10417/10617 Intermediate Deep Learning: Fall2019

Russ Salakhutdinov

Machine Learning Department rsalakhu@cs.cmu.edu

https://deeplearning-cmu-10417.github.io/

Midterm Review

Midterm Review

- Polynomial curve fitting generalization, overfitting
- Loss functions for regression

$$\mathbb{E}[L] = \int \int (t - y(\mathbf{x}))^2 p(\mathbf{x}, t) d\mathbf{x} dt.$$

- Generalization / Overfitting
- Statistical Decision Theory

Midterm Review

- Bernoulli, Multinomial random variables (mean, variances)
- Multivariate Gaussian distribution (form, mean, covariance)
- Maximum likelihood estimation for these distributions.
- Exponential family / Maximum likelihood estimation / sufficient statistics for exponential family.

$$p(\mathbf{x}|\boldsymbol{\eta}) = h(\mathbf{x})g(\boldsymbol{\eta}) \exp \left\{ \boldsymbol{\eta}^{\mathrm{T}} \mathbf{u}(\mathbf{x}) \right\}$$

• Linear basis function models / maximum likelihood and least squares:

$$\ln p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \sum_{i=1}^{N} \ln \mathcal{N}(t_n | \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n), \beta)$$

$$= -\frac{\beta}{2} \sum_{n=1}^{N} (t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n))^2 + \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi).$$

$$\mathbf{w}_{\mathrm{ML}} = \left(\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}$$

Midterm Review

Regularized least squares:

$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} \qquad \mathbf{w} = \left(\lambda \mathbf{I} + \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t}.$$

$$\mathbf{w} = \left(\lambda \mathbf{I} + \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}.$$

Ridge

regression

Bias-variance decomposition.

Gradient Descend, SGD, Parameter Update Rules

Neural Networks

- How neural networks predict f(x) given an input x:
 - Forward propagation
 - Types of units
 - Capacity of neural networks (AND, OR, XOR)
- How to train neural nets:
 - Loss function
 - Backpropagation with gradient descent
- More recent techniques:
 - Dropout
 - Batch normalization
 - Unsupervised Pre-training

Artificial Neuron: Logistic Regression

Neuron pre-activation (or input activation):

$$a(\mathbf{x}) = b + \sum_{i} w_i x_i = b + \mathbf{w}^{\top} \mathbf{x}$$

Neuron output activation:

$$h(\mathbf{x}) = g(a(\mathbf{x})) = g(b + \sum_{i} w_i x_i)$$

where

W are the weights (parameters)

b is the bias term

 $g(\cdot)$ is called the activation function

Decision Boundary of a Neuron

- Binary classification:
 - With sigmoid, one can interpret neuron as estimating $p(y=1|\mathbf{x})$
 - Interpret as a logistic classifier

Decision boundary

- If activation is greater than 0.5, predict 1
- Otherwise predict 0

(from Pascal Vincent's slides)

Same idea can be applied to a tanh activation

Capacity of a Single Neuron

• Can solve linearly separable problems.

Capacity of a Single Neuron

Can not solve non-linearly separable problems.

- Need to transform the input into a better representation.
- Remember basis functions!

Capacity of Neural Nets

Consider a single layer neural network

(from Pascal Vincent's slides)

Capacity of Neural Nets

Consider a single layer neural network

(from Pascal Vincent's slides)

Capacity of Neural Nets

Consider a single layer neural network

(from Pascal Vincent's slides)

Neural Networks

- SGD Training, cross entropy loss, ReLU activations
- Classification with neural networks
- Regularization, Dropout, Batchnorm
- Forward Propagation and Backprop (computing derivatives)

Model Selection

- Training Protocol:
 - Train your model on the Training Set $\mathcal{D}^{\mathrm{train}}$
 - For model selection, use Validation Set $\mathcal{D}^{\mathrm{valid}}$
 - > Hyper-parameter search: hidden layer size, learning rate, number of iterations/epochs, etc.
 - Estimate generalization performance using the Test Set $\mathcal{D}^{\mathrm{test}}$
- Remember: Generalization is the behavior of the model on unseen examples.

Early Stopping

• To select the number of epochs, stop training when validation set error increases (with some look ahead).

Conv Nets

- Convolutional networks leverage these ideas
 - Local connectivity
 - Parameter sharing
 - Convolution
 - Pooling / subsampling hidden units
 - Understanding Receptive Fields

Local contrast normalization, rectification