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Variational Autoencoders



Gaussian Policy: Continuous Actions

» Remember stochastic policy
7T9(57 a) =P [a | Sy 0]
» In continuous action spaces, a Gaussian policy is natural

» Mean is a linear combination of state features
_ T
pu(s) = é(s) 0

Nonlinear extension: replace qb(s)th a deep
neural network with trainable weights w

» Variance may be fixed o0,, or can also parameterized

» Policy is Gaussian @ ~~ ./\/'(,u(s), 02)



Multimodal Outputs
» Remember stochastic policy
mo(s,a) =Pla | s,0]

» But what if stochastic policy has multiple modes?

0.2~

» Model-based RL: Dynamics of the environment can be multimodal.

P(siy1lag, st)



Helmholtz Machines
* Hinton, G. E., Dayan, P., Frey, B. J. and Neal, R., Science 1995

* Kingma & Welling, 2014
Generative

: 3
Approximate P(h”) Process * Rezende, Mohamed, Daan, 2014

Inference 13
211.3
Q(h3|h2)T w3 PR s Mnih & Gregor, 2014
h” * Bornschein & Bengi
1.2 gio, 2015
20y 1 W2 P(h |h )
i) hl * Tang & Salakhutdinov, 2013
W'l P(x/h')
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Variational Autoencoders (VAEs)

* The VAE defines a generative process in terms of ancestral
sampling through a cascade of hidden stochastic layers:

L L—11,L 1
p(x|0) = p(h”[0)p(h™~"|h™,0)- - p(x|h",0)
hl,.. hL “~
; Generative Each t.erm may dejnote a | |
P(h?) Process complicated nonlinear relationship
P(h?h?) « 0 denotes parameters
of VAE.
P(h'[h?) e [ is the number of

stochastic layers.

 Sampling and probability
evaIu_ation is tractable for
each p(h*|htt!) .

P(x|h)

Input data



Variational Autoencoders (VAEs)

* The VAE defines a generative process in terms of ancestral
sampling through a cascade of hidden stochastic layers:

P(X|9) — Z p(hL‘H)p(hL_l‘hLv 9) o -p(X‘hl, 9)

ht,..., hL
Generative
State Process » Given state, we can
generate a distribution
P(h?*h?) over actions:

mo(s,a) =Pla | s, 0]

P(h'h?)
» Conditional VAE: neural

networks with stochastic
P(x|h') and deterministic layers




VAE: Example

* The VAE defines a generative process in terms of ancestral
sampling through a cascade of hidden stochastic layers:

p(x|0) = > p(h*6)p(h'|h? 6)p(x/h',6)

h'l h? S~
This term denotes a one-layer
neural net.
h?2 Stochastic Layer
¢ 9 denotes parameters

l Deterministic of VAE.
Layer

e [, isthe number of

hl Stochastic Layer stochastic layers.
l  Sampling and probability
X evaluation is tractable for

each p(h¢|h%t?).



Recognition Network

* The recognition model is defined in terms of an analogous
factorization:

g(hlx,0) = q(h'|x,0)q(h*/h',0)---q(h"h"~ ", 6)
S~

Approximate P(h3) Generative Each term may denote a
Inference Process complicated nonlinear relationship
hS
Q(h3h2)T P(h?h?) * We assume that
2 h' ~ N(0,1)
11,2
Q(hzhl)T P(h[h%) * The conditionals:
h! p(h‘| h*H1)
L1 l—1
g(h*|h
X are Gaussians with

Input data diagonal covariances



Variational Bound
* The VAE is trained to maximize the variational lower bound:

X, h X, h
o8 ) = log x| 5| = B |08 | = 269

L(x) = log p(x) — Dkw (¢(h|x))||p(h|x))

* Trading off the data log-likelihood and the KL divergence
from the true posterior.

* Hard to optimize the variational bound
with respect to the recognition network
(high-variance).

* Key idea of Kingma and Welling is to use
reparameterization trick.

Input data



Reparameterization Trick

* Assume that the recognition distribution is Gaussian:

q(h’[h™", 0) = N(u(h™",6),2(h"",0))

with mean and covariance computed from the state of the hidden
units at the previous layer.

* Alternatively, we can express this in term of auxiliary variable:
€' ~ N(0,1)
hE (66, hﬁ—l’ H) _ E(he_l, 0)1/2€€ 4+ “(h€—1’ 9)



Reparameterization Trick

* Assume that the recognition distribution is Gaussian:

q(h’[h™", 0) = N(u(h™",6),2(h"",0))

* Or
€' ~ N(0,1)
he (667 he_lv 9) — Z(he_la 9)1/266 + u’(he_la 9)

* The recognition distribution g(h“/h*~1,0) can be expressed in
terms of a deterministic mapping:

h(e,x,0), with €= (e',...,€e")

(N J (N J
Y Y

Deterministic Distribution of €
Encoder does not depend on @




Computing the Gradients

* The gradient w.r.t the parameters: both recognition and
generative:

p(x, h\9)]

K ]
Ve h~q(h|x,0) [Og Q(h‘X, 9)

p(x,h(e,x,0)|0

( >]
g(h(e, x,0)|x,0)
= Eel,...,eLNN(OvI) [Ve log C]E ;

xh@xmel
e AN

h(e,x,0)|x,0
Gradients can be The mapping h is a deterministic

computed by backprop neural net for fixed €.

