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Talk Outline

» Modular Visual Navigation using Active Neural Mapping
» Active Neural Localization: Towards Deep SLAM
» MineRL NeurlPS Competition
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Navigation Tasks

Known goal location

» Require efficient navigation to the
goal

» Tasks
» Pointgoal [1, 2, 3]

» Language Instructions describing
path to goal [4]

[1] Anderson et al. arXiv:1807.06757, 2018.
[2] Mirowski et al. In NeurIPS, 2018.

[3] Savva et al. arXiv:1712.03931, 2017.

[4] Anderson et al. In CVPR, 2018.
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Navigation Tasks

Known goal location Unknown goal location
» Require efficient navigation to the » Require exhaustive exploration
goal » Tasks
» Tasks » Exploration: Maximize explored area [5]
> Pointgoal [1, 2, 3] » Object/Area Goal [3, 6, 7]
» Language Instructions describing » Semantic Goal Navigation [8]

path to goal [4] » Embodied Question Answering [9, 10]

[1] Anderson et al. arXiv:1807.06757, 2018. [6] Lample et al. In AAAI, 2017.
[2] Mirowski et al. In NeurIPS, 2018. [7] Mirowski et al. ICLR, 2017.
[3] Savva et al. arXiv:1712.03931, 2017. [8] Chaplot et al. AAAI, 2018.
[4] Anderson et al. In CVPR, 2018. [9] Gordon et al. CVPR, 2018.

[5] Chen et al. ICLR, 2019. [10] Das et al. CVPR, 2018.
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Desirable Characteristics of a Navigation model

» Effective at both types of Navigation tasks:
» Known goal location (Pointgoal) and
» Unknown goal location (Exploration)

» Generalization: domains, task, goals

» Sample efficiency



Carnegie Mellon University

Limitations of Classical SLAM

» Generalization
» Robustness to environment conditions [Maddern et al. 2016]
» Robustness to dynamic objects [Zou and Tan, 2012]
» Failure cases of keypoint tracking [Cadena et al. 2016]

» Passiveness

» Unable to decide the actions taken by the agent in order to map the environment or
localize as accurately and efficiently as possible.
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Deep RL?

I LH]
JII

Large static maze

[Lample & Chaplot, 2016] [Mirowski et al. 2017]
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Limitations of “end-to-end” Deep RL

» Ineffective at long-term planning
» Sample inefficiency

» Poor transferability
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Active Neural Mapping

» Modular hierarchical navigation model that leverages the strengths of
both learning-based and classical methods

» Efficient and exhaustive exploration, accurate long-term planning,
domain and task generalization

» Won the CVPR 2019 Habitat Challenge 2019 for PointGoal
Navigation for both RGB or RGBD tracks.

Devendra Chaplot, Saurabh Gupta, Abhinav Gupta, Ruslan Salakhutdinov,
Modular Visual Navigation using Active Neural Mapping, 2019
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Active Neural Mapping
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Active Neural Mapping
[ Updates the map based on ]

the current observation
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Active Neural Mapping

Samples a long-term goal
based on the current map
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Active Neural Mapping
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P Term
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{ Plans a path to the Iong—term goal and computes}
a short-term goal on the planned path




Carnegie Mellon University

Active Neural Mapping
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Mapper
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Projection Unit f,: takes an
Traversable Arca) | Expiored Area RGB frame and outputs an
- || o egocentric top-down 2D
spatial map, predicting
obstacles and explored area in
the current observation

ResNet-18 2 FC 3 Deconv
(till conv5) Layers  Layers

NS J
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Egocentric Egocentric
Traversable Area Explored Area

The pose of the agent is

| - || -’ computed based on the

previous action using
transition function f,

ResNet-18 2 FC 3 Deconv
(till conv5) Layers  Layers

N y
Xy
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Egocentric Egocentric
Traversable Area Explored Area

R ‘ ’ Egocentric spatial map is

' ' transformed into geocentric
—'( Spatial Transformer ]

frame using the current pose
ResNet-18 2 FC 3 Deconv v v . .
(till conv5) Layers  Layers Transformed Transformed Of t h € da g ent Xt usin g S pa tia |
k ) Traversable Area Explored Area .
- - Transformation
Xt
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Geocentric
Traversable Area

