10703 Deep Reinforcement Learning and Control Russ Salakhutdinov

Slides borrowed from Katerina Fragkiadaki

Solving known MDPs: Dynamic Programming

Markov Decision Process (MDP)

A Markov Decision Process is a tuple (S, A, T, r, γ)

- \mathcal{S} is a finite set of states
- A is a finite set of actions
- ullet T is a state transition probability function

$$T(s'|s,a) = \mathbb{P}[S_{t+1} = s'|S_t = s, A_t = a]$$

• r is a reward function

$$r(s,a) = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$$

• γ is a discount factor $\gamma \in [0,1]$

Solving MDPs

• **Prediction**: Given an MDP (S, A, T, r, γ) and a policy

$$\pi(a|s) = \mathbb{P}[A_t = a|S_t = s]$$

find the state and action value functions.

- Optimal control: given an MDP (S, A, T, r, γ) find the optimal policy (aka the planning problem).
- Compare with the learning problem with missing information about rewards/dynamics.
- We still consider finite MDPs (finite ${\cal S}$ and ${\cal A}$) with known dynamics.

Outline

- Policy evaluation
- Policy iteration
- Value iteration
- Asynchronous DP

Policy Evaluation

Policy evaluation: for a given policy π , compute the state value function

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s \right]$$

where $v_{\pi}(s)$ is implicitly given by the **Bellman equation**

$$\mathbf{v}_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(r(s,a) + \gamma \sum_{s' \in \mathcal{S}} T(s'|s,a) \mathbf{v}_{\pi}(s') \right)$$

a system of |S| simultaneous equations.

MDPs to MRPs

MDP under a fixed policy becomes Markov Reward Process (MRP)

$$\mathbf{v}_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(r(s,a) + \gamma \sum_{s' \in \mathcal{S}} T(s'|s,a) \mathbf{v}_{\pi}(s') \right)$$

$$= \sum_{a \in \mathcal{A}} \pi(a|s) r(s,a) + \gamma \sum_{a \in \mathcal{A}} \pi(a|s) \sum_{s' \in \mathcal{S}} T(s'|s,a) \mathbf{v}_{\pi}(s')$$

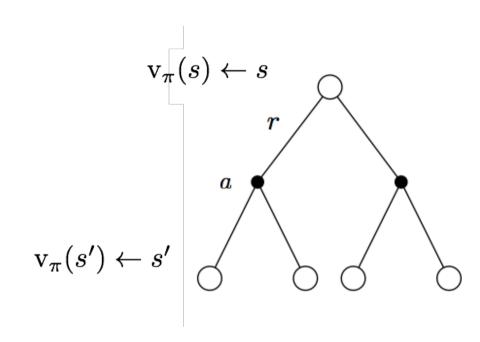
$$= r_s^{\pi} + \gamma \sum_{s' \in \mathcal{S}} T_{s's}^{\pi} \mathbf{v}_{\pi}(s')$$

where
$$r_s^\pi = \sum_{a \in \mathcal{A}} \pi(a|s) r(s,a)$$

$$T_{s's}^\pi = \sum_{a \in \mathcal{A}} \pi(a|s) T(s'|s,a)$$

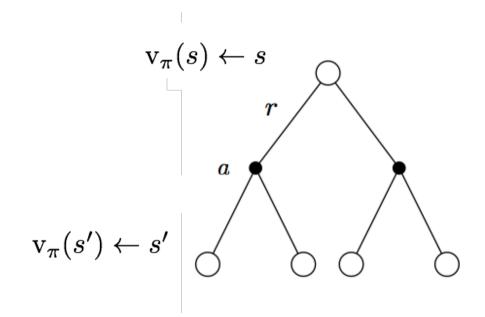
Back Up Diagram

MDP



Back Up Diagram

MDP



$$\mathbf{v}_{\pi}(s) = r_s^{\pi} + \gamma \sum_{s' \in \mathcal{S}} T_{s's}^{\pi} \mathbf{v}_{\pi}(s')$$

$$\mathbf{v}_{\pi}(s') \leftarrow s'$$

$$\mathbf{v}_{\pi}(s') \leftarrow s'$$

Matrix Form

The Bellman expectation equation can be written concisely using the induced form:

