

10417/10617

Intermediate Deep Learning:

Fall2019

Russ Salakhutdinov

Machine Learning Department

rsalakhu@cs.cmu.edu

<https://deeplearning-cmu-10417.github.io/>

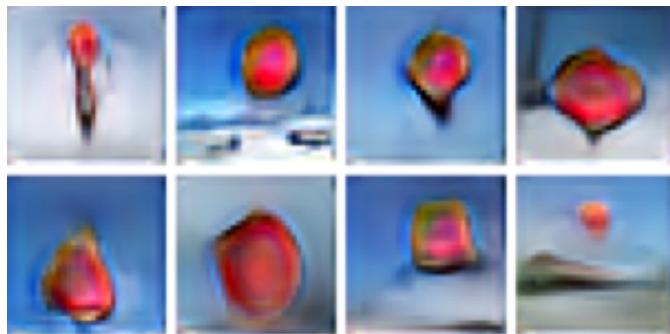
Variational Autoencoders

Motivating Example

(Mansimov, Parisotto, Ba, Salakhutdinov, 2015)

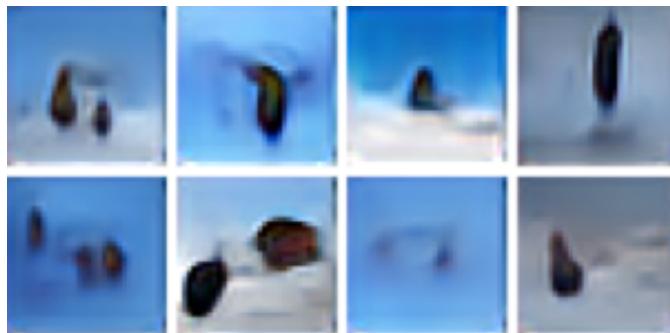
- Can we generate images from natural language descriptions?

A stop sign is flying in blue skies



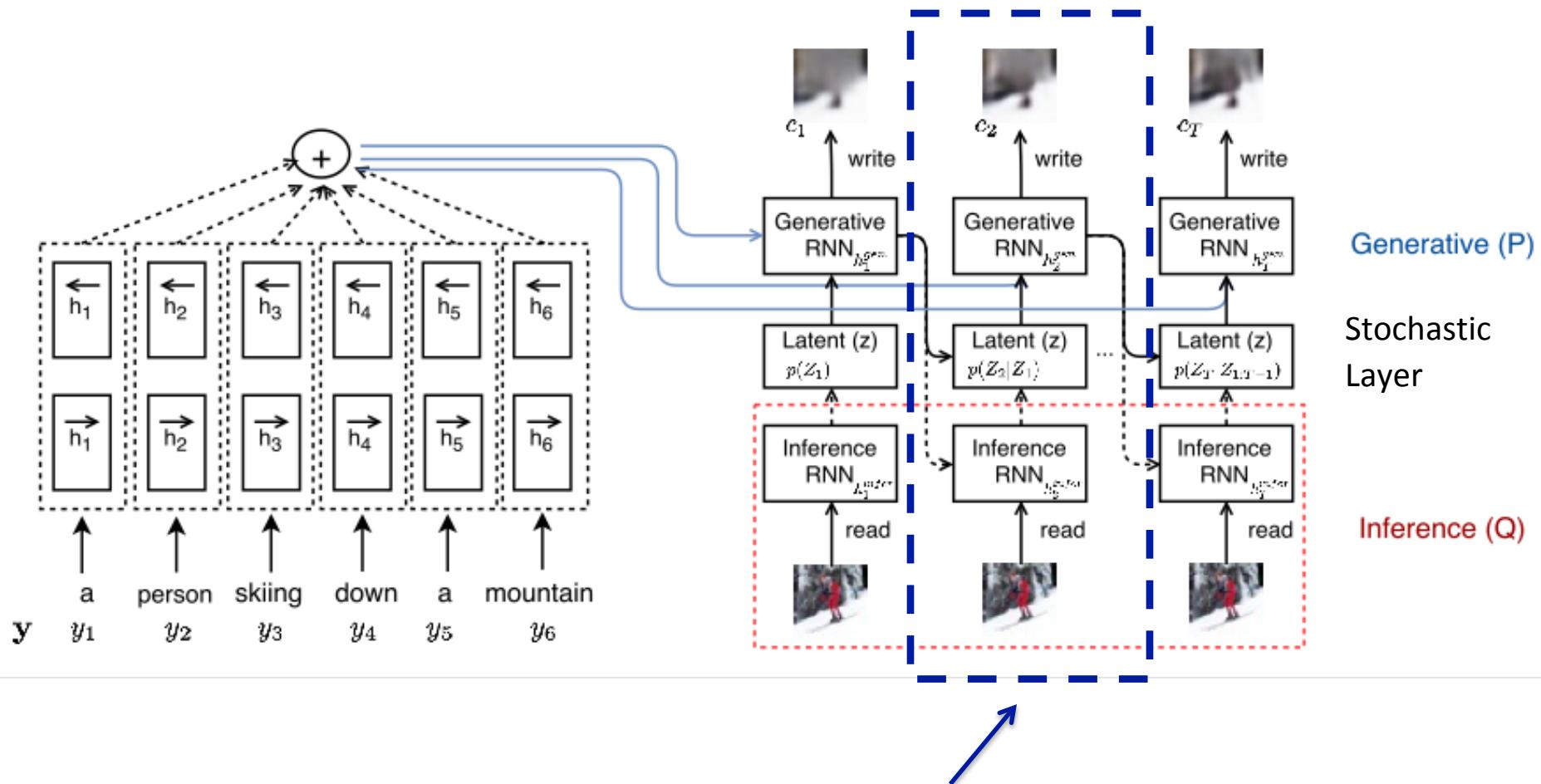
A pale yellow school bus is flying in blue skies