1

Geocentric
Explored Area

I

Egocentric
Traversable Area

-

Egocentric
Explored Area

-

]
—'( Spatial Transformer ]

ResNet-18 2 FC 3 Deconv v v
(till conv5) Layers  Layers Transformed Transformed
) Traversable Area Explored Area
- P4
At
\4
Channel ] R t - -
POOhng Geocentric Geocentric
Traversable Area Explored Area

Geocentric map prediction of
the current frame is
aggregated with the previous
spatial map M, ; using
Channel-wise Pooling



Global and Local Policies

8

Explored Area

Agent Location

Global Policy

Long-Term Goal

Path Planne)

Past Agent Locations

. S
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CNN + GR9

Planned Path,
Short-Term Goal

Local Policy
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Active Neural Mapping




Active Neural Mapping

Carnegie Mellon University

3 ( Conv

Mapper

Spatial transformation

+ Channel Pooling
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Active Neural Mapping

f Mapper Spatial transformation
13 + Channel Pooling

Long-Term
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Active Neural Mapping

f Mapper Spatial transformation
13 + Channel Pooling

Short-Term Long-Term
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Active Neural Mapping

( Conv f Mapper Spatial transformation
R + Channel Pooling

A\ 4
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Active Neural Mapping

( Conv f Mapper Spatial transformation
R + Channel Pooling
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Active Neural Mapping

( Conv . Mapper Spatial transformation
+ Channel Pooling

A\ 4
: Short-Term Long-Term
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Active Neural Mapping

Geometric projections /

( Conv . Mapper Spatial transformation
+ Channel Pooling

A 4
) Short-Term Long-Term
Action Local 1 Planner o Global i“ /
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Active Neural Mapping

( Conv . Mapper Spatial transformation
+ Channel Pooling

\ 4

) Short-Term Long-Term

Frontier-based
Exploration
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Active Neural Mapping

( Conv . Mapper Spatial transformation
+ Channel Pooling

A\ 4
: Short-Term Long-Term
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A-Star / Fast Marching
Method
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Active Neural Mapping

( Conv . Mapper Spatial transformation
+ Channel Pooling

A\ 4
: Short-Term Long-Term

Linear Quadratic ]

Regulator (LQR)




Training

» Mapper — Supervised on Projection
» Global Policy (PPO) — Explored area as reward

I

)
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» Local Policy (PPO) — Distance reduced to short-term goal as reward

» Planner — Fast Marching Method



Exploration Task

>
>
>
>

Use Habitat simulator with Gibson and Matterport3D datasets
Objective: Maximize the explored area
Metric: Explored area or coverage (m? )

A cell is explored if it is either
» Known to be traversable or

» Known to be an obstacle

All methods trained for 10 million frames

Fixed episode length of 500 steps (about 3 mins)

Carnegie Mellon University
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Exploration results

Gibson Val

Model Coverage
(m*)
Random 11.52
RL + 3LConv + GRU [1] 21.60
RL 4+ Resl18 + GRU 24.48
RL + Res18 + GRU 4 AuxDepth [2] 28.80
RL + Res18 + GRU + ProjDepth [3] 30.24
Active Neural Mapping (ANM) 43.20

*Adapted from [1] Lample & Chaplot. AAAI-17, [2] Mirowski et al. ICLR-17, [3] Chen el al. ICLR-19



Exploration results: Domain Generalization

Carnegie Mellon University

Gibson Val MP3D Test

Model Coverage Coverage

(m?) (m?)
Random 11.52 25.92
RL + 3LConv + GRU [1] 21.60 33.55
RL + Res18 + GRU 24.48 33.12
RL + Resl8 + GRU + AuxDepth [2] 28.80 45.36
RL + Res18 + GRU + ProjDepth [3] 30.24 41.04
Active Neural Mapping (ANM) 43.20 63.07

*Adapted from [1] Lample & Chaplot. AAAI-17, [2] Mirowski et al. ICLR-17, [3] Chen el al. ICLR-19
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Examples

t=100




Pointgoal Evaluation

>
>
>
>

Objective: Navigate to goal coordinates

Global Policy: Always gives pointgoal as a long-term goal
All methods trained for 10 million frames