$$\mathbf{v}_{\pi} = r^{\pi} + \gamma T^{\pi} \mathbf{v}_{\pi}$$

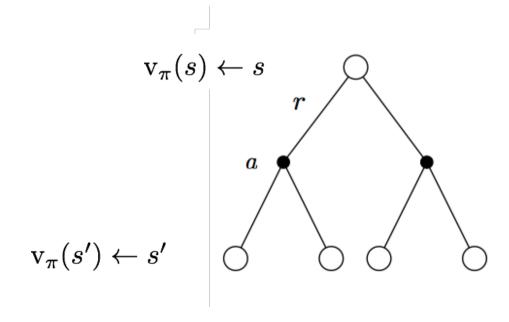
with direct solution

$$\mathbf{v}_{\pi} = (I - \gamma T^{\pi})^{-1} r^{\pi}$$

of complexity $O(N^3)$

Iterative Methods: Recall the Bellman Equation

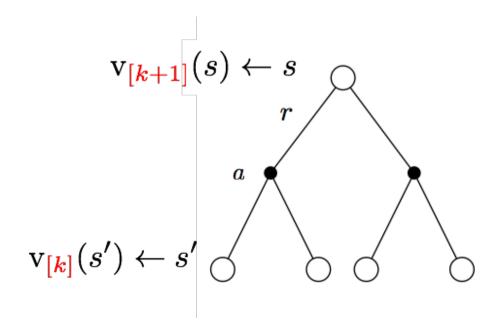
$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(r(s,a) + \gamma \sum_{s' \in \mathcal{S}} T(s'|s,a) v_{\pi}(s') \right)$$



Iterative Methods: Backup Operation

Given an expected value function at iteration k, we back up the expected value function at iteration k+1:

$$\mathbf{v}_{[\mathbf{k+1}]}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(r(s,a) + \gamma \sum_{s' \in \mathcal{S}} T(s'|s,a) \mathbf{v}_{[\mathbf{k}]}(s') \right)$$



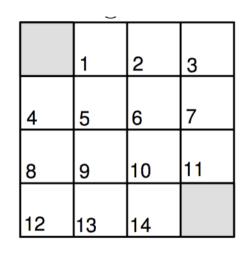
Iterative Methods: Sweep

A sweep consists of applying the backup operation $v \to v'$ for all the states in ${\mathcal S}$

Applying the back up operator iteratively

$$v_{[0]} \to v_{[1]} \to v_{[2]} \to \dots v_{\pi}$$

A Small-Grid World



$$R = -1$$
 on all transitions

$$\gamma = 1$$

- An undiscounted episodic task
- Nonterminal states: 1, 2, ..., 14
- Terminal state: one, shown in shaded square
- Actions that would take the agent off the grid leave the state unchanged
- Reward is -1 until the terminal state is reached

Iterative Policy Evaluation

Policy π , an equiprobable random action

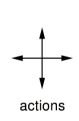
V[k] for the random policy

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

k = 1

k = 0

0.0	-1.0	-1.0	-1.0
	-1.0		
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0



	1	2	3		
4	5	6	7		
8	9	10	11		
12	13	14			

- An undiscounted episodic task
- Nonterminal states: 1, 2, ..., 14
- Terminal state: one, shown in shaded square
- Actions that would take the agent off the grid leave the state unchanged
- Reward is -1 until the terminal state is reached

1		\sim
ĸ	=	2
•		_

$$k = 3$$

$$k = 10$$

Iterative Policy Evaluation

V[k] for the random policy

k = 0

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

Policy π , an equiprobable random action

k = 1

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

1 2 3 5 6 7 9 10 11

k = 2

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

An undiscounted episodic task

k = 3

0.0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0

Nonterminal states: 1, 2, ..., 14

13

actions

· Terminal state: one, shown in shaded square

k = 10

Actions that would take the agent off the grid leave the state unchanged

Reward is -1 until the terminal state is reached

Iterative Policy Evaluation

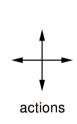
 $^{\mathrm{V}}[k]$ for the random policy

k = 0

Policy π , an equiprobable random action

k = 1

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0



	1	2	3	
4	5	6	7	
8	9	10	11	
12	13	14		

k = 2

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

k = 3

l	0.0	-2.4	-2.9	-3.0
	-2.4	-2.9	-3.0	-2.9
	-2.9	-3.0	-2.9	-2.4
	-3.0	-2.9	-2.4	0.0

