on unknown cost ## Feature matching using path probabilities #### Features f can be: # Bridges crossed # Miles of interstate #### Feature matching: $$\sum_{\mathrm{Path}\tau_i} P(\tau_i) f_{\tau_i} = \tilde{\mathbf{f}}$$ # Stoplights # Which path distribution to pick? #### Features f can be: # Bridges crossed # Miles of interstate #### Feature matching: $$\sum_{\mathrm{Path}\tau_i} P(\tau_i) f_{\tau_i} = \tilde{\mathbf{f}}$$ # Stoplights "If a driver uses 136.3 miles of interstate and crosses 12 bridges in a month's worth of trips, the model should also use 136.3 miles of interstate and 12 bridges in expectation for those same start-destination pairs." # Which path distribution to pick? #### Features f can be: # Bridges crossed # Miles of interstate #### Feature matching: $$\sum_{\mathrm{Path}\tau_i} P(\tau_i) f_{\tau_i} = \tilde{\mathbf{f}}$$ # Stoplights "Many distributions over paths can match feature counts, and some will be very different from observed behavior. In our simple example, the model could produce plans that avoid the interstate and bridges for all routes except one, which drives in circles on the interstate for 136 miles and crosses 12 bridges" # Which path distribution to pick? #### Features f can be: # Bridges crossed # Miles of interstate #### Feature matching: $$\sum_{\mathrm{Path}\tau_i} P(\tau_i) f_{\tau_i} = \tilde{\mathbf{f}}$$ # Stoplights The one that satisfies feature count constraints without over-committing! ## Maximum Entropy Inverse Optimal Control Maximizing the entropy over paths: As Uniform As possible $$\max_{P} - \sum_{\tau} P(\tau) \log P(\tau)$$ While matching feature counts (and being a probability distribution): $$\sum_{\tau} P(\tau) f_{\tau} = f_{\text{dem}}$$ $$\sum_{\tau} P(\tau) = 1$$ # Maximum Entropy Principle Maximizing the entropy of the distribution over paths subject to the feature constraints from observed data implies that we maximize the likelihood of the observed data under the maximum entropy (exponential family) distribution (Jaynes 1957) $$P(\tau_i|\theta) = \frac{1}{Z(\theta)} e^{\theta^T f_{\tau_i}} = \frac{1}{Z(\theta)} e^{\sum_{s_j \in \tau_i} \theta^T f_{s_j}}$$ $$Z(\theta, s) = \sum_{\tau_S} e^{\theta^T f_{\tau_S}}$$ **Strong Preference for Low Cost Paths Equal Cost Paths Equally Probable** ## MaxEntIOC: Learning \theta Maximizing the entropy of the distribution over paths subject to the feature constraints from observed data implies that we maximize the likelihood of the observed data under the maximum entropy (exponential family) distribution (Jaynes 1957) $$\theta^* = \arg\max_{\theta} L(\theta) = \arg\max_{\theta} \sum_{\text{examples}} \log P(\tilde{\tau}|\theta)$$ ## MaxEntIOC: Learning \theta Maximizing the entropy of the distribution over paths subject to the feature constraints from observed data implies that we maximize the likelihood of the observed data under the maximum entropy (exponential family) distribution (Jaynes 1957) $$\theta^* = \arg\max_{\theta} L(\theta) = \arg\max_{\theta} \sum_{\text{examples}} \log P(\tilde{\tau}|\theta)$$ The gradient is the difference between expected empirical feature counts and the learner's expected feature counts, which can be expressed in terms of expected state visitation frequencies, $$\nabla L(\theta) = \tilde{f} - \sum_{\tau} P(\tau|\theta) f_{\tau} = \tilde{f} - \sum_{s_i} D_{s_i} f_{s_i}$$ state visitation frequencies! ## Learning from Demonstration #### **Demonstrated Behavior** Bridges crossed: **3** Miles of interstate: **20.7** Stoplights: **10** #### **Model Behavior (Expectation)** Bridges crossed: ? Miles of interstate: ? Stoplights • ? 