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Variational Autoencoders	
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Gaussian	Policy:	ConFnuous	AcFons		

‣  Variance	may	be	fixed	σ2,	or	can	also	parameterized	

‣  In	conFnuous	acFon	spaces,	a	Gaussian	policy	is	natural		

‣  Mean	is	a	linear	combinaFon	of	state	features		

Nonlinear	extension:	replace											with	a	deep	
neural	network	with	trainable	weights	w			

‣  Policy	is	Gaussian	

‣  Remember	stochasFc	policy	



MulFmodal	Outputs	

‣  But	what	if	stochasFc	policy	has	mulFple	modes?	

‣  Remember	stochasFc	policy	

‣  Model-based	RL:	Dynamics	of	the	environment	can	be	mulFmodal.		



Helmholtz	Machines	
• 	Hinton,	G.	E.,	Dayan,	P.,	Frey,	B.	J.	and	Neal,	R.,	Science	1995	
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• 	Kingma	&	Welling,	2014	

• 	Rezende,	Mohamed,	Daan,	2014	

• 	Mnih	&	Gregor,	2014		

• 	Bornschein	&	Bengio,	2015	

• 	Tang	&	Salakhutdinov,	2013			
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VariaFonal	Autoencoders	(VAEs)		
• 	The	VAE	defines	a	generaFve	process	in	terms	of	ancestral	
sampling	through	a	cascade	of	hidden	stochasFc	layers:		
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complicated	nonlinear	relaFonship		

•  Sampling	and	probability	
evaluaFon	is	tractable	for	
each																						.		
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•  					denotes	parameters	
of	VAE.		

•  				is	the	number	of	
stochas5c	layers.	
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VariaFonal	Autoencoders	(VAEs)		
• 	The	VAE	defines	a	generaFve	process	in	terms	of	ancestral	
sampling	through	a	cascade	of	hidden	stochasFc	layers:		
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‣  Given	state,	we	can	
generate	a	distribuFon	
over	acFons:	

‣  CondiFonal	VAE:	neural	
networks	with	stochasFc	
and	determinisFc	layers	

State	



VAE:	Example	
• 	The	VAE	defines	a	generaFve	process	in	terms	of	ancestral	
sampling	through	a	cascade	of	hidden	stochasFc	layers:		

This	term	denotes	a	one-layer	
neural	net.	

DeterminisFc	
Layer	

StochasFc	Layer	

StochasFc	Layer	

•  					denotes	parameters	
of	VAE.		

•  Sampling	and	probability	
evaluaFon	is	tractable	for	
each																						.		

•  				is	the	number	of	
stochas5c	layers.	
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RecogniFon	Network		
• 	The	recogniFon	model	is	defined	in	terms	of	an	analogous	
factorizaFon:		
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Each	term	may	denote	a	
complicated	nonlinear	relaFonship		

•  The	condiFonals:	

are	Gaussians	with	
diagonal	covariances		

Approximate	
Inference	

•  We	assume	that		
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VariaFonal	Bound	
• 	The	VAE	is	trained	to	maximize	the	variaFonal	lower	bound:	
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•  Hard	to	opFmize	the	variaFonal	bound	
with	respect	to	the	recogniFon	network	
(high-variance).		

•  Key	idea	of	Kingma	and	Welling	is	to	use	
reparameterizaFon	trick.		

•  Trading	off	the	data	log-likelihood	and	the	KL	divergence	
from	the	true	posterior.		
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ReparameterizaFon	Trick	
• 	Assume	that	the	recogniFon	distribuFon	is	Gaussian:	

				with	mean	and	covariance	computed	from	the	state	of	the	hidden	
units	at	the	previous	layer.		

•  AlternaFvely,	we	can	express	this	in	term	of	auxiliary	variable:			
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• 	Assume	that	the	recogniFon	distribuFon	is	Gaussian:	

•  Or	

DeterminisFc	
Encoder	

•  The	recogniFon	distribuFon																										can	be	expressed	in	
terms	of	a	determinisFc	mapping:				

DistribuFon	of			
does	not	depend	on	

ReparameterizaFon	Trick	
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CompuFng	the	Gradients	
•  The	gradient	w.r.t	the	parameters:	both	recogniFon	and	
generaFve:	

Gradients	can	be	
computed	by	backprop	

The	mapping	h	is	a	determinisFc	
neural	net	for	fixed				.		
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where	we	defined	unnormalized	importance	weights:	

•  VAE	update:	Low	variance	as	it	uses	the	log-likelihood	gradients	
with	respect	to	the	latent	variables.		

•  The	gradient	w.r.t	the	parameters:	recogniFon	and	generaFve:	

•  Approximate	expectaFon	by	generaFng	k	samples	from			:		

CompuFng	the	Gradients	
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VAE:	AssumpFons	
•  Remember	the	variaFonal	bound:	

•  The	variaFonal	assumpFons	must	be	approximately	saFsfied.		

•  We	show	that	we	can	relax	these	assumpFons	using	a	Fghter	
lower	bound	on	marginal	log-likelihood.		