— v9]]'-?:’61,...,GLN./\/‘(O,I) llog




Computing the Gradients

* The gradient w.r.t the parameters: recognition and generative:

p(x,h|0) |
a(hx, 0)] -k

p(X, h(E, X, 9) ‘9)
1 L 1
el,....eL N (0,I) [W " 4(h(e, x, 0)[x, 0)

VolEn~q(n|x,) [10?;

* Approximate expectation by generating k samples from €:

k
1
E E VG 1ng (X7 h(&,;, X, 0)7 0)
=1

where we defined unnormalized importance weights:

w(x, h, 0) — p(X, h|0)/Q(h|X> 0)

 VAE update: Low variance as it uses the log-likelihood gradients
with respect to the latent variables.



VAE: Assumptions

Remember the variational bound:
L(x) = log p(x) — Dkr (q(h[x))||p(h|x))

The variational assumptions must be approximately satisfied.

The posterior distribution must be approximately factorial
(common practice) and predictable with a feed-forward net.

We show that we can relax these assumptions using a tighter
lower bound on marginal log-likelihood.



Importance Weighted Autoencoders

* Consider the following k-sample importance weighting of the

log-likelihood:
£ J— E ~ X 1 1. ’ :
k(X) b, he~q(hlx) i Bk ; q(h;|x) _
— 1 k 7]
— Ehl,...,hkNQ(mX) lOg E ; Wi

\ unnormalized
importance weights

where hy,..., h; are sampled
from the recognition network.

Input data



Importance Weighted Autoencoders

* Consider the following k-sample importance weighting of the

log-likelihood:

p(x
ﬁk(X):Ehl,...,hkwq(MX) log — Z ‘X

* This is a lower bound on the marginal log-likelihood:

1
Li(x)=E logEZwi <logE

1 k
DI

= log p(x)

e Special Case of k=1: Same as standard VAE objective.

e Using more samples = Improves the tightness of the bound.



IWAES vs. VAEs

* Draw k-samples form the recognition network ¢(h|x)
— or k-sets of auxiliary variables €.

* Obtain the following Monte Carlo estimate of the gradient:

k
VoLly(x) ~ wﬂVQ logw(x,h(e;,x,0),0) !

e

1= 1

17



VAE: Intuition

* The gradient of the log weights decomposes:
Ve log w(Xv h(€i7 X, 0)7 0)
= Vg lng(X, h(e’ia X, 9)|0) o log Q(h(e’ba X, 9)’X7 0)
\ J
S/ Y

Deterministic Deterministic

decoder Encoder

First term:
— Decoder: encourages the generative model to
assign high probability to each h!|/h!*!,

— Encoder: encourages the recognition net to
adjust its latent states h so that the
generative network makes better predictions.

Input data



VAE: Intuition

* The gradient of the log weights decomposes:
Ve log w(Xv h(€i7 X, 0)7 0)
= Vg lng(X, h(e’ia X, 9)|0) o log Q(h(e’ba X, 9)’X7 0)
\ J
S/ Y

Deterministic Deterministic

decoder Encoder

Second term:
— Encoder: encourages the recognition network
to have a spread-out distribution over
predictions.

Input data



Two Architectures

* For the MNIST experiments, we
considered two architectures: /

1-stochastic layer

Stochastic Layers

h' 50
l N
200 Deterministic
l > Layers
2(_)0

l J

X 784

2-stochastic layers

h2

50

4

100

!

\

100

> Deterministic
Layers

hl

l

100

l

200

l

200

> Deterministic
Layers

1

784




MNIST Results

MNIST
VAE IWAE

# stoch. active active
layers k£  NLL units NLL  units

86.76 19 86.76 19
5 8647 20 85.54 22
50 86.35 20 84.78 25

[E—

1

21



MNIST Results

MNIST
VAE IWAE
# stoch. active active
layers k£  NLL units NLL  units
1 1 86.76 19 86.76 19
5 86.47 20 85.54 22
50 86.35 20 84.78 25
2 1 85.33 16+5 8533 16+5
S _ 8501 _ 17+5_ _83.89 _ 21+5_
'50 84.78 17+5 8290 26+7!
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Good Generative Model?

Handwritten Characters



Good Generative Model?

Handwritten Characters

e ac elMan oo
CcEDO B BRERYHG ®
W bR D ETOA

(-

F 5
& %
DR
g F
& W
F 1



Good Generative Model?

Handwritten Characters

Simulated Real Data



Good Generative Model?

Handwritten Characters

Real Data Simulated



Good Generative Model?

