
10703	Deep	Reinforcement		
Learning	and	Control	

Russ	Salakhutdinov	
Machine Learning Department

rsalakhu@cs.cmu.edu

Deep Q-Networks	

Used Materials
•  Disclaimer: Much of the material and slides for this lecture were
borrowed from Rich Sutton’s RL class and David Silver’s Deep RL
tutorial

Components of an RL Agent
‣  An RL agent may include one or more of these components:

-  Policy: agent’s behavior function

-  Value function: how good is each state and/or action

-  Model: agent’s representation of the environment

‣  A policy is the agent’s behavior

‣  It is a map from state to action:

-  Deterministic policy: a = π(s)

-  Stochastic policy: π(a|s) = P[a|s]

Review: Value Function
‣  A value function is a prediction of future reward

-  How much reward will I get from action a in state s?

‣  Q-value function gives expected total reward

-  from state s and action a

-  under policy π

-  with discount factor γ

‣  Value functions decompose into a Bellman equation

Optimal Value Function
‣  An optimal value function is the maximum achievable value

‣  Once we have Q∗, the agent can act optimally

‣  Formally, optimal values decompose into a Bellman equation

Optimal Value Function
‣  An optimal value function is the maximum achievable value

‣  Formally, optimal values decompose into a Bellman equation

‣  Informally, optimal value maximizes over all decisions

Model

observation

reward

action

at

rt

ot I Model is learnt from experience

I Acts as proxy for environment

I Planner interacts with model

I e.g. using lookahead search

Model

‣  Model is learned from experience

‣  Acts as proxy for environment

‣  Planner interacts with model, e.g. using
look-ahead search

‣  Model-based RL

-  Build a model of the environment

-  Plan (e.g. by look-ahead) using model

Approaches to RL
‣  Value-based RL (this is what we have looked at so far)

-  Estimate the optimal value function Q∗(s,a)

-  This is the maximum value achievable under any policy

‣  Policy-based RL

-  Search directly for the optimal policy π∗

-  This is the policy achieving maximum future reward

‣  Let us revisit value-based RL.

Deep Reinforcement Learning
‣  Use deep neural networks to represent

-  Value function

-  Policy

-  Model

‣  Optimize loss function by stochastic gradient descent (SGD)

Deep Q-Networks (DQNs)
‣  Represent value function by Q-network with weights w

Q-Learning
‣  Optimal Q-values should obey Bellman equation

‣  Treat right-hand as a target

‣  Minimize MSE loss by stochastic gradient descent

‣  Remember VFA lecture: Minimize mean-squared error between the true
action-value function qπ(S,A) and the approximate Q function:

Q-Learning
‣  Minimize MSE loss by stochastic gradient descent

‣  Converges to Q∗ using table lookup representation

‣  But diverges using neural networks due to:

-  Correlations between samples

-  Non-stationary targets

DQNs: Experience Replay
‣  To remove correlations, build data-set from agent’s own experience

‣  To deal with non-stationarity, target parameters w− are held fixed

‣  Sample experiences from data-set and apply update

Remember: Experience Replay
‣  Given experience consisting of ⟨state, value⟩, or <state, action/value>

pairs

‣  Repeat

-  Sample state, value from experience

-  Apply stochastic gradient descent update

DQNs: Experience Replay
‣  DQN uses experience replay and fixed Q-targets

‣  Use stochastic gradient descent

‣  Store transition (st,at,rt+1,st+1) in replay memory D

‣  Sample random mini-batch of transitions (s,a,r,s′) from D

‣  Compute Q-learning targets w.r.t. old, fixed parameters w−

‣  Optimize MSE between Q-network and Q-learning targets

Q-learning target Q-network

DQNs in Atari
Deep Reinforcement Learning in Atari

state

reward

action

at

rt

st

DQNs in Atari
‣  End-to-end learning of values Q(s,a) from pixels s

‣  Input state s is stack of raw pixels from last 4 frames

‣  Output is Q(s,a) for 18 joystick/button positions

‣  Reward is change in score for that step

‣  Network architecture and hyperparameters fixed across all games

Mnih et.al., Nature, 2014

DQNs in Atari
‣  End-to-end learning of values Q(s,a) from pixels s

‣  Input state s is stack of raw pixels from last 4 frames

‣  Output is Q(s,a) for 18 joystick/button positions

‣  Reward is change in score for that step

‣  Network architecture and hyperparameters fixed across all games

Mnih et.al., Nature, 2014

DQN source code:
sites.google.com/a/deepmind.com/dqn/

Demo

Mnih et.al., Nature, 2014

DQN Results in Atari DQN Results in Atari

Double Q-Learning
‣  Train 2 action-value functions, Q1 and Q2

‣  Do Q-learning on both, but

-  never on the same time steps (Q1 and Q2 are independent)