Nonterminal states: 1, 2, ..., 14

An undiscounted episodic task

Terminal state: one, shown in shaded square

k = 10

Actions that would take the agent off the grid leave the state unchanged

-8.4 -8.4 -7.7 -6.1 -9.0 -8.4 -6.1 0.0

0.0 -6.1 -8.4 -9.0

-6.1 -7.7 -8.4 -8.4

Reward is -1 until the terminal state is reached

 $k = \infty$

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0

Contraction Mapping Theorem

An operator F on a normed vector space \mathcal{X} is a γ -contraction, for $0<\gamma<1$, provided for all $x,y\in\mathcal{X}$

$$||T(x) - T(y)|| \le \gamma ||x - y||$$

Contraction Mapping Theorem

An operator F on a normed vector space $\mathcal X$ is a γ -contraction, for $0<\gamma<1$, provided for all $x,y\in\mathcal X$

$$||T(x) - T(y)|| \le \gamma ||x - y||$$

Theorem (Contraction mapping)

For a γ -contraction F in a complete normed vector space ${\mathcal X}$

- F converges to a unique fixed point in ${\mathcal X}$
- at a linear convergence rate γ

Remark. In general we only need metric (vs normed) space

Value Function Sapce

- Consider the vector space V over value functions
- There are $|\mathcal{S}|$ dimensions
- Each point in this space fully specifies a value function $\mathrm{v}(s)$
- Bellman backup brings value functions closer in this space?
- And therefore the backup must converge to a unique solution

Value Function ∞-Norm

- We will measure distance between state-value functions u and v by the $\infty\text{-norm}$
- i.e. the largest difference between state values:

$$||\mathbf{u} - \mathbf{v}||_{\infty} = \max_{s \in \mathcal{S}} |\mathbf{u}(s) - \mathbf{v}(s)|$$

Bellman Expectation Backup is a Contraction

Define the Bellman expectation backup operator

$$F^{\pi}(\mathbf{v}) = r^{\pi} + \gamma T^{\pi} \mathbf{v}$$

• This operator is a γ -contraction, i.e. it makes value functions closer by at least γ ,

$$||F^{\pi}(\mathbf{u}) - F^{\pi}(\mathbf{v})||_{\infty} = ||(r^{\pi} + \gamma T^{\pi}\mathbf{u})||_{\infty} - ||(r^{\pi} + \gamma T^{\pi}\mathbf{v})||_{\infty}$$

$$= ||\gamma T^{\pi}(\mathbf{u} - \mathbf{v})||_{\infty}$$

$$\leq ||\gamma T^{\pi}||\mathbf{u} - \mathbf{v}||_{\infty}||_{\infty}$$

$$\leq \gamma ||\mathbf{u} - \mathbf{v}||_{\infty}$$

Convergence of Iter. Policy Evaluation and Policy Iteration

- The Bellman expectation operator F^π has a unique fixed point
- ${
 m v}_{\pi}$ is a fixed point of F^{π} (by Bellman expectation equation)
- By contraction mapping theorem
- Iterative policy evaluation converges on v_{π}

Policy Improvement

- Suppose we have computed v_{π} for a deterministic policy π
- For a given state s, would it be better to do an action $a \neq \pi(s)$?
- It is better to switch to action $oldsymbol{a}$ for state $oldsymbol{s}$ if and only if

$$q_{\pi}(s,a) > v_{\pi}(s)$$

• And we can compute $q_{\pi}(s,a)$ from ${
m v}_{\pi}$ by:

$$q_{\pi}(s, a) = \mathbb{E}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s, A_t = a]$$
$$= r(s, a) + \gamma \sum_{s' \in \mathcal{S}} T(s' | s, a) v_{\pi}(s')$$

Policy Improvement

- Suppose we have computed v_{π} for a deterministic policy π
- For a given state s, would it be better to do an action $a \neq \pi(s)$?
- It is better to switch to action $oldsymbol{a}$ for state $oldsymbol{s}$ if and only if

$$q_{\pi}(s,a) > v_{\pi}(s)$$

• And we can compute $q_{\pi}(s,a)$ from ${
m v}_{\pi}$ by:

$$q_{\pi}(s, a) = \mathbb{E}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s, A_t = a]$$
$$= r(s, a) + \gamma \sum_{s' \in \mathcal{S}} T(s' | s, a) v_{\pi}(s')$$

Policy Improvement Cont.