Metric: Success weighted by inverse Path Length (SPL)

1N
N 2 Sig

x(pi, £

5
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Pointgoal Results

Test Setting -> Gibson Val
Method Succ SPL
Random 0.027 0.021
RL + Blind 0.625 0.421
RL + 3L-Conv 4+ GRU [1] 0.550 0.406
RL 4+ Resl8 4+ GRU 0.561 0.422
RL + Res18 + GRU + AuxDepth [2] 0.640 0.461
RL + Resl8 + GRU + ProjDepth [3] 0.614 0.436
IL 4+ Resl8 + GRU 0.716 0.673
IL + CMP [4] 0.738 0.683
Active Neural Mapping (ANM) 0.951 0.848

Carnegie Mellon University

*Adapted from [1] Lample & Chaplot. AAAI-17, [2] Mirowski et al. ICLR-17, [3] Chen el al. ICLR-19, [4] Gupta et al. CVPR-17
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Pointgoal Results

1.000 B Random
B RL + Blind
0.750 RL + 3L-Conv + GRU [1]
B RL + Res18 + GRU
0.500 B RL + Res18 + GRU + AuxDepth [2]
) B RL + Res18 + GRU + ProjDepth [3]
0.250 B IL + Res18 + GRU
B CMP [4]
0.000 B Active Neural Mapping (ANM)
Succ SPL
Gibson Val

*Adapted from
[1] Lample & Chaplot. AAAI-17, [2] Mirowski et al. ICLR-17,
[3] Chen el al. ICLR-19, [4] Gupta et al. CVPR-17
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Harder Goals

» Higher Geodesic to Euclidean » Higher Geodesic
Distance Ratio (Hard-GEDR) Distance (Hard-Dist)

' --: - /',-’. .l!-: .f’:
Geodesic s P N

Distance/e £
Y ,,"".(,-":
] I 'y
R WEuclidean /o ‘ i

. ] -
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Pointgoal Results

Goal
Generalization
Test Setting -> Gibson Val Hard-GEDR  Hard-Dist
Method Succ SPL Succ SPL Succ SPL
Random 0.027 0.021 0.000 0.000 0.000 0.000
RL + Blind 0.625 0.421 0.052 0.020 0.008 0.006
RL + 3L-Conv 4+ GRU [1] 0.550 0.406 0.072 0.046 0.006 0.006
RL + Res18 + GRU 0.561 0.422 0.176 0.109 0.004 0.003
RL + Res18 4+ GRU + AuxDepth [2] 0.640 0.461 0.277 0.197 0.013 0.011
RL + Res18 + GRU + ProjDepth [3] 0.614 0.436 0.180 0.129 0.008 0.004
IL + Res18 + GRU 0.716 0.673 0.521 0.486 0.248 0.234
IL + CMP [4] 0.738 0.683 0.492 0.443 0.228 0.212
Active Neural Mapping (ANM) 0.951 0.848 0.824 0.710 0.662 0.534

Carnegie Mellon University

*Adapted from [1] Lample & Chaplot. AAAI-17, [2] Mirowski et al. ICLR-17, [3] Chen el al. ICLR-19, [4] Gupta et al. CVPR-17



Pointgoal Results

1.000

0.750

0.500

0.250

0.000

Succ

Gibson Val

SPL

Succ

PointGoal Results

Hard-GEDR

SPL

Succ

Hard-Dist

SPL
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B Random
B RL + Blind
RL + 3L-Conv + GRU [1]
B RL + Res18 + GRU
B RL + Res18 + GRU + AuxDepth [2]
B RL + Res18 + GRU + ProjDepth [3]
B IL + Res18 + GRU
CMP [4]
B Active Neural Mapping (ANM)

*Adapted from [1] Lample & Chaplot. AAAI-17, [2] Mirowski et al. ICLR-17, [3] Chen el al. ICLR-19, [4] Gupta et al. CVPR-17



Pointgoal Results
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Goal Domain

