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Motivating Example

(Mansimov, Parisotto, Ba, Salakhutdinov, 2015)

e Can we generate images from natural language descriptions?

A stop sign is flying in A pale yellow school bus
blue skies is flying in blue skies

THNS ~-FE-~
FalE= =F4YH

A herd of elephants is A large commercial airplane
flying in blue skies is flying in blue skies

Pl SE==~
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Overall Model
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Motivation
* Hinton, G. E., Dayan, P., Frey, B. J. and Neal, R., Science 1995

* Kingma & Welling, 2014

A it P(h3) Generative
pproximate Process .
Inference | 5 Rezende, Mohamed, Daan, 2014
h 21,3
Q(hshz)T P(h7[h) Mnih & Gregor, 2014
h” * Bornschein & Bengio, 2015
P(hl[h?) 810/
2111
Q(b7[h7) b * Tang & Salakhutdinov, 2013
P(x|h')

Q(h'[x) TX

Input data



Variational Autoencoders (VAES)

* The VAE defines a generative process in terms of ancestral
sampling through a cascade of hidden stochastic layers:

p(X‘H) — Z p(hLm)p(hL_l‘hLv 9) o -p(X‘hl, 0)

hl,... hL “~
Generative Each term may denote a
P(h?) Process complicated nonlinear relationship
P(h?|h?) « 0 denotes parameters
of VAE.
11,2 .
P(h”|h7) » L is the number of

stochastic layers.

* Sampling and probability
evaIu_ation is tractable for
each p(hf/h*t?).

P(x|h)




VAE: Example

* The VAE defines a generative process in terms of ancestral
sampling through a cascade of hidden stochastic layers:

p(x16) = ) p(h*@)p(h'[h? 0)p(x|h', )

hl h?2 ~—
This term denotes a one-layer
neural net.
h?2 Stochastic Layer
° 0 denotes parameters

l Deterministic of VAE.
Layer

l e [, isthe number of
hl Stochastic Layer stochastic layers.

v * Sampling and probability
X evaluation is tractable for

each p(h¢|h‘t1).



Recognition Network

* The recognition model is defined in terms of an analogous
factorization:

Q(h‘Xv 0) — Q(hl |X7 H)Q(hz‘hla 9) T Q(hL‘hL_lv 0)
™~

Approximate P(h3 Generative Each term may denote a
Inference (h”) Process complicated nonlinear relationship
P(h*|h?%) * We assume that
L
h™ ~ A0, 1)
1142
P(h[h7) * The conditionals:
p(h‘| h*1)
g(h‘[h*1)

P(x|h')
are Gaussians with
diagonal covariances




Variational Bound

e The VAE is trained to maximize the variational lower bound:

X, h X, h
o8 ) = log B || = B |08 | = 269

L(x) = log p(x) — Dkw (¢(h[x))|p(h|x))

* Trading off the data log-likelihood and the KL divergence
from the true posterior.

* Hard to optimize the variational bound
with respect to the recognition network
(high-variance).

* Key idea of Kingma and Welling is to use
reparameterization trick.

Input data



Reparameterization Trick

* Assume that the recognition distribution is Gaussian:

g(h’|h""1,0) = N(p(h™1,0), (b, 0))

with mean and covariance computed from the state of the hidden
units at the previous layer.

* Alternatively, we can express this in term of auxiliary variable:
€' ~ N(0,1)
h' (e, h'"",0) = £(h'"",6) %" + u(h'',6)



Reparameterization Trick

* Assume that the recognition distribution is Gaussian:

g(h’|h""1,0) = N(p(h™1,0), (b, 0))

* Or
€' ~ N(0,1)
hﬁ (Eﬁ’hﬁ—l’g) _ 2(h€—179)1/2€£ —|—[,l,(h£_1,9)

* The recognition distribution q(hg\he_l, #) can be expressed in
terms of a deterministic mapping:

h(e,x,0), with e=(e',...,€")

. J . J
Y Y

Deterministic Distribution of €
Encoder does not depend on @




Computing the Gradients

* The gradient w.r.t the parameters: both recognition and
generative:

p(x,h|0) ]
Q(h’X7 0)

VolEn~qm|x,0) llog

— v91@61,...,eLr\»./\/'(O,I) lOg

p(x,h(e, x,0)(0)
q(h(E X, 9)’X7 0)_
. p(x, h(e,x,0)[0)
= Ee1, . ern(o.1) [Ve log q(h(e, x,0)|x,0) |

N

Gradients can be The mapping h is a deterministic
computed by backprop neural net for fixed €.