• Do this for all states to get a new policy $\pi' \geq \pi$ that is greedy with respect to v_{π} :

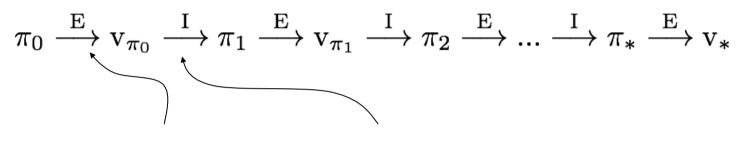
$$\pi'(s) = \arg \max_{a} q_{\pi}(s, a)$$

$$= \arg \max_{a} \mathbb{E}[R_{t+1} + \gamma v_{\pi}(s') | S_t = s, A_t = a]$$

$$= \arg \max_{a} r(s, a) + \gamma \sum_{s' \in \mathcal{S}} T(s'|s, a) v_{\pi}(s')$$

- What if the policy is unchanged by this?
 - Then the policy must be optimal.

Policy Iteration



policy evaluation policy improvement

"greedification"

Policy Iteration

1. Initialization $V(s) \in \mathbb{R}$ and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$

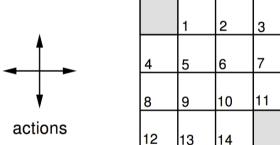
2. Policy Evaluation Repeat $\Delta \leftarrow 0$ For each $s \in S$: $v \leftarrow V(s)$ $V(s) \leftarrow \sum_{a \in \mathcal{A}} \pi(a|s) \left(r(s,a) + \gamma \sum_{s' \in \mathcal{S}} T(s'|s,a) V(s') \right)$ $\Delta \leftarrow \max(\Delta, |v - V(s)|)$ until $\Delta < \theta$ (a small positive number)

3. Policy Improvement $policy\text{-}stable \leftarrow true$ For each $s \in \mathcal{S}$: $a \leftarrow \pi(s)$ $\pi(s) \leftarrow \arg \max r(s,a) + \gamma \Sigma_{s' \in \mathcal{S}} T(s'|s,a) \mathbf{v}_{\pi}(s')$ If $a \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return V and π ; else go to 2

Iterative Policy Eval for the Small Gridworld

Policy π , an equiprobable random action



	1	2	3	
	5	6	7	
}	9	10	11	
2	13	14		

$R_{=}$ -1	
on all transitions	

$$\gamma = 1$$

- An undiscounted episodic task
- Nonterminal states: 1, 2, ..., 14
- Terminal state: one, shown in shaded square
- Actions that take the agent off the grid leave the state unchanged
- Reward is -1 until the terminal state is reached