•  The	posterior	distribuFon	must	be	approximately	factorial	
(common	pracFce)	and	predictable	with	a	feed-forward	net.		
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Importance	Weighted	Autoencoders	
•  Consider	the	following	k-sample	importance	weighFng	of	the	
log-likelihood:		

				where																								are	sampled	
from	the	recogniFon	network.	
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Importance	Weighted	Autoencoders	
•  Consider	the	following	k-sample	importance	weighFng	of	the	
log-likelihood:		

•  This	is	a	lower	bound	on	the	marginal	log-likelihood:	

•  Special	Case	of	k=1:	Same	as	standard	VAE	objecFve.		

•  Using	more	samples	à	Improves	the	Fghtness	of	the	bound.	
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IWAEs	vs.	VAEs	
•  Draw	k-samples	form	the	recogniFon	network			

-  or	k-sets	of	auxiliary	variables				.							
•  Obtain	the	following	Monte	Carlo	esFmate	of	the	gradient:	

•  Compare	this	to	the	VAE’s	esFmate	of	the	gradient:		
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				First	term:		
- Decoder:	encourages	the	generaFve	model	to	
assign	high	probability	to	each														.		

VAE:	IntuiFon		
•  The	gradient	of	the	log	weights	decomposes:	
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.		
-  Encoder:	encourages	the	recogniFon	net	to	
adjust	its	latent	states	h	so	that	the	
generaFve	network	makes	be0er	predicFons.		
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				Second	term:		
-  Encoder:	encourages	the	recogniFon	network	
to	have	a	spread-out	distribuFon	over	
predicFons.			

VAE:	IntuiFon		
•  The	gradient	of	the	log	weights	decomposes:	
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Two	Architectures	

•  For	the	MNIST	experiments,	we	
considered	two	architectures:	
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MNIST	Results	
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MNIST	Results	

22	



Good	GeneraFve	Model?	
Handwri0en	Characters	
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Good	GeneraFve	Model?	
Handwri0en	Characters	
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Good	GeneraFve	Model?	
Handwri0en	Characters	



MoFvaFng	Example	
• 	Can	we	generate	images	from	natural	language	descripFons?	

A	stop	sign	is	flying	in	
blue	skies		

A	pale	yellow	school	bus	
is	flying	in	blue	skies		

A	herd	of	elephants	is	
flying	in	blue	skies		

A	large	commercial	airplane	
is	flying	in	blue	skies		

(Mansimov,	Pariso0o,	Ba,	Salakhutdinov,	2015)		
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Overall	Model	

VariaFonal	Autoecnoder	

StochasFc	
Layer	
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Overall	Model	

• 	GeneraFve	Model:	StochasFc	Recurrent	Network,	chained	
sequence	of	VariaFonal	Autoencoders,	with	a	single	stochasFc	layer.	

StochasFc	
Layer	

Gregor	et.	al.	2015		

(Mansimov,	Pariso0o,	Ba,	Salakhutdinov,	2015)		

Bidirectional LSTM	
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Overall	Model	

• 	GeneraFve	Model:	StochasFc	Recurrent	Network,	chained	
sequence	of	VariaFonal	Autoencoders,	with	a	single	stochasFc	layer.	

• 	RecogniFon	Model:	DeterminisFc	Recurrent	Network.	
Gregor	et.	al.	2015		

(Mansimov,	Pariso0o,	Ba,	Salakhutdinov,	2015)		

Bidirectional LSTM	

StochasFc	
Layer	

31	



Learning	

• 	Maximize	the	variaFonal	lower	bound	on	the	marginal	log-
likelihood	of	the	correct	image	x	given	the	capFon	y:	



MS	COCO	Dataset	
• 	Contains	83K	images.	

Lin	et.	al.	2014		

• 	Each	image	contains	5	
capFons.	

• 	Standard	benchmark	
dataset	for	many	of	the	
recent	image	capFoning	
systems.	
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Flipping	Colors	
A	yellow	school	bus	parked	
in	the	parking	lot	

A	red	school	bus	parked	in	
the	parking	lot	

A	green	school	bus	parked	in	
the	parking	lot	

A	blue	school	bus	parked	in	
the	parking	lot	
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Flipping	Backgrounds	
A	very	large	commercial	
plane	flying	in	clear	skies.	

A	very	large	commercial	
plane	flying	in	rainy	skies.	

A	herd	of	elephants	walking	
across	a	dry	grass	field.	

A	herd	of	elephants	walking	
across	a	green	grass	field.	
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Flipping	Objects	
The	decadent	chocolate	
desert	is	on	the	table.	

A	bowl	of	bananas	is	on	
the	table..	

A	vintage	photo	of	a	cat.	 A	vintage	photo	of	a	dog.	
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QualitaFve	Comparison	
A	group	of	people	walk	on	a	beach	with	surf	boards	

Our	Model	 LAPGAN	(Denton	et.	al.	2015)	

Fully	Connected	VAE	Conv-Deconv	VAE	
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Novel	Scene	ComposiFons	
A	toilet	seat	sits	open	in	the	
bathroom	

Ask	Google?	

A	toilet	seat	sits	open	in	the	
grass	field	
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