Computing the Gradients

* The gradient w.r.t the parameters: recognition and generative:

p(x, h|9)] p(x, h(e x,0)|6)
= 1 L 1
g(blx, 8) | = et et N (oD | Voo q(h(e, x,0)[x, 0)

VoEn~q(n|x,0) [108;

e Approximate expectation by generating k samples from e€:

k
1
E Z Ve logw (Xv h(ez'a X, 9)7 9)

i=1
where we defined unnormalized importance weights:

w(X7 h, 0) — p(X, hw)/Q(hlxv 9)

 VAE update: Low variance as it uses the log-likelihood gradients
with respect to the latent variables.



VAE: Assumptions
Remember the variational bound:
L(x) = logp(x) — Dkr, (¢(h[x))||p(h[x))

The variational assumptions must be approximately satisfied.

The posterior distribution must be approximately factorial
(common practice) and predictable with a feed-forward net.

We show that we can relax these assumptions using a tighter
lower bound on marginal log-likelihood.



Importance Weighted Autoencoders

e Consider the following k-sample importance weighting of the

log-likelihood:
1 p(x,hy) ]
£ p— E ~ X 1 1. 7 :
k(X) hi,...,hy~q(h|x) _ 08 k ; Q(hz’X) |
p— 1 ]{: n
— ]Ehl ..... hj,~q(h|x) lOg E ; Wi

\ unnormalized
importance weights

where hj, ..., hg are sampled
from the recognition network.

o

ata

Input



Importance Weighted Autoencoders

e Consider the following k-sample importance weighting of the

log-likelihood:

- k
1
Lp(x) = Ehl,---,hwq(h\X) log L Z ];

* This is a lower bound on the marginal log-likelihood:

1
Li(x) =E [log . sz <loglk

1 k
DI

= log p(x)

e Special Case of k=1: Same as standard VAE objective.

* Using more samples = Improves the tightness of the bound.



Tighter Lower Bound

e Using more samples can only improve the tightness of the
bound.

* Forallk, the lower bounds satisfy:

log p(x) > Li11(x) > Li(x)
* Moreover if p(h,x)/q(h|x) is bounded, then:

Li(x) — logp(x), as k—



Computing the Gradients

* We can use the unbiased estimate of the gradient using
reparameterization trick:

k
1
Veﬁk(X) — VeEhl,...,hqu(mx) {log E Z wi:|

1=1

k
1
= Ee, .. c. |Volog - ; w(x, h(€;,x,0),0)
_ -
= Ee, ... e, Z@Ne logw(x, h(€;,%x,0),0)

=1

where we define normalized importance weights:

W; = w-/zk:w- where w; = p(x, hi)
i i £ i i Q(h@‘X)




IWAES vs. VAEs

* Draw k-samples form the recognition network ¢(h|x)
— or k-sets of auxiliary variables €.

e Obtain the following Monte Carlo estimate of the gradient:

k
Voli(x) ~ wﬂVQ log w(x, h(e;, x,60),0) !

i - TT-T-T-T-T-====

1= 1

18



IWAE: Intuition

* The gradient of the log weights decomposes:
Velogw(x,h(e;, x,0),0)
= Vo lng(X, h(€i7 X, 0) |0) o lOg Q<h(€’67 X, 0) ‘X7 0)
N\ J
S Y
Deterministic Deterministic
decoder Encoder

First term:
— Decoder: encourages the generative model to
assign high probability to each h!|h!*™

— Encoder: encourages the recognition net to
adjust its latent states h so that the
generative network makes better predictions.

Input data



IWAE: Intuition

* The gradient of the log weights decomposes:
Velogw(x,h(e;, x,0),0)
= Vo lng(X, h(€i7 X, 0) |0) o lOg Q<h(€’67 X, 0) ‘X7 0)
N\ J
S Y
Deterministic Deterministic
decoder Encoder

Second term:
— Encoder: encourages the recognition network
to have a spread-out distribution over
predictions.