Handwritten Characters

e ac elMan oo
CcEDO B BRERYHG ®
W bR D ETOA

(-

F 5
& %
DR
g F
& W
F 1



Motivating Example

(Mansimov, Parisotto, Ba, Salakhutdinov, 2015)

* Can we generate images from natural language descriptions?

A stop sign is flying in

blue skies

A herd of elephants is
flying in blue skies

A pale yellow school bus
is flying in blue skies

~-FH~
-

A large commercial airplane
is flying in blue skies

~E=~

28



Overall Model

""""" ST T
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a person sking down a mountain
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T

write I

Generative
RNNMR

Generative

l
l
‘32 T write I
l
l
l

I write

Generative
RNN e
)

Latent (2)

l

M RNN, ;o
1
[

1

" Latent (z) | L_l

RNN ...
a5

> RNN,...

1

Latent (2)

Pl R YA P&y Zyy 1)

A . 7. .
S : 1 R
' ' :
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Variational Autoecnoder

RNN,....|:

Generative (P)

Stochastic
Layer

Inference (Q)
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Overall Model

(Mansimov, Parisotto, Ba, Salakhutdinov, 2015)
] Cy £y
N N ) I write Twrite Twrite
_.-""’,.7';9\‘?.::‘\.‘_ ) t

\ _| Generative Generative Generative

RNN, ;.. '1 RNN, ;o —] RNN .. Generative (P)

N

1

Latent (2) L Latent (z) | L’ Latent (2) Stochastic
f".'Zﬂ : ;(Jl:.Z': Z : p]_Z.J. Zl.': 1) Layer

a person sking down a mountain
Y un Y2 Y3 Ya Ys Ye

Bidirectional LSTM

* Generative Model: Stochastic Recurrent Network, chained
sequence of Variational Autoencoders, with a single stochastic layer.

Gregor et. al. 2015 *0



Overall Model

(Mansimov, Parisotto, Ba, Salakhutdinov, 2015)
cr c’ c'
Iwrite Twrite ; Iwrite

) T WE . )
_| Generative Generative Generative
f""""-f'""'".f'"""-.'""’"'.f""""'.f"'""'. h— RNN, ;. -1 RNN, ;. —] RNN ;.. Generative (P)
. l‘ '. l. " W ' = L: oy

[ 1

Latent (2) L Latent (2) L Latent (2) Stochastic

A

Pl V| w22 . PlLy Zyy 1) Layer
' ' " " " .: ' """'A' """" i’ """" 'A""""': """" 'A """"
IdBH DYDY HDdE DR D4R : ' : ' 1 ' :
L 2 | 3 4 5 6 | Inference ' _| Inference . Inference

RNN,...| 1 ANN_.| "3 RNN.|:

T T T T T T read T read T readé Inference (Q)
a person sking down a mountain : w w :

Yy % Y2 Y3 Ya  Ys v 020202921 B 00 B BT
Bidirectional LSTM

* Generative Model: Stochastic Recurrent Network, chained
sequence of Variational Autoencoders, with a single stochastic layer.

* Recognition Model: Deterministic Recurrent Network.
Gregor et. al. 2015 o



Learning

1 Cy &g
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"

* Maximize the variational lower bound on the marginal log-
likelihood of the correct image x given the caption y:

T read

Generative (P)

Inference (Q)

L= Z Q(Z|x,y)log P(x|Z,y) — Dkr, (Q(Z|X7Y)||P(Z|Y))

<log P(x|y)



MS COCO Dataset

* Contains 83K images.

* Each image contains 5
captions.

.‘ |
i *I

e Standard benchmark
dataset for many of the
recent image captioning
systems.

FEEFE
a

& [

Lin et. al. 2014 33



Flipping Colors

A yellow school bus parked
in the parking lot

==
L=ED=

A green school bus parked in
the parking lot

=g &5
=S

A red school bus parked in
the parking lot

=ELT
B< - =

A blue school bus parked in
the parking lot

; T |
=
' \ |

34




Flipping Backgrounds

A very large commercial A very large commercial
plane flying in clear skies. plane flying in rainy skies.

Sl -
= v B 'ﬁ«'

A herd of elephants walking A herd of elephants walking
across a dry grass field. across a green grass field.

=0Fm KV




Flipping Objects

The decadent chocolate A bowl of bananas is on
desert is on the table. the table..

i 'p : > —_ .
SedsS LD
S8 -20 AVEAS
A vintage photo of a cat. A vintage photo of a dog.
=Sy Ly i
— | £ R e

d T N = | I i) (=3
ilw—~ 'ea~“a




Qualitative Comparison

A group of people walk on a beach with surf boards

Our Model
F N
Conv-Deconv VAE

LAPGAN (Denton et. al. 2015)

= R e
Fully Connected VAE
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Novel Scene Compositions

A toilet seat sits open in the A toilet seat sits open in the
bathroom grass field

SnER BEOD
ELWLIF OOnD

Ask Google?

38



