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Talk Outline  

2!

�  Modular Visual Navigation using Active Neural Mapping !
�  Active Neural Localization: Towards Deep SLAM!
�  MineRL NeurIPS Competition !
!
!



Navigation Tasks 

Known goal location!
�  Require efficient navigation to the 

goal!
�  Tasks!

�  Pointgoal [1, 2, 3]!
�  Language Instructions describing 

path to goal [4]!
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[1] Anderson et al. arXiv:1807.06757, 2018. 
[2] Mirowski et al. In NeurIPS, 2018. 
[3] Savva et al. arXiv:1712.03931, 2017. 
[4] Anderson et al. In CVPR, 2018. 
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Unknown goal location!
�  Require exhaustive exploration!
�  Tasks!

�  Exploration: Maximize explored area [5]!
�  Object/Area Goal [3, 6, 7]!
�  Semantic Goal Navigation [8]!
�  Embodied Question Answering [9, 10]!

[1] Anderson et al. arXiv:1807.06757, 2018. 
[2] Mirowski et al. In NeurIPS, 2018. 
[3] Savva et al. arXiv:1712.03931, 2017. 
[4] Anderson et al. In CVPR, 2018. 
[5] Chen et al. ICLR, 2019. 

[6] Lample et al. In AAAI, 2017. 
[7] Mirowski et al. ICLR, 2017.  
[8] Chaplot et al. AAAI, 2018.  
[9] Gordon et al. CVPR, 2018. 
[10] Das et al. CVPR, 2018. 



Desirable Characteristics of a Navigation model 
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�  Effective at both types of Navigation tasks: !
�  Known goal location (Pointgoal) and !
�  Unknown goal location (Exploration)!

�  Generalization: domains, task, goals!
�  Sample efficiency!

!



Limitations of Classical SLAM 
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�  Generalization!
�  Robustness to environment conditions [Maddern et al. 2016]!
�  Robustness to dynamic objects [Zou and Tan, 2012]!
�  Failure cases of keypoint tracking [Cadena et al. 2016]!

�  Passiveness!
�  Unable to decide the actions taken by the agent in order to map the environment or 

localize as accurately and efficiently as possible.!

!
!



Deep RL? 

[Lample & Chaplot, 2016]! [Mirowski et al. 2017]!
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Limitations of “end-to-end” Deep RL 
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�  Ineffective at long-term planning!
�  Sample inefficiency!
�  Poor transferability!

!
!



Active Neural Mapping  
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�  Modular hierarchical navigation model that leverages the strengths of 
both learning-based and classical methods !

�  Efficient and exhaustive exploration, accurate long-term planning, 
domain and task generalization!

�  Won the CVPR 2019 Habitat Challenge 2019 for PointGoal 
Navigation for both RGB or RGBD tracks.!

!
!

Devendra Chaplot, Saurabh Gupta, Abhinav Gupta, Ruslan Salakhutdinov, !
Modular Visual Navigation using Active Neural Mapping, 2019!
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Plans a path to the long-term goal and computes 
a short-term goal on the planned path!



Active Neural Mapping 
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to reach the short-term goal!
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Mapper 
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Projection Unit fP: takes an 
RGB frame and outputs an 
egocentric top-down 2D 
spatial map, predicting 
obstacles and explored area in 
the current observation !
!
!
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The pose of the agent is 
computed based on the 
previous action using 
transition function ft  !
!
!
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Egocentric spatial map is 
transformed into geocentric 
frame using the current pose 
of the agent Xt using Spatial 
Transformation  !
!
!
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Geocentric map prediction of 
the current frame is 
aggregated with the previous 
spatial map Mt-1 using 
Channel-wise Pooling!
!
!



Global and Local Policies 
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Active Neural Mapping 
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Conv!



Active Neural Mapping 
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+ Channel Pooling!

Mapper!
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Active Neural Mapping 
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Conv! Spatial transformation 
+ Channel Pooling!
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Conv! Spatial transformation 
+ Channel Pooling!
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Conv! Spatial transformation 
+ Channel Pooling!
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Conv! Spatial transformation 
+ Channel Pooling!
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Conv! Spatial transformation 
+ Channel Pooling!



Active Neural Mapping 
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Conv! Spatial transformation 
+ Channel Pooling!



Active Neural Mapping 
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Conv! Spatial transformation 
+ Channel Pooling!



Active Neural Mapping 
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Conv! Spatial transformation 
+ Channel Pooling!



Active Neural Mapping 
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Conv! Spatial transformation 
+ Channel Pooling!



Training  

32!