-  pick Q1 or Q2 at random to be updated on each step

‣  Action selections are 𝜀-greedy with respect to the sum of Q1 and Q2 -greedy with respect to the sum of Q1 and Q2

‣  If updating Q1, use Q2 for the value of the next state:

144 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

Initialize Q1(s, a) and Q2(s, a), 8s 2 S, a 2 A(s), arbitrarily
Initialize Q1(terminal-state, ·) = Q2(terminal-state, ·) = 0
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

Choose A from S using policy derived from Q1 and Q2 (e.g., "-greedy in Q1 + Q2)
Take action A, observe R, S0

With 0.5 probabilility:

Q1(S, A) Q1(S, A) + ↵
⇣
R + �Q2

�
S0, argmaxa Q1(S0, a)

�
�Q1(S, A)

⌘

else:

Q2(S, A) Q2(S, A) + ↵
⇣
R + �Q1

�
S0, argmaxa Q2(S0, a)

�
�Q2(S, A)

⌘

S S0;
until S is terminal

Figure 6.15: Double Q-learning.

The idea of doubled learning extends naturally to algorithms for full MDPs. For
example, the doubled learning algorithm analogous to Q-learning, called Double Q-
learning, divides the time steps in two, perhaps by flipping a coin on each step. If
the coin comes up heads, the update is

Q1(St, At) Q1(St, At)+↵
⇣
Rt+1 +Q2

�
St+1, argmax

a
Q1(St+1, a)

�
�Q1(St, At)

⌘
.

(6.8)

If the coin comes up tails, then the same update is done with Q1 and Q2 switched,
so that Q2 is updated. The two approximate value functions are treated completely
symmetrically. The behavior policy can use both action value estimates. For ex-
ample, an "-greedy policy for Double Q-learning could be based on the average (or
sum) of the two action-value estimates. A complete algorithm for Double Q-learning
is given in Figure 6.15. This is the algorithm used to produce the results in Fig-
ure 6.14. In this example, doubled learning seems to eliminate the harm caused by
maximization bias. Of course there are also doubled versions of Sarsa and Expected
Sarsa.

6.8 Games, Afterstates, and Other Special Cases

In this book we try to present a uniform approach to a wide class of tasks, but of
course there are always exceptional tasks that are better treated in a specialized way.
For example, our general approach involves learning an action-value function, but in
Chapter 1 we presented a TD method for learning to play tic-tac-toe that learned
something much more like a state-value function. If we look closely at that example, it
becomes apparent that the function learned there is neither an action-value function
nor a state-value function in the usual sense. A conventional state-value function
evaluates states in which the agent has the option of selecting an action, but the

144 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

Initialize Q1(s, a) and Q2(s, a), 8s 2 S, a 2 A(s), arbitrarily
Initialize Q1(terminal-state, ·) = Q2(terminal-state, ·) = 0
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

Choose A from S using policy derived from Q1 and Q2 (e.g., "-greedy in Q1 + Q2)
Take action A, observe R, S0

With 0.5 probabilility:

Q1(S, A) Q1(S, A) + ↵
⇣
R + �Q2

�
S0, argmaxa Q1(S0, a)

�
�Q1(S, A)

⌘

else:

Q2(S, A) Q2(S, A) + ↵
⇣
R + �Q1

�
S0, argmaxa Q2(S0, a)

�
�Q2(S, A)

⌘

S S0;
until S is terminal

Figure 6.15: Double Q-learning.

The idea of doubled learning extends naturally to algorithms for full MDPs. For
example, the doubled learning algorithm analogous to Q-learning, called Double Q-
learning, divides the time steps in two, perhaps by flipping a coin on each step. If
the coin comes up heads, the update is

Q1(St, At) Q1(St, At)+↵
⇣
Rt+1 +Q2

�
St+1, argmax

a
Q1(St+1, a)

�
�Q1(St, At)

⌘
.

(6.8)

If the coin comes up tails, then the same update is done with Q1 and Q2 switched,
so that Q2 is updated. The two approximate value functions are treated completely
symmetrically. The behavior policy can use both action value estimates. For ex-
ample, an "-greedy policy for Double Q-learning could be based on the average (or
sum) of the two action-value estimates. A complete algorithm for Double Q-learning
is given in Figure 6.15. This is the algorithm used to produce the results in Fig-
ure 6.14. In this example, doubled learning seems to eliminate the harm caused by
maximization bias. Of course there are also doubled versions of Sarsa and Expected
Sarsa.