Generalization Generalization
Test Setting -> Gibson Val Hard-GEDR Hard-Dist MP3D Test
Method Succ SPL Succ SPL  Succ SPL Succ SPL
Random 0.027 0.021 0.000 0.000 0.000 0.000 0.010 0.010
RL + Blind 0.625 0.421 0.052 0.020 0.008 0.006 0.136 0.087
RL + 3L-Conv + GRU [1] 0.550 0.406 0.072 0.046 0.006 0.006 0.102 0.080
RL 4+ Resl8 4+ GRU 0.561 0.422 0.176 0.109 0.004 0.003 0.160 0.125
RL + Res18 + GRU + AuxDepth [2] 0.640 0.461 0.277 0.197 0.013 0.011 0.189 0.143
RL + Res18 + GRU + ProjDepth [3] 0.614 0.436 0.180 0.129 0.008 0.004 0.134 0.111
IL 4+ Resl8 + GRU 0.716 0.673 0.521 0.486 0.248 0.234 0.221 0.205
IL + CMP [4] 0.738 0.683 0.492 0.443 0.228 0.212 0.237 0.219
Active Neural Mapping (ANM) 0.951 0.848 0.824 0.710 0.662 0.534 0.593 0.496

*Adapted from [1] Lample & Chaplot. AAAI-17, [2] Mirowski et al. ICLR-17, [3] Chen el al. ICLR-19, [4] Gupta et al. CVPR-17



Pointgoal Results

1.000

0.750

0.500

0.250

0.000

Succ SPL

Gibson Val

Succ SPL

Hard-GEDR

PointGoal Results

Succ

Hard-Dist

SPL

Succ SPL

MP3D-Test
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B Random
B RL + Blind
RL + 3L-Conv + GRU [1]
B RL + Res18 + GRU
B RL + Res18 + GRU + AuxDepth [2]
B RL + Res18 + GRU + ProjDepth [3]
B IL + Res18 + GRU
B CMP [4]
B Active Neural Mapping (ANM)
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Pointgoal: Task Transfer

» Pointgoal task: Navigation to goal coordinates
» Global Policy: always gives pointgoal as long-term goal

» Task Transfer: Use Local Policy and Mapper trained for exploration
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Pointgoal Results

Goal Domain

Generalization Generalization

Test Setting -> Gibson Val Hard-GEDR Hard-Dist MP3D Test

Train TaskMethod Succ SPL Succ SPL Succ SPL Succ  SPL
Pointgoal Random 0.027 0.021 0.000 0.000 0.000 0.000 0.010 0.010
RL + Blind 0.625 0.421 0.052 0.020 0.008 0.006 0.136 0.087

RL + 3L-Conv + GRU [1] 0.550 0.406 0.072 0.046 0.006 0.006 0.102 0.080

RL + Resl8 + GRU 0.561 0.422 0.176 0.109 0.004 0.003 0.160 0.125

RL + Res18 + GRU + AuxDepth [2] 0.640 0.461 0.277 0.197 0.013 0.011 0.189 0.143

RL + Resl8 + GRU + ProjDepth [3] 0.614 0.436 0.180 0.129 0.008 0.004 0.134 0.111

IL + Res18 + GRU 0.716 0.673 0.521 0.486 0.248 0.234 0.221 0.205

IL + CMP [4] 0.738 0.683 0.492 0.443 0.228 0.212 0.237 0.219
Active Neural Mapping (ANM) 0.951 0.848 0.824 0.710 0.662 0.534 0.593 0.496

Exploration ANM - Task Transfer 0.950 0.846 0.821 0.703 0.665 0.532 0.588 0.490




Sample Efficiency

Training Succ SPL
Frames
RL + Resl8 + GRU + ProjDepth [3] 10 million 0.640 0.461
RL + Resl18 + GRU + ProjDepth [3] 75 million 0.678 0.486
IL + Cognitive Mapping & Planning [4] 10 million 0.738 0.683
Active Neural Mapping 1 million 0.789 0.703
Active Neural Mapping 10 million 0.951 0.848