	0.0	-14.	-20.	-22
= °∞	-14.	-18.	-20.	-20
	-20.	-20.	-18.	-14
	-22	-20	-14	0

V_k for the Random Policy

Greedy Policy w.r.t. V_k

random

policy

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

k = 0

k = 1

k = 2

k = 3

k = 10

k

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

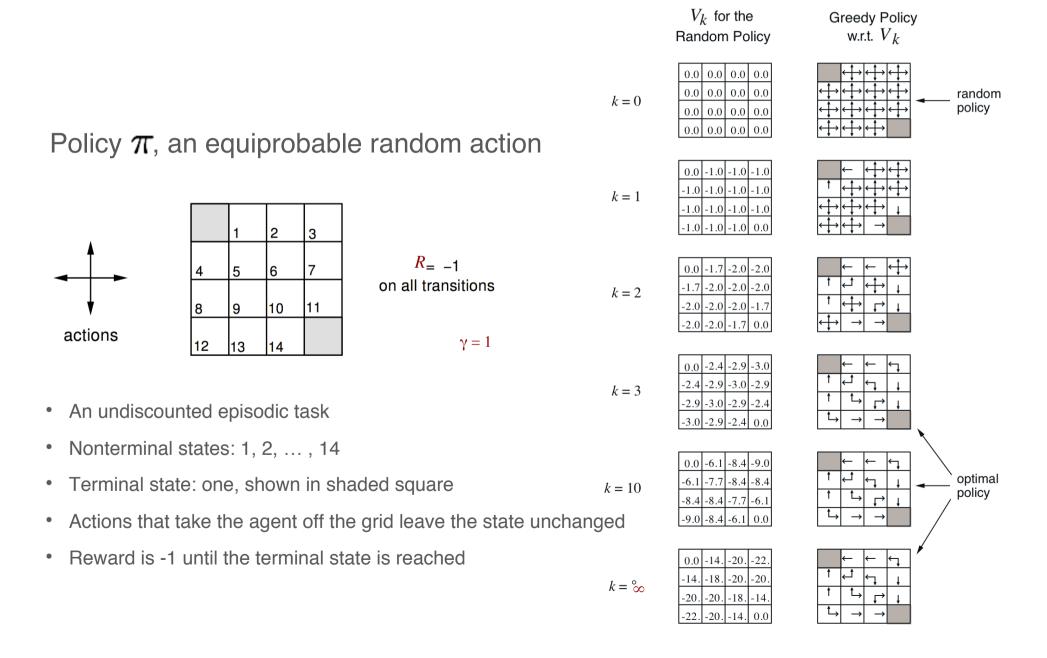
0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

0.0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0

0.0	-6.1	-8.4	-9.0
-6.1	-7.7	-8.4	-8.4
-8.4	-8.4	-7.7	-6.1
-9.0	-8.4	-6.1	0.0

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0

Iterative Policy Eval for the Small Gridworld

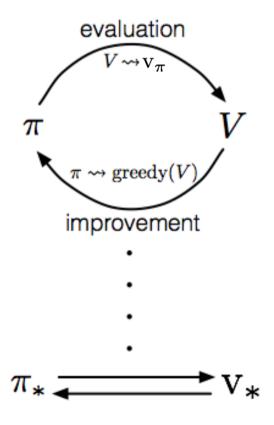


Generalized Policy Iteration

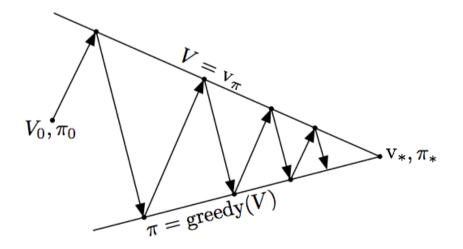
- Does policy evaluation need to converge to v_{π} ?
- Or should we introduce a stopping condition
 - e.g. ϵ -convergence of value function
- Or simply stop after k iterations of iterative policy evaluation?
- For example, in the small grid world k = 3 was sufficient to achieve optimal policy
- Why not update policy every iteration? i.e. stop after k = 1
 - This is equivalent to value iteration (next section)

Generalized Policy Iteration

Generalized Policy Iteration (GPI): any interleaving of policy evaluation and policy improvement, independent of their granularity.



A geometric metaphor for convergence of GPI:



Principle of Optimality

- Any optimal policy can be subdivided into two components:
 - An optimal first action \mathcal{A}_*
 - Followed by an optimal policy from successor state \mathcal{S}'
- Theorem (Principle of Optimality)
 - A policy $\pi(a|s)$ achieves the optimal value from state s, $v_{\pi}(s) = v_{*}(s)$, if and only if
 - For any state s' reachable from s, π achieves the optimal value from state s', $v_{\pi}(s') = v_{*}(s')$

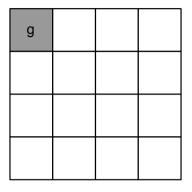
Value Iteration

- If we know the solution to subproblems $\mathrm{v}_*(s')$
- Then solution $v_*(s')$ can be found by one-step lookahead