31 ### Learning from Demonstration #### **Demonstrated Behavior** Bridges crossed: **3** Miles of interstate: **20.7** Stoplights: **10** #### **Model Behavior (Expectation)** Bridges crossed: 47 Miles of interstate: 16.2 **Stoplights** : 7.4 34 -2.6 3.0 ### Limitations of MaxEntlOC - Cost was assumed linear over features f - Dynamics T were assumed known #### Next: - General function approximations for cost c_{θ} : Finn et al. 2016 - Unknown Dynamics -> sample based approximations for the partition function Z: Boularias et al. 2011, Kalakrishnan et al. 2013, Finn et al. 2016 ## MaxEnt IOC general cost function $$\max_{\theta} \sum_{\tau \in \mathcal{D}} \log p_{c_{\theta}}(\tau)$$ $$p(\tau) = \frac{1}{Z} \exp(-C_{\theta}(\tau))$$ Cost of a trajectory is decomposed over costs of individual states $$C_{\theta}(\tau) = \sum_{t} c_{\theta}(x_{t}, u_{t})$$ $$Z = \int \exp(-C_{\theta}(\tau))d\tau$$ # MaxEnt IOC general cost function $$\max_{\theta} \sum_{\tau \in \mathcal{D}} \log p_{c_{\theta}}(\tau)$$ $$p(\tau) = \frac{1}{Z} \exp(-C_{\theta}(\tau))$$ $Z = \int \exp(-C_{\theta}(\tau))d\tau$ Cost of a trajectory is decomposed over costs of individual states $$C_{\theta}(\tau) = \sum_{t} c_{\theta}(x_t, u_t)$$ Before: $$c_{\theta}(\mathbf{u}_t, \mathbf{u}_t) = \theta^{\mathrm{T}} \mathbf{f}(\mathbf{u}_t, \mathbf{x}_t)$$ # MaxEnt IOC general cost function $$\max_{\theta} \sum_{\tau \in \mathcal{D}} \log p_{c_{\theta}}(\tau)$$ $$p(\tau) = \frac{1}{Z} \exp(-C_{\theta}(\tau))$$ Cost of a trajectory is decomposed over costs of individual states $$Z = \int \exp(-C_{\theta}(\tau))d\tau$$ $$C_{\theta}(\tau) = \sum_{t} c_{\theta}(x_{t}, u_{t})$$ In the form of a loss function $$\mathcal{L}_{IOC}(\theta) = \frac{1}{N} \sum_{\tau_i \in \mathcal{D}_{demo}} c_{\theta}(\tau_i) + \log Z$$ Before: $$c_{\theta}(\mathbf{u}_t, \mathbf{u}_t) = \theta^{\mathrm{T}} \mathbf{f}(\mathbf{u}_t, \mathbf{x}_t)$$ ## Approximating Z with Importance Sampling $$\mu = \int_{\mathcal{D}} f(\boldsymbol{x}) p(\boldsymbol{x}) \, d\boldsymbol{x} = \int_{\mathcal{D}} \frac{f(\boldsymbol{x}) p(\boldsymbol{x})}{q(\boldsymbol{x})} \, q(\boldsymbol{x}) \, d\boldsymbol{x} = \mathbb{E}_q \left(\frac{f(\boldsymbol{X}) p(\boldsymbol{X})}{q(\boldsymbol{X})} \right)$$ $$\log Z \approx \log \frac{1}{M} \sum_{\tau_j \in \mathcal{D}_{\text{samp}}} \frac{\exp(-c_{\theta}(\tau_j))}{q(\tau_j)}$$ # MaxEntIOC with Importance Sampling $$\mathcal{L}_{IOC}(\theta) = \frac{1}{N} \sum_{\tau_i \in \mathcal{D}_{demo}} c_{\theta}(\tau_i) + \log Z$$ ## MaxEntIOC with Importance Sampling $$\begin{split} \mathcal{L}_{\text{IOC}}(\theta) &= \frac{1}{N} \sum_{\tau_i \in \mathcal{D}_{\text{demo}}} c_{\theta}(\tau_i) + \log Z \\ &\approx \frac{1}{N} \sum_{\tau_i \in \mathcal{D}_{\text{demo}}} c_{\theta}(\tau_i) + \log \frac{1}{M} \sum_{\tau_j \in \mathcal{D}_{\text{samp}}} \frac{\exp(-c_{\theta}(\tau_j))}{q(\tau_j)} \end{split}$$ ## MaxEntIOC with Importance Sampling $$\begin{split} \mathcal{L}_{\text{IOC}}(\theta) &= \frac{1}{N} \sum_{\tau_i \in \mathcal{D}_{\text{demo}}} c_{\theta}(\tau_i) + \log Z \\ &\approx \frac{1}{N} \sum_{\tau_i \in \mathcal{D}_{\text{demo}}} c_{\theta}(\tau_i) + \log \frac{1}{M} \sum_{\tau_j \in \mathcal{D}_{\text{samp}}} \frac{\exp(-c_{\theta}(\tau_j))}{q(\tau_j)} \end{split}$$ $$w_j = \frac{\exp(-c_{\theta}(\tau_j))}{q(\tau_j)}$$ $$\frac{d\mathcal{L}_{\text{IOC}}}{d\theta} = \frac{1}{N} \sum_{\tau_i \in \mathcal{D}_{\text{demo}}} \frac{dc_{\theta}}{d\theta} (\tau_i) - \frac{1}{Z} \sum_{\tau_j \in \mathcal{D}_{\text{samp}}} w_j \frac{dc_{\theta}}{d\theta} (\tau_j)$$ ## Adapting the sampling distribution q What should be the background sampling distribution q? - Uniform: Boularias et al. 2011 - In the vicinity of demonstrations: Kalakrishnan et al. 2013 - Refine it over time! Finn et al. 2016 - 1: Initialize $q_k(\tau)$ as either a random initial controller or from demonstrations - 2: **for** iteration i = 1 to I **do** - 3: Generate samples $\mathcal{D}_{\text{traj}}$ from $q_k(\tau)$ - 4: Append samples: $\mathcal{D}_{samp} \leftarrow \mathcal{D}_{samp} \cup \mathcal{D}_{traj}$ - 5: Use \mathcal{D}_{samp} to update cost c_{θ} using gradient descent - 6: Update $q_k(\tau)$ using $\mathcal{D}_{\text{traj}}$ and the method from (Levine & Abbeel, 2014) to obtain $q_{k+1}(\tau)$ - 7: end for - 8: **return** optimized cost parameters θ and trajectory distribution $q(\tau)$ This can be any RL, planning algorithm that given rewards computes a policy (the forward RL problem), e.g. Ho and Ermon 2016 used TRPO Given expert demonstrations and policy sampled trajectories improve rewards/costs (Inverse RL) ## Generative Adversarial Networks #### **Case Study:** Generative Adversarial Imitation Learning - demonstrations from TRPO-optimized policy - use TRPO as a policy optimizer - OpenAl gym tasks - Why we need to have this separate optimization over cost, and then separately planning/RL over this cost to find the policy? Because the dynamics where unknown.. - Let's assume they are known. - Can we imitate the expert and backdrop through all the way till the rewards simply by imitating expert behavior (e.g., through supervised learning), in an end-to-end fashion? ### Value Iteration Sub-Network Each iteration of VI may be seen as passing the previous value function Value and reward function R through a convolution layer and max-pooling layer. $$Q_n(s, a) = R(s, a) + \gamma \sum_{s'} P(s'|s, a) V_n(s')$$ $$V_{n+1}(s) = \max_a Q_n(s, a)$$ ### Value Iteration Sub-Network Each iteration of VI may be seen as passing the previous value function Value and reward function R through a convolution layer and max-pooling layer. $$Q_n(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) V_n(s')$$ $$V_{n+1}(s) = \max_{a} Q_n(s, a)$$ Each channel in the convolution layer corresponds to the Q -function for a specific action -Max-pooling convolution kernel weights correspond to the discounted transition probabilities By recurrently applying a convolution layer K times, K iterations of VI are effectively performed. ### Value Iteration Network Notice that the optimal action at each state depends only on the value function of its immediate neighbors->locality->attention $$\bar{\pi}^*(\bar{s}) = \arg\max_{\bar{a}} \bar{R}(\bar{s}, \bar{a}) + \gamma \sum_{\bar{s}'} \bar{P}(\bar{s}'|\bar{s}, \bar{a}) \bar{V}^*(\bar{s}')$$ To estimate the optimal action in each state, I only need to use the value functions in the vicinity of the state, then train and CNN with a standard architecture ## Value Iteration Network | Domain | VIN | | | CNN | | | FCN | | | |----------------|------------|---------|-------|-------|-------|-------|-------|-------|-------| | | Prediction | Success | Traj. | Pred. | Succ. | Traj. | Pred. | Succ. | Traj. | | | loss | rate | diff. | loss | rate | diff. | loss | rate | diff. | | 8×8 | 0.004 | 99.6% | 0.001 | 0.02 | 97.9% | 0.006 | 0.01 | 97.3% | 0.004 | | 16×16 | 0.05 | 99.3% | 0.089 | 0.10 | 87.6% | 0.06 | 0.07 | 88.3% | 0.05 | | 28×28 | 0.11 | 97% | 0.086 | 0.13 | 74.2% | 0.078 | 0.09 | 76.6% | 0.08 |