�  Mapper – Supervised on Projection!
�  Global Policy (PPO) – Explored area as reward!
�  Local Policy (PPO) – Distance reduced to short-term goal as reward!
�  Planner – Fast Marching Method!

!
!



Exploration Task 
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�  Use Habitat simulator with Gibson and Matterport3D datasets  !
�  Objective: Maximize the explored area !
�  Metric: Explored area or coverage (m2 ) !
�  A cell is explored if it is either !

�  Known to be traversable or!
�  Known to be an obstacle !

�  All methods trained for 10 million frames !
�  Fixed episode length of 500 steps (about 3 mins)!
!
!
!



Exploration results 

Gibson Val!
Model! Coverage 

(m2 )!
Random! 11.52!
RL + 3LConv + GRU [1]! 21.60!
RL + Res18 + GRU! 24.48!
RL + Res18 + GRU + AuxDepth [2]! 28.80!
RL + Res18 + GRU + ProjDepth [3]! 30.24!
Active Neural Mapping (ANM)! 43.20!

*Adapted from [1] Lample & Chaplot. AAAI-17,  [2] Mirowski et al. ICLR-17,  [3] Chen el al. ICLR-19!
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Exploration results: Domain Generalization  

Gibson Val! MP3D Test!
Model! Coverage 

(m2 )!
Coverage 

(m2 )!
Random! 11.52! 25.92!
RL + 3LConv + GRU [1]! 21.60! 33.55!
RL + Res18 + GRU! 24.48! 33.12!
RL + Res18 + GRU + AuxDepth [2]! 28.80! 45.36!
RL + Res18 + GRU + ProjDepth [3]! 30.24! 41.04!
Active Neural Mapping (ANM)! 43.20! 63.07!

*Adapted from [1] Lample & Chaplot. AAAI-17,  [2] Mirowski et al. ICLR-17,  [3] Chen el al. ICLR-19!
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Examples 

t=1 t=50 t=100 t=200 t=500

36!



Pointgoal Evaluation  

�  Objective: Navigate to goal coordinates!
�  Global Policy: Always gives pointgoal as a long-term goal!
�  All methods trained for 10 million frames!
�  Metric: Success weighted by inverse Path Length (SPL)!

37!



Pointgoal Results 

*Adapted from [1] Lample & Chaplot. AAAI-17,  [2] Mirowski et al. ICLR-17,  [3] Chen el al. ICLR-19,  [4] Gupta et al. CVPR-17!

!
!

Test Setting ->! Gibson Val!
Method! Succ! SPL!
Random! 0.027! 0.021!
RL + Blind! 0.625! 0.421!
RL + 3L-Conv + GRU [1]! 0.550! 0.406!
RL + Res18 + GRU! 0.561! 0.422!
RL + Res18 + GRU + AuxDepth [2]! 0.640 0.461!
RL + Res18 + GRU + ProjDepth [3]! 0.614 0.436 
IL + Res18 + GRU! 0.716! 0.673!
IL + CMP [4]! 0.738! 0.683!
Active Neural Mapping (ANM)! 0.951! 0.848!

38!
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Harder Goals 

�  Higher Geodesic to Euclidean 
Distance Ratio (Hard-GEDR)!

Euclidean !
distance!

Geodesic !
Distance!

40!

�  Higher Geodesic 
Distance (Hard-Dist)!



Pointgoal Results 

Goal !
Generalization!

!
!

Test Setting ->! Gibson Val! Hard-GEDR! Hard-Dist!
Method! Succ! SPL! Succ! SPL! Succ! SPL!
Random! 0.027! 0.021! 0.000! 0.000! 0.000! 0.000!
RL + Blind! 0.625! 0.421! 0.052! 0.020! 0.008! 0.006!
RL + 3L-Conv + GRU [1]! 0.550! 0.406! 0.072! 0.046! 0.006 0.006!
RL + Res18 + GRU! 0.561! 0.422! 0.176! 0.109! 0.004! 0.003!
RL + Res18 + GRU + AuxDepth [2]! 0.640 0.461! 0.277 0.197 0.013! 0.011!
RL + Res18 + GRU + ProjDepth [3]! 0.614 0.436 0.180! 0.129! 0.008 0.004!
IL + Res18 + GRU! 0.716! 0.673! 0.521! 0.486! 0.248! 0.234!
IL + CMP [4]! 0.738! 0.683! 0.492! 0.443! 0.228! 0.212!
Active Neural Mapping (ANM)! 0.951! 0.848! 0.824 0.710! 0.662! 0.534!

41!