A herd of elephants is flying in blue skies



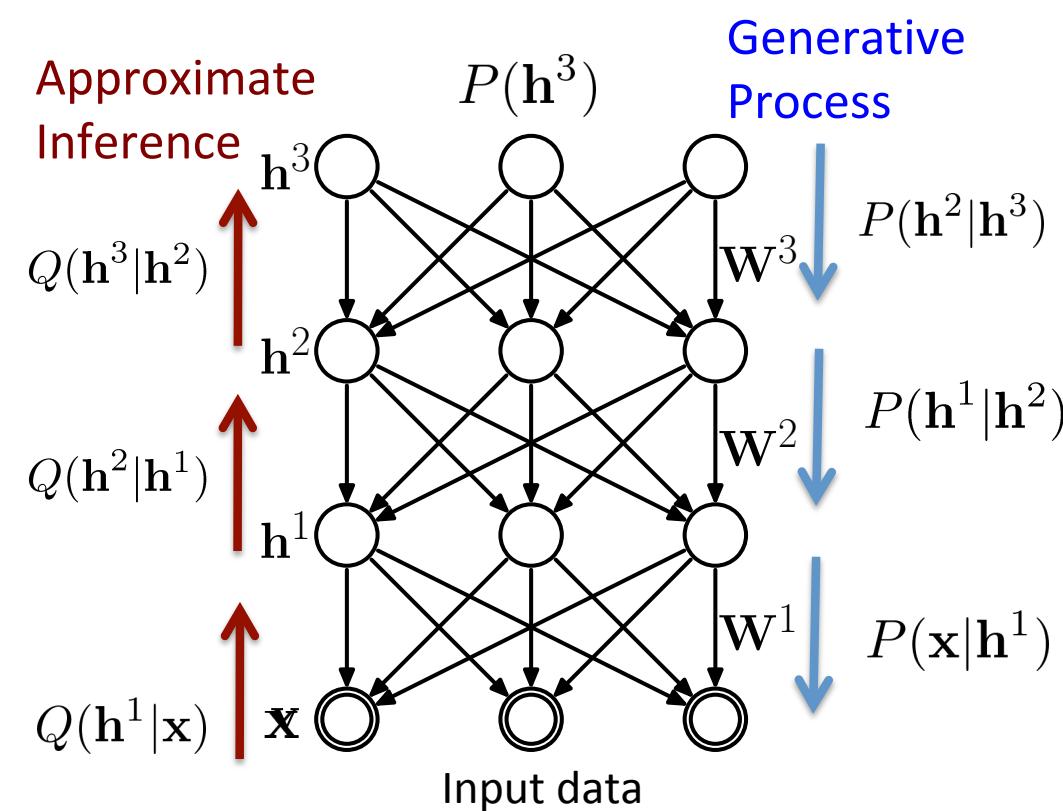
A large commercial airplane is flying in blue skies