*Adapted from [3] Chen el al. ICLR-19, [4] Gupta et al. CVPR-17

Carnegie Mellon University



Sample Efficiency

Carnegie Mellon University

> 75x speedup
=> as compared to

Training Succ SPL
Frames
RL + Resl8 + GRU + ProjDepth [3] 10 million 0.640 0.461
RL + Resl8 + GRU + ProjDepth [3] 75 million 0.678 0.486 =
IL + Cognitive Mapping & Planning [4] 10 million 0.738 0.683
Active Neural Mapping 1 million 0.789 0.703 =
Active Neural Mapping 10 million 0.951 0.848

*Adapted from [3] Chen el al. ICLR-19, [4] Gupta et al. CVPR-17

best RL baseline



Sample Efficiency

Training Succ SPL
Frames
RL + Resl8 + GRU + ProjDepth [3] 10 million 0.640 0.461
RL + Res18 + GRU + ProjDepth [3] 75 million 0.678 0.486
IL + Cognitive Mapping & Planning [4] 10 million 0.738 0.683
Active Neural Mapping 1 million 0.789 0.703
Active Neural Mapping 10 million 0.951 0.848

_F

*Adapted from [3] Chen el al. ICLR-19, [4] Gupta et al. CVPR-17

Carnegie Mellon University

> 10x speedup
as compared to
best IL baseline



Analysis

Success Rate
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Summary

» Modular navigation model, effective at both
» Exploration and
» Pointgoal navigation
» Generalization across goals, tasks, domains
» Effective at long-term planning
» Extensions:
» Pose Estimation / Odometry
» Relocalization

» Semantics

Carnegie Mellon University
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Talk Outline

» Modular Visual Navigation using Active Neural Mapping
» Active Neural Localization: Towards Deep SLAM
» MineRL NeurlPS Competition
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Active Localization

Map Information

Agent Observations Predictions

“ i %= ' Active L0 [71J] Location
v | T e Localization - Action
T | ‘ Active n.n Location
N Localization n Action
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Active Localization

Map Information

Agent Observations Predictions

— . Location
- T Active %]V |0

b | e e Localization - Action

™ Active Location
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- Localization 1 Action
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Active Neural Localization

Agent’s observation (s; ) Belief before observing s; (Bel(y;)) Belief after observing s, (Bel(y,)) Map Design&  Agents
agent’s true perspective
Bel(yl) Bel(y;) location
East North West South East North West South N ]
[T
*GH s sl
’: L

Perceptual Model || Lik(sy)

Chaplot, Parisotto, Salakhutdinov, ICLR 2018
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Active Neural Localization

Agent’s observation (s; ) Belief before observing s; (Bel(y;)) Belief after observing s, (Bel(y,)) Map Design&  Agents
agent’s true perspective
Bel(yl) Bel(y;) location
East North West South East North West South

Perceptual Model || Lik(sp Policy Model

Action = “Turn Left"

Chaplot, Parisotto, Salakhutdinov, ICLR 2018
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Active Neural Localization

Agent’s observation (s; ) Belief before observing s; (Bel(y;)) Belief after observing s, (Bel(y,)) Map Design&  Agents
agent’s true perspective
Bel(yl) Bel(y;) location
East North West South East North West South N ]
%? 1
N
’: L

Perceptual Model || Lik(sp Policy Model

/ Action = “Turn Left”

\7/

Conv2 Flatten

Map Design & | 16 filters 16 filters
7x7 3x3
Belief O x M xN stride 3 stride 1

Action History
(5 actions)

Timestep [ |—»

\ Embedding /

Chaplot, Parisotto, Salakhutdinov, ICLR 2018

~ Critic Layer
(FO)
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Active Neural Localization

Agent’s observation (s; ) Belief before observing s; (Bel(y;)) Belief after observing s; (Bel(y)) Map Design&  Agents
agent’s true perspective
Bel(y;) Bel(y,) location
East North West South

North West South

N

N N

Perceptual Model || Lik(sy)

r !
a, = 'Turn left
Policy Model

Chaplot, Parisotto, Salakhutdinov, ICLR 2018
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Active Neural Localization