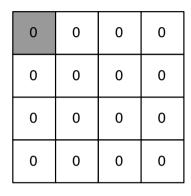
$$\mathbf{v}_*(s) \leftarrow \max_{a \in \mathcal{A}} r(s, a) + \gamma \sum_{s' \in \mathcal{S}} T(s'|s, a) \mathbf{v}_*(s')$$

- The idea of value iteration is to apply these updates iteratively
- Intuition: start with final rewards and work backwards
- Still works with loopy, stochastic MDPs

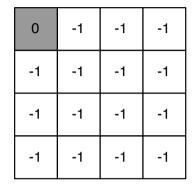
Example: Shortest Path



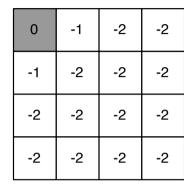
Problem



 V_1



 V_2



 V_3

0	-1	-2	-3
-1	-2	-3	-3
-2	-3	-3	-3
-3	-3	-3	-3

 V_4

0	-1	-2	-3
-1	-2	-3	-4
-2	-3	-4	-4
-3	-4	-4	-4

 V_5

0	-1	-2	-3
-1	-2	-3	-4
-2	-3	-4	-5
-3	-4	-5	-5
	-1 -2	-1 -2 -2 -3	-1 -2 -3 -2 -3 -4

 V_{6}

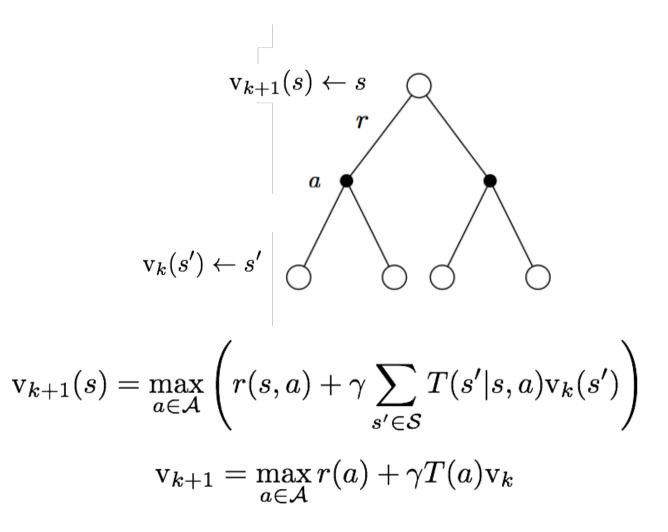
0	-1	-2	-3
-1	-2	-3	-4
-2	ဒု	-4	- 5
-3	-4	-5	-6

 V_7

Value Iteration

- Problem: find optimal policy π
- Solution: iterative application of Bellman optimality backup
- $v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_*$
- Using synchronous backups
 - At each iteration k + 1
 - For all states $s \in \mathcal{S}$
 - Update $\mathbf{v}_{k+1}(s)$ from $\mathbf{v}_k(s')$

Value Iteration (2)



Bellman Optimality Backup is a Contraction

Define the Bellman optimality backup operator F,*

$$F^*(\mathbf{v}) = \max_{a \in \mathcal{A}} r(a) + \gamma T(a)\mathbf{v}$$

• This operator is a γ -contraction, i.e. it makes value functions closer by at least γ (similar to previous proof)

$$||F^*(u) - F^*(v)||_{\infty} \le \gamma ||u - v||_{\infty}$$

Convergence of Value Iteration

- The Bellman optimality operator F^{ullet} has a unique fixed point
- v_* is a fixed point of F^* (by Bellman optimality equation)
- By contraction mapping theorem
- Value iteration converges on V_{*}

Synchronous Dynamic Programming Algorithms

Problem	Bellman Equation	Algorithm
Prediction	Bellman Expectation Equation	Iterative Policy Evaluation
Control	Bellman Expectation Equation + Greedy Policy Improvement	Policy Iteration
Control	Bellman Optimality Equation	Value Iteration

- Algorithms are based on state-value function $\,{
 m v}_{\pi}(s)\,$ or $\,{
 m v}_{*}(s)\,$
- ullet Complexity $O(mn^2)$ per iteration, for m actions and n states
- Could also apply to action-value function $\,q_{\pi}(s,a)\,$ or $\,q_{*}(s,a)\,$

Efficiency of DP

- To find an optimal policy is polynomial in the number of states
- BUT, the number of states is often astronomical, e.g., often growing exponentially with the number of state variables (what Bellman called "the curse of dimensionality").
- In practice, classical DP can be applied to problems with a few millions of states.

