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Midterm Review

» Polynomial curve fitting — generalization, overfitting

 Loss functions for regression

E[L] = / / (t — y(x)) *p(x, t)dxdt.
e Generalization / Overfitting

o Statistical Decision Theory



Midterm Review

e Bernoulli, Multinomial random variables (mean, variances)

e Multivariate Gaussian distribution (form, mean, covariance)

 Maximum likelihood estimation for these distributions.

» Exponential family / Maximum likelihood estimation / sufficient
statistics for exponential family.

p(x|n) = h(x)g(n) exp {n' u(x)}

e Linear basis function models / maximum likelihood and least
sqguares:
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Midterm Review

Ridge
» Regularized least squares: regression
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e Bias-variance decomposition.

High variance
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Low bias

e Gradient Descend, SGD, Parameter Update Rules



Neural Networks

» How neural networks predict f(x) given an input x:

- Forward propagation

- Types of units f(x)
- Capacity of neural networks (AND, OR, XOR)

» How to train neural nets:
- Loss function

- Backpropagation with gradient descent

» More recent techniques:
- Dropout

- Batch normalization X
- Unsupervised Pre-training



Artificial Neuron: Logistic Regression

* Neuron pre-activation (or input activation):

a(x)=b+ > wir;=b+w'x

e Neuron output activation:

h(x) = gla(x)) = g(b+ >, wix;)

where
W are the weights (parameters)
b is the bias term
9() is called the activation function



Decision Boundary of a Neuron

 Binary classification:

- With sigmoid, one can interpret neuron as estimating p(y =1 |X)

Interpret as a logistic classifier

Decision boundary

- If activation is greater than %
0.5, predict 1 \
- Otherwise predict 0 % é

. : (from Pascal Vincent's slides)
Same idea can be applied

to a tanh activation



Capacity of a Single Neuron

e Can solve linearly separable problems.




Capacity of a Single Neuron

e Can not solve non-linearly separable problems.

XOR (x1, x2) XOR (1, 2)
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L1 AND (58_1, 5132)

e Need to transform the input into a better representation.
« Remember basis functions!



Capacity of Neural Nets

e Consider a single layer neural network

(from Pascal Vincent'’s slides)
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Capacity of Neural Nets

e Consider a single layer neural network

»_x]

(from Pascal Vincent'’s slides)



Neural Networks

SGD Training, cross entropy loss, RelLU activations
Classification with neural networks
Regularization, Dropout, Batchnorm

Forward Propagation and Backprop (computing
derivatives)



Model Selection

e Training Protocol:

- Train your model on the Training Set D"

- For model selection, use Validation Set Dvalid

» Hyper-parameter search: hidden layer size, learning rate,
number of iterations/epochs, etc.

- Estimate generalization performance using the Test Set D5t

e Remember: Generalization is the behavior of the model on
unseen examples.



Early Stopping

 To select the number of epochs, stop training when validation set
error increases (with some look ahead).

O Training O Validation
0,5
0.4 underfitting overfitting
0,3
0,2
0,1
. —O—

number of epochs



Conv Nets

e Convolutional networks leverage these ideas

Local connectivity
Parameter sharing
Convolution

Pooling / subsampling hidden units

vV V Vv VY V

Understanding Receptive Fields

e Local contrast normalization, rectification