*Adapted from [1] Lample & Chaplot. AAAI-17,  [2] Mirowski et al. ICLR-17,  [3] Chen el al. ICLR-19,  [4] Gupta et al. CVPR-17!
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*Adapted from [1] Lample & Chaplot. AAAI-17,  [2] Mirowski et al. ICLR-17,  [3] Chen el al. ICLR-19,  [4] Gupta et al. CVPR-17!



Pointgoal Results 
Goal !

Generalization!
Domain 

Generalization!
Test Setting ->! Gibson Val! Hard-GEDR! Hard-Dist! MP3D Test!
Method! Succ! SPL! Succ! SPL! Succ! SPL! Succ! SPL!
Random! 0.027! 0.021! 0.000! 0.000! 0.000! 0.000! 0.010! 0.010!
RL + Blind! 0.625! 0.421! 0.052! 0.020! 0.008! 0.006! 0.136 0.087 
RL + 3L-Conv + GRU [1]! 0.550! 0.406! 0.072! 0.046! 0.006 0.006! 0.102 0.080 
RL + Res18 + GRU! 0.561! 0.422! 0.176! 0.109! 0.004! 0.003! 0.160 0.125 
RL + Res18 + GRU + AuxDepth [2]! 0.640 0.461! 0.277 0.197 0.013! 0.011! 0.189 0.143!
RL + Res18 + GRU + ProjDepth [3]! 0.614 0.436 0.180! 0.129! 0.008 0.004! 0.134! 0.111!
IL + Res18 + GRU! 0.716! 0.673! 0.521! 0.486! 0.248! 0.234! 0.221! 0.205!
IL + CMP [4]! 0.738! 0.683! 0.492! 0.443! 0.228! 0.212! 0.237! 0.219!
Active Neural Mapping (ANM)! 0.951! 0.848! 0.824 0.710! 0.662! 0.534! 0.593 0.496 

43!

*Adapted from [1] Lample & Chaplot. AAAI-17,  [2] Mirowski et al. ICLR-17,  [3] Chen el al. ICLR-19,  [4] Gupta et al. CVPR-17!



Pointgoal Results 

0.000

0.250

0.500

0.750

1.000

Succ SPL Succ SPL Succ SPL Succ SPL

Random

RL + Blind

RL + 3L-Conv + GRU [1]

RL + Res18 + GRU

RL + Res18 + GRU + AuxDepth [2]

RL + Res18 + GRU + ProjDepth [3]

IL + Res18 + GRU

CMP [4]

Active Neural Mapping (ANM)

PointGoal Results

Gibson Val! Hard-GEDR! Hard-Dist! MP3D-Test!

44!



Pointgoal: Task Transfer  

45!

�  Pointgoal task: Navigation to goal coordinates!
�  Global Policy: always gives pointgoal as long-term goal!
�  Task Transfer: Use Local Policy and Mapper trained for exploration!

!
!



Pointgoal Results 

Goal !
Generalization!

Domain 
Generalization!

Test Setting ->! Gibson Val! Hard-GEDR! Hard-Dist! MP3D Test!
Train Task!Method! Succ! SPL! Succ! SPL! Succ! SPL! Succ! SPL!
Pointgoal! Random! 0.027! 0.021! 0.000! 0.000! 0.000! 0.000! 0.010! 0.010!

RL + Blind! 0.625! 0.421! 0.052! 0.020! 0.008! 0.006! 0.136 0.087 
RL + 3L-Conv + GRU [1]! 0.550! 0.406! 0.072! 0.046! 0.006 0.006! 0.102 0.080 
RL + Res18 + GRU! 0.561! 0.422! 0.176! 0.109! 0.004! 0.003! 0.160 0.125 
RL + Res18 + GRU + AuxDepth [2]! 0.640 0.461! 0.277 0.197 0.013! 0.011! 0.189 0.143!
RL + Res18 + GRU + ProjDepth [3]! 0.614 0.436 0.180! 0.129! 0.008 0.004! 0.134! 0.111!
IL + Res18 + GRU! 0.716! 0.673! 0.521! 0.486! 0.248! 0.234! 0.221! 0.205!
IL + CMP [4]! 0.738! 0.683! 0.492! 0.443! 0.228! 0.212! 0.237! 0.219!
Active Neural Mapping (ANM)! 0.951! 0.848! 0.824 0.710! 0.662! 0.534! 0.593 0.496 

Exploration!  ANM - Task Transfer! 0.950! 0.846! 0.821 0.703! 0.665 0.532 0.588 0.490 
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Sample Efficiency 

*Adapted from [3] Chen el al. ICLR-19,  [4] Gupta et al. CVPR-17!