6.8 Games, Afterstates, and Other Special Cases

In this book we try to present a uniform approach to a wide class of tasks, but of
course there are always exceptional tasks that are better treated in a specialized way.
For example, our general approach involves learning an action-value function, but in
Chapter 1 we presented a TD method for learning to play tic-tac-toe that learned
something much more like a state-value function. If we look closely at that example, it
becomes apparent that the function learned there is neither an action-value function
nor a state-value function in the usual sense. A conventional state-value function
evaluates states in which the agent has the option of selecting an action, but the

Double Q-Learning 144 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

Initialize Q1(s, a) and Q2(s, a), 8s 2 S, a 2 A(s), arbitrarily
Initialize Q1(terminal-state, ·) = Q2(terminal-state, ·) = 0
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

Choose A from S using policy derived from Q1 and Q2 (e.g., "-greedy in Q1 + Q2)
Take action A, observe R, S0

With 0.5 probabilility:

Q1(S, A) Q1(S, A) + ↵
⇣
R + �Q2

�
S0, argmaxa Q1(S0, a)

�
�Q1(S, A)

⌘

else:

Q2(S, A) Q2(S, A) + ↵
⇣
R + �Q1

�
S0, argmaxa Q2(S0, a)

�
�Q2(S, A)

⌘

S S0;
until S is terminal

Figure 6.15: Double Q-learning.

The idea of doubled learning extends naturally to algorithms for full MDPs. For
example, the doubled learning algorithm analogous to Q-learning, called Double Q-
learning, divides the time steps in two, perhaps by flipping a coin on each step. If
the coin comes up heads, the update is

Q1(St, At) Q1(St, At)+↵
⇣
Rt+1 +Q2

�
St+1, argmax

a
Q1(St+1, a)

�
�Q1(St, At)

⌘
.

(6.8)

If the coin comes up tails, then the same update is done with Q1 and Q2 switched,
so that Q2 is updated. The two approximate value functions are treated completely
symmetrically. The behavior policy can use both action value estimates. For ex-
ample, an "-greedy policy for Double Q-learning could be based on the average (or
sum) of the two action-value estimates. A complete algorithm for Double Q-learning
is given in Figure 6.15. This is the algorithm used to produce the results in Fig-
ure 6.14. In this example, doubled learning seems to eliminate the harm caused by
maximization bias. Of course there are also doubled versions of Sarsa and Expected
Sarsa.

6.8 Games, Afterstates, and Other Special Cases

In this book we try to present a uniform approach to a wide class of tasks, but of
course there are always exceptional tasks that are better treated in a specialized way.
For example, our general approach involves learning an action-value function, but in
Chapter 1 we presented a TD method for learning to play tic-tac-toe that learned
something much more like a state-value function. If we look closely at that example, it
becomes apparent that the function learned there is neither an action-value function
nor a state-value function in the usual sense. A conventional state-value function
evaluates states in which the agent has the option of selecting an action, but the

Hado van Hasselt 2010

‣  Older Q-network w− is used to evaluate actions

Double DQN
‣  Current Q-network w is used to select actions

van Hasselt, Guez, Silver, 2015

Action selection: w

Action evaluation: w−

Double DQN

van Hasselt, Guez, Silver, 2015

Prioritized Replay
‣  Weight experience according to surprise

Schaul, Quan, Antonoglou, Silver, ICLR 2016

‣  Stochastic Prioritization

‣  α determines how much prioritization is used, with α = 0 corresponding
to the uniform case.

‣  Store experience in priority queue according to DQN error

pi is proportional to
DQN error

Dueling Networks
‣  Split Q-network into two channels

‣  Action-independent value function V(s,v)

‣  Action-dependent advantage function A(s, a, w)

Wang et.al., ICML, 2016

‣  Advantage function is defined as:

Dueling Networks vs. DQNs

Wang et.al., ICML, 2016

DQN

Dueling Networks

Dueling Networks

Wang et.al., ICML, 2016

‣  The value stream learns to pay
attention to the road

‣  The advantage stream: pay
attention only when there are cars
immediately in front, so as to avoid
collisions

Dueling Networks

Wang et.al., ICML, 2016

Mul?task	DQNs	
• 	Can	we	train	a	single	DQN	to	play	mul?ple	games	at	the	
same	?me	

(Parisotto, Ba, Salakhutdinov, ICLR 2016)

Transfer	Learning	

Star	Gunner	

• 	Can	the	network	learn	new	games	faster	by	leveraging	
knowledge	about	the	previous	games	it	learned.		

Transfer	 No	Transfer	