Input data



Two Architectures

2-stochastic layers

-

-

* For the MNIST experiments, we h? 50
considered two architectures: /' l
100
Stochastic Layers ¢
. \ 100
1-stochastic layer
\J
ht 50 h' 100
- |
200 Deterministic 200
¢ > Layers ¢
200 200
y,
4 4
X 784 X /84

Deterministic
Layers

Deterministic
Layers



MNIST Results

MNIST
VAE IWAE

# stoch. active active
layers k NLL units NLL  units

86.76 19 86.76 19
5 8647 20 85.54 22
50 86.35 20 84.78 25

1

[S—

22



MNIST Results

MNIST
VAE IWAE
# stoch. active active
layers &£  NLL units NLL  units
1 1 86.76 19 86.76 19
5 86.47 20 85.54 22
50 86.35 20 84.78 25
2 1 85.33 16+5 85.33 16+5
S _ 8501 _ 17+5_ _83.89 _ 21+5_
'50 84.78 1745 8290 26+7!

23



Latent Space Representation

 Both VAEs and IWAEs tend to learn latent representations with
effective dimensions far below their capacity.

* Measure the activity of the latent dimension u using the
statistics:

Ay = Cov (Eung(ulx[u])

* The distribution of log A,
consist of two separated modes.

* |nactive dimensions =2 units
dying out.

* Optimization issue?




IWAES vs. VAEs

First stage

trained as NLL active units

VAE 86.76 19

IWAE, £ =50 84.78 25




IWAES vs. VAEs

First stage

trained as NLL active units
VAE 86.76 19
IWAE, £k =50 &84.78 25

Second stage

trained as NLL active units

IWAE, £k =50 84.88 22

VAE 86.02 23




OMNIGLOT Experiments

OMNIGLOT
VAE IWAE

# stoch. active active
layers k& NLL  units NLL  units

1 1 108.11 28 108.11 28
5 107.62 28 106.12 34
50 107.80 28 104.67 41

2 1 107.58 28+4 107.56 30+5
5 10631 3045 104.79 38+6
50 106.30 30+5 103.38  44+7




Modeling Image Patches

BSDS Dataset

* Model 8x8 patches.

h' 40
500

v
X 64

1-stochastic layer

Stochastic
Layer

Deterministic
Layer

* Report test log-likelihoods on 1076 8x8 patches, extracted

from BSDS test dataset.

e Evaluation protocol established by Uria, Murray and Larochelle):

— add uniform noise between 0 and 1, divide by 256,
— subtract the mean and discarding the last pixel 28



Test Log-probabilities

Model I nats I Bits/pixel
EJ'\r'iaAEt_E:_ gé‘ig)e” layers | 9552 nats | 3.55 bit/pixel
MoG, 200 full-

covariance mixture 152.8 nats 3.50 bit/pixel
(Zoran and Weiss, 2012)

IWAE (k=500) 151.4 nats 3.47 bit/pixel
VAE (k=500) 148.0 nats 3.39 bit/pixel
I(\S/ISI)I:{[IU(rGe?ussian Scale 142 nats 3.25 bit/pixel
ICA 111 nats 2.54 bit/pixel
PCA 96 nats 2.21 bit/pixel

Burda 2015



Burda 2015

Learned Filters

30



Motivating Example

(Mansimov, Parisotto, Ba, Salakhutdinov, 2015)

e Can we generate images from natural language descriptions?