47!

Training 
Frames!

Succ! SPL!

RL +  Res18 + GRU + ProjDepth [3] ! 10 million! 0.640! 0.461!

RL +  Res18 + GRU + ProjDepth [3] ! 75 million! 0.678! 0.486!
IL + Cognitive Mapping & Planning [4]! 10 million! 0.738! 0.683!

Active Neural Mapping! 1 million! 0.789! 0.703!

Active Neural Mapping! 10 million! 0.951! 0.848!
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> 75x speedup 
as compared to 
best RL baseline!
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Sample Efficiency 
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> 10x speedup 
as compared to 
best IL baseline!
!

*Adapted from [3] Chen el al. ICLR-19,  [4] Gupta et al. CVPR-17!



Analysis 
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Summary 

�  Modular navigation model, effective at both !
�  Exploration and !
�  Pointgoal navigation !

�  Generalization across goals, tasks, domains!
�  Effective at long-term planning!
�  Extensions:!

�  Pose Estimation / Odometry!
�  Relocalization!
�  Semantics!

51!



Talk Outline  

52!

�  Modular Visual Navigation using Active Neural Mapping !
�  Active Neural Localization: Towards Deep SLAM!
�  MineRL NeurIPS Competition !
!
!
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60!

Parisotto et al.,  CVPR Workshop on Visual SLAM 2018

Pose Estimation: Towards Deep SLAM 



Talk Outline  

61!

�  Modular Visual Navigation using Active Neural Mapping !
�  Active Neural Localization: Towards Deep SLAM!
�  MineRL NeurIPS Competition !
!
!



MineRL 

William H. Guss∗ , Brandon Houghton∗ , Nicholay Topin , Phillip Wang , Cayden Codel , Manuela Veloso 
and Ruslan Salakhutdinov!
!

Towards Sample Efficient Reinforcement Learning!



The growing problem of sample inefficiency in RL 

63!

�  The number of environment 
samples to train policies on 
domains of increasing complexity is 
growing exponentially !
!

!
!

Dario Amodei & Danny Hernandez Open AI 2019.!



The growing problem of sample inefficiency in RL 

64!

�  The number of environment 
samples to train policies on 
domains of increasing complexity is 
growing exponentially!

�  Training complex policies in real-
world environments is quickly 
becoming intractable, without 
significant infrastructure!

!
!

Levine et. al. 2016!



Demonstration as an Answer to Sample Inefficiency 

65!

�  The number of samples required can 
be drastically reduced using expert 
demonstrations.!

�  No open, large-scale dataset of 
demonstrations across a variety of 
open/closed world tasks exists!

!
!

!
!



MineRL: A Large-Scale Dataset of Minecraft Demonstrations  

66!

!
�  We have created one of the largest 

imitation learning datasets with over 
60 million frames of recorded 
human player data across 6+ 
complex tasks in Minecraft.!

!
!

William H. Guss∗ , Brandon Houghton∗ , Nicholay 
Topin , Phillip Wang , Cayden Codel , Manuela Veloso 
and Ruslan Salakhutdinov. IJCAI 2019.!
!



MineRL: Why Minecraft? 

67!

�  Open-world, infinite/procedurally 
generated!

�  Sparse & dense rewards!
�  Many innate task hierarchies and 

subgoals!
�  Encompasses many of problems we 

must solve as we approach the 
problem of general AI.!

!
!

A glimpse into the Minecraft item hierarchy!



MineRL: Dataset Details 

68!

�  Consists of over 500+ hours of 
human demonstrations over 1000+ 
unique player sessions.!
!

�  Rich set of annotations including: 
subtask completion, rewards, 
player meta-data,  gamestate.!
!

�  Rerenderable! We record game-
state not just player-pixels!

!
!

Plots of XY positions of players in several tasks 
(diversity & rich annotations)!



MineRL: Hierarchality of Data 

69!

�  Players complete sparsely rewarded 
tasks following a specific task 
hierarchy/dependence graph.!
!

�  Many ways to obtain an item, but 
data exhibits the existence of 
canonical pathways.!

!
!



MineRL: Expert demonstrations help 

70!

�  On the Navigate task, using the 
MineRL-v0 dataset helps drastically 
reduce the number of samples for 
standard algorithms.!
!

�  However, better algorithms still 
need to be developed, especially 
for the long-term, hierarchical tasks 
exhibited in Minecraft.!

!
!



MineRL: Get started now! 

71!

http://minerl.io/ !



Thank you!

72!