Asynchronous DP

- All the DP methods described so far require exhaustive sweeps of the entire state set.
- Asynchronous DP does not use sweeps. Instead it works like this:
 - Repeat until convergence criterion is met:
 - Pick a state at random and apply the appropriate backup
- Still need lots of computation, but does not get locked into hopelessly long sweeps
- Guaranteed to converge if all states continue to be selected
- Can you select states to backup intelligently? YES: an agent's experience can act as a guide.

Asynchronous Dynamic Programming

- Three simple ideas for asynchronous dynamic programming:
 - In-place dynamic programming
 - Prioritized sweeping
 - Real-time dynamic programming

In-Place Dynamic Programming

- Synchronous value iteration stores two copies of value function
 - $oldsymbol{\cdot}$ for all s in ${\mathcal S}$

$$\mathbf{v}_{new}(s) \leftarrow \max_{a \in \mathcal{A}} \left(r(s, a) + \gamma \sum_{s' \in \mathcal{S}} T(s'|s, a) \mathbf{v}_{old}(s') \right)$$

$$\mathbf{v}_{old} \leftarrow \mathbf{v}_{new}$$

- In-place value iteration only stores one copy of value function
 - $oldsymbol{\cdot}$ for all s in ${\mathcal S}$

$$\mathbf{v}(s) \leftarrow \max_{a \in \mathcal{A}} \left(r(s, a) + \gamma \sum_{s' \in \mathcal{S}} T(s'|s, a) \mathbf{v}(s') \right)$$

Prioritized Sweeping

Use magnitude of Bellman error to guide state selection, e.g.

$$\left| \max_{a \in \mathcal{A}} \left(r(s, a) + \gamma \sum_{s' \in \mathcal{S}} T(s'|s, a) \mathbf{v}(s') \right) - \mathbf{v}(s) \right|$$

- Backup the state with the largest remaining Bellman error
- Requires knowledge of reverse dynamics (predecessor states)
- Can be implemented efficiently by maintaining a priority queue

Real-time Dynamic Programming

- Idea: update only states that are relevant to agent
- Use agent's experience to guide the selection of states
- After each time-step $\mathcal{S}_t, \mathcal{A}_t, r_{t+1}$
- Backup the state \mathcal{S}_t

$$\mathbf{v}(\mathcal{S}_t) \leftarrow \max_{a \in \mathcal{A}} \left(r(\mathcal{S}_t, a) + \gamma \sum_{s' \in \mathcal{S}} T(s' | \mathcal{S}_t, a) \mathbf{v}(s') \right)$$

Sample Backups

- In subsequent lectures we will consider sample backups
- Using sample rewards and sample transitions (S, A, r, S')
- Instead of reward function and transition dynamics
- Advantages:
 - Model-free: no advance knowledge of MDP required
 - Breaks the curse of dimensionality through sampling
 - Cost of backup is constant, independent of $n = |\mathcal{S}|$



Approximate Dynamic Programming

- Approximate the value function
- Using a function approximate $\hat{ ext{v}}(s, ext{w})$
- Apply dynamic programming to $\hat{\mathbf{v}}(\cdot\,,\mathbf{w})$
- e.g. Fitted Value Iteration repeats at each iteration k,
 - Sample states $\tilde{\mathcal{S}} \subseteq \mathcal{S}$
 - For each state $s \in \tilde{\mathcal{S}}$, estimate target value using Bellman optimality equation,

$$\tilde{\mathbf{v}}_k(s) = \max_{a \in \mathcal{A}} \left(r(s, a) + \gamma \sum_{s' \in \mathcal{S}} T(s'|s, a) \hat{\mathbf{v}}(s', \mathbf{w}_k) \right)$$

• Train next value function $\hat{\mathbf{v}}(\cdot,\mathbf{w}_{k+1})$ using targets $\{\langle s,\tilde{\mathbf{v}}_k(s)\rangle\}$