A stop sign is flying in A pale yellow school bus
blue skies is flying in blue skies

THNS ~-FE-~
FalE= =F4YH

A herd of elephants is A large commercial airplane
flying in blue skies is flying in blue skies

Pl SE==~
MeoET <FE-
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Overall Model
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Sequence-to-Sequence

» Sequence-to-sequence framework. (Sutskever et al. 2014; Cho
et al. 2014; Srivastava et al. 2015) __ —
B I E

r t 1T 1

1 1 1

person skiing down mountain

 Caption (y) is represented as a sequence of consecutive words.
* Image (x) is represented as a sequence of patches drawn on canvas.

e Attention mechanism over:
— Words: Which words to focus on when generating a patch
— Image Location Where to place the generated patches on the canvas



Representing Captions
Bidirectional RNN

- S

e e N T T * Forward RNN reads the
pmbi okl paki pu ki pun ki pan sentence y from left to right:
| he | h2 [ ha [sifha [s]hs | ] he | [ﬁlang hlang ﬁ%ng}
(77 {7 || || || 7 [E] "o | o Backward RNN reads the
iR R e sentence y from right to left:

[illa,ng7 il;mg’ ) %%ng]

a person sking down a mountain
Y U Y2 Y3 Ya Ys Ye

* The hidden states are then concatenated:

hlang [hlang hlang . h%ng] , with héang [E)lang, %éang]

(

34



DRAW Model

(Gregor et. al. 2015)

w rF F

T write

T write

T write

Generative
RNN”w
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N

Latent (z)
Pl Zp|Zrp 1)

Generative Generative
RNNJ,;,,., RNNJ gem
t'l 12
7 )
Latent (z) Latent (z)
AP (73| 71)
;) A :
______ S Y M
Inference Inference
RNN) infer RNN g nfer

Inference |:
RNNhuu‘e' :

T read

T read

T read !

write(hy™™) = Fp(h{™") x K(h{™") x F,(h{"")

write operator:

* At each step the model generates a
p x p patch K (hi") € RPXP

* |t gets transformed into w x h
canvas using two arrays of Gaussian

filter banks
F,(h?™) € R">P
Fy(h{*") € R**7

whose filter locations and scales are
computed from hy" :
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Overall Model

(Mansimov, Parisotto, Ba, Salakhutdinov, 2015)
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TN T T 4 _| Generative Generative Generative _
{ — | { — i i iy iy 1 RNN. RN, 5-n RANN,..[  Generative (P)
" i g W
< < < < <— :: < ~ A 7
h1 h2 h3 h,‘ h5 E: hG \ ) .
" Latent (2) L Latent (z) | L_) Latent (z) Stochastic
p'.'Zﬂ 5 :UI:.Z': zZ ‘ : Plz‘.l' Zl.'l 1] Layer
— —> — — — —
hy ha ha ha hsg hg

J
................................................

a person sking down a mountain
Y un Y2 Y3 Ya  UYs Ve

Bidirectional LSTM

* Generative Model: Stochastic Recurrent Network, chained
sequence of Variational Autoencoders, with a single stochastic layer.

Gregor et. al. 2015 *°



Overall Model

(Mansimov, Parisotto, Ba, Salakhutdinov, 2015)

F >
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T T T T T T read T read T read!  Inference (Q)
a person sking down a mountain ) w mj f

Y un Y2 Y3 Ya Ys ¥ 02000 BWES- 0 BERE BERES
Bidirectional LSTM

* Generative Model: Stochastic Recurrent Network, chained
sequence of Variational Autoencoders, with a single stochastic layer.

* Recognition Model: Deterministic Recurrent Network.
Gregor et. al. 2015 Y



Overall Model

Sentence representation:
dynamically weighted average of the
hidden states representing words.
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» Attention (alignment): Focus on different words at different time
steps when generating patches and placing them on the canvas.

Bahdanau et. al. 2015
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Generating Images
wow

oy
.3 N ) T write Twrlte write
A N\
JUTIAREEPPL & 0 SRR ‘
: e \ _| Generative Genera tive Generative .
promion poeetiogpenstongpendensnpeimanpdeneey 1 RNN.. RNN, ;e RNN, .. Generative (P)
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Latent (2) L Latent (2) L_) Latent (2)
P4 ‘ wiZs 2} H Py Zyy )

UL L L L LD e Image is represented as a sequence of

(N

a person sking down a mountain patCheS (t=11"'T) drawn On CanVaS:

Y un Y2 Y3 Y Us Yo

zy ~ P(Zt|Z1.4—1) = N (p(h{}),0(h{T)), P(Z,) =N (0,1)
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Generating Images
o

c
.3 N ) T write T write ite
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e ikt ekt e ke e 1 RNN,. RNN, .. RNN,,.|  Generative (P)