Agent’s observation (s¢ ) Belief before observing s; (Bel(y:)) Belief after observing s; (Bel(y,)) Map Design&  Agent's
agent’s true perspective
Bel(y,) Bel(y,) location
East North West South East West South
= "Turn left’ ’: I_
Perceptual Model Lik(s1) LA i Model
Bel(y)

East North  _ West _ _ South Bel(y;) = Z P(¥e|ye-1,a:-1) Bel(ye—1)

Belief before ~ Yt-1 Transition Belief after
: observing s; function observing s;_4

Chaplot, Parisotto, Salakhutdinov, ICLR 2018
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Pose Estimation: Towards Deep SLAM
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Parisotto et al., CVPR Workshop on Visual SLAM 2018
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Talk Outline

» Modular Visual Navigation using Active Neural Mapping
» Active Neural Localization: Towards Deep SLAM
» MineRL NeurlPS Competition
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MineRL

Towards Sample Efficient Reinforcement Learning

William H. Gussx , Brandon Houghtonx , Nicholay Topin , Phillip Wang , Cayden Codel , Manuela Veloso
and Ruslan Salakhutdinov
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The growing problem of sample inefficiency in RL

» The number of environment
samples to train policies on
domains of increasing complexity is
growing exponentially

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

10,000
e AlphaGo Zero
1,000
e AlphaZero
100 o Neural Machine Translation
=) o Neural Architecture Search
c
< 10 . eTI7 Dotalvi
.@ e Xception
=
% 1
© VGG e DeepSpeech2
@2 1 e Seq2Seq e ResNets
Q
o
e 0 e GoogleNet
© .01
*CT) e AlexNet ® Visualizing and Understanding Conv Nets
a e Dropout
.001
.0001
eDQN
.00001
2013 2014 2015 2016 2017 2018 2019
Year

Dario Amodei & Danny Hernandez Open Al 2019.
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The growing problem of sample inefficiency in RL

» The number of environment
samples to train policies on
domains of increasing complexity is
growing exponentially

» Training complex policies in real-
world environments is quickly
becoming intractable, without
significant infrastructure

Levine et. al. 2016
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Demonstration as an Answer to Sample Inefficiency

All previous data

> The number of samples required can
be drastically reduced using expert Execute current policy and Query Expert
demonstrations. fffi'?f{n/ ;

» No open, large-scale dataset of g\.,.,_\
demonstrations across a variety of — —
open/closed world tasks exists i ‘ A=

==KC]
=0

Supervised Learning
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MineRL: A Large-Scale Dataset of Minecraft Demonstrations

William H. Gussx* , Brandon Houghtonx* , Nicholay
Topin , Phillip Wang , Cayden Codel , Manuela Veloso _
and Ruslan Salakhutdinov. 1JCAI 2019. Navigate:

Treechop:

» We have created one of the largest
imitation learning datasets with over btain
60 million frames of recorded Bed:
human player data across 6+ obtain
complex tasks in Minecraft. Meat:

ObtainIron
Pickaxe:

Obtain
Diamond:




MineRL: Why Minecraft?

» Open-world, infinite/procedurally
generated

» Sparse & dense rewards

» Many innate task hierarchies and
subgoals

» Encompasses many of problems we
must solve as we approach the
problem of general Al.

Carnegie Mellon University
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A glimpse into the Minecraft item hierarchy



MineRL: Dataset Details

» Consists of over 500+ hours of
human demonstrations over 1000+
unique player sessions.

» Rich set of annotations including:
subtask completion, rewards,
player meta-data, gamestate.

» Rerenderable! We record game-
state not just player-pixels

Carnegie Mellon University
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Plots of XY positions of players in several tasks
(diversity & rich annotations)




MineRL: Hierarchality of Data

» Players complete sparsely rewarded
tasks following a specific task
hierarchy /dependence graph.

» Many ways to obtain an item, but
data exhibits the existence of
canonical pathways.
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MineRL: Expert demonstrations help

» On the Navigate task, using the
MineRL-v0 dataset helps drastically
reduce the number of samples for
standard algorithms.

» However, better algorithms still
need to be developed, especially
for the long-term, hierarchical tasks
exhibited in Minecraft.
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MineRL: Get started now!

http://minerl.io/
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Thank you