- - ||| "]« \ ? 7 7 .

h h h ha h h

Latent (2) L Latent (2) L_) Latent (2)
pl) : Ly 2

' wiZa 2} H Py Zyyoa)

LELEL L L L] o Image is represented as a sequence of

rr 1t

a person sking down a mountain patCheS (t=11"'T) drawn On CanVaS:

7zt ~ P(Zi|Z1:4-1) = N(u(hff?),a(h?f?)), P(Z,) =N (0,1)

st = align(h{®} W'*"9)  hJ*" = LSTM" (h{®], [z, 5:])
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Generating Images
o

UL L L L LD e Image is represented as a sequence of
a person sking down a mountain patChES (t=11"'T) drawn On CanVaS:

Y un Y2 Y3 Y1+ Us Yo

oy
3 — ) T write Twrlte write
DRI > ' ‘
A L _| Generative Genera tive Generative )
pomen T pe e el e e 7 RNN. RNN, ;.. RNN .. Generative (P)
|||t ||« I . 7
' : Latent (2) L Latent (z) | L_) Latent ()
" Pl ' wiZa 2} H Py Zyyoa)
— || —= N H I
h h2 h3 :E h h5 ] he

7zt ~ P(Zi|Z1:4-1) = N(u(hff?),a(h?f?)), P(Z,) =N (0,1)
st = align(h{®} W'*"9)  hJ*" = LSTM" (h{®], [z, 5:])
c; = c;_1 +write(h!") x~ P(x|y,Z:.1) HBern o(cr,i))

* In practice, we use the conditional mean: x = o(cr).
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Alignment Model
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* Dynamic sentence representation at time t: welghted average
of the bi-directional hidden states:

s¢ = align(hi<’], hla’”g)

t1.lan t1.lan

L4 Nhlang

where the alignment probabilities are computed as:
exp (et

e, = v tanh (Uh,*™ + Whi" +b), o

Z,ﬁil exp (67;) 42



Learning
<IN <A
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T T T T T T read I read T read: Inference (Q)
a person sking down a mountain wj w
Y % u2 Y3 Y4 U Ye ; ;

* Maximize the variational lower bound on the marginal log-
likelihood of the correct image x given the caption y:

J— Z Q(Z|x,y)log P(x|Z,y) — Dkr(Q(Z|x,y)||P(Z]y))
4 < log P(x|y)
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Sharpening
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* Additional post processing step: use an adversarial network
trained on residuals of a Laplacian pyramid to sharpen the
generated images (Denton et. al. 2015).
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MS COCO Dataset

* Contains 83K images.

* Each image contains 5
captions.

:
M =

e Standard benchmark
dataset for many of the
recent image captioning
systems.

EEQF

Lin et. al. 2014 45



Flipping Colors

A yellow school bus parked A red school bus parked in
in the parking lot the parking lot

—E¥= e=e=47
<e=sS== BT - =

A green school bus parked in A blue school bus parked in
the parking lot the parking lot

madE IENES
== - 1




Flipping Backgrounds

A very large commercial A very large commercial
plane flying in clear skies. plane flying in rainy skies.

CEEA =
.- "45 - = !ii‘

A herd of elephants walking A herd of elephants walking
across a dry grass field. across a green grass field.

~Heoem IEEE
' ' |
=0Fm KVas




Flipping Objects

The decadent chocolate
desert is on the table.

Seds®
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A vintage photo of a cat.
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A bowl of bananas is on
the table..
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A vintage photo of a dog.
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Qualitative Comparison

A group of people walk on a beach with surf boards

Our Model LAPGAN (Denton et. al. 2015)
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Conv-Deconv VAE Fully Connected VAE
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Variational Lower-Bound

* We can estimate the variational lower-bound on the average
test log-probabilities:

Model Training Test I
Our Model -1792,15 -1791,53
Skipthought-Draw -1794,29 -1791,37
noAlignDraw -1792,14 -1791,15

* At least we can see that we do not overfit to the training data,
unlike many other approaches.



Novel Scene Compositions

A toilet seat sits open in the A toilet seat sits open in the
bathroom grass field
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Ask Google?
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