Overall Model



Motivation

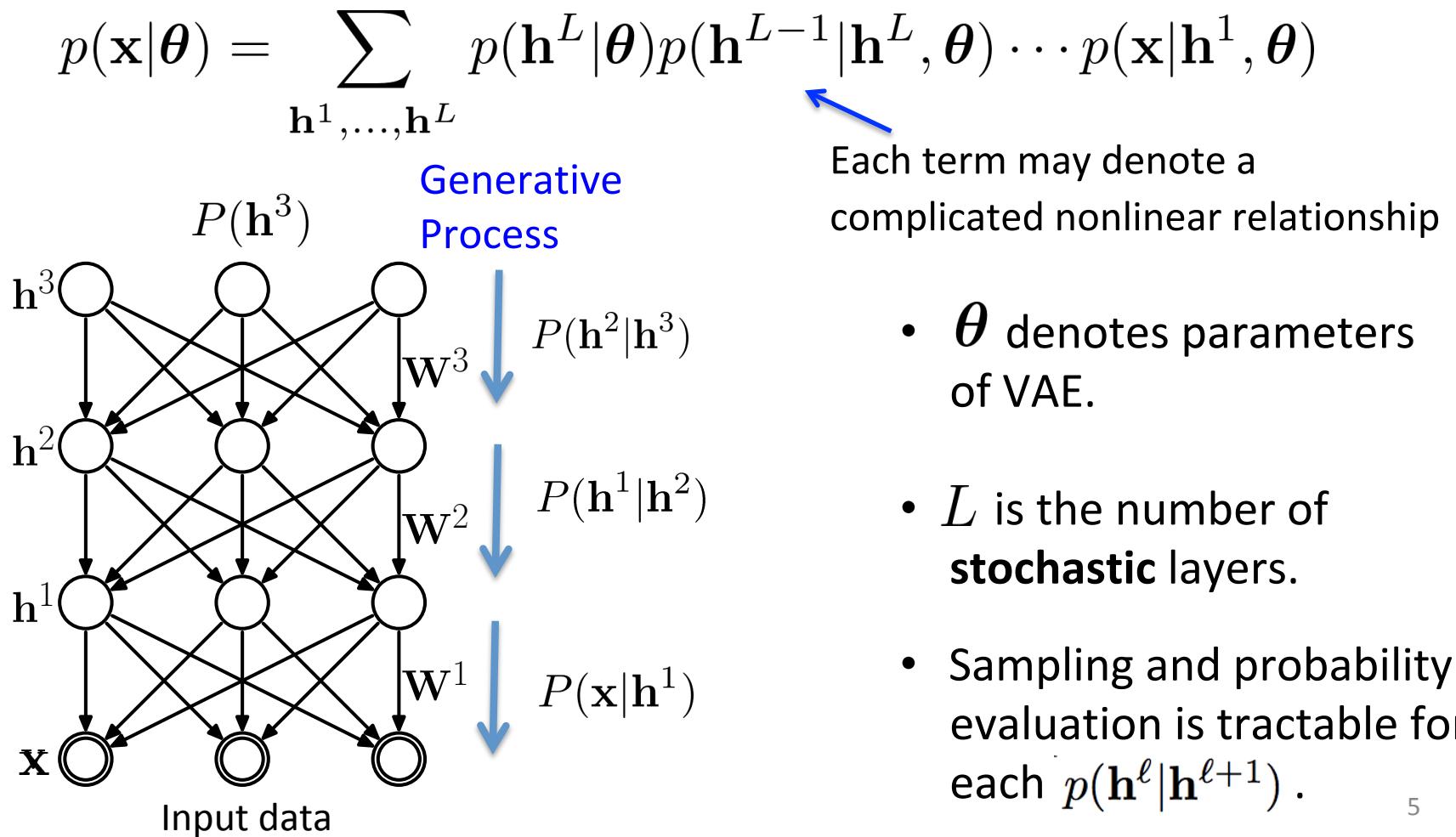
- Hinton, G. E., Dayan, P., Frey, B. J. and Neal, R., Science 1995



- Kingma & Welling, 2014
- Rezende, Mohamed, Daan, 2014
- Mnih & Gregor, 2014
- Bornschein & Bengio, 2015
- Tang & Salakhutdinov, 2013

Variational Autoencoders (VAEs)

- The VAE defines a generative process in terms of ancestral sampling through a cascade of hidden stochastic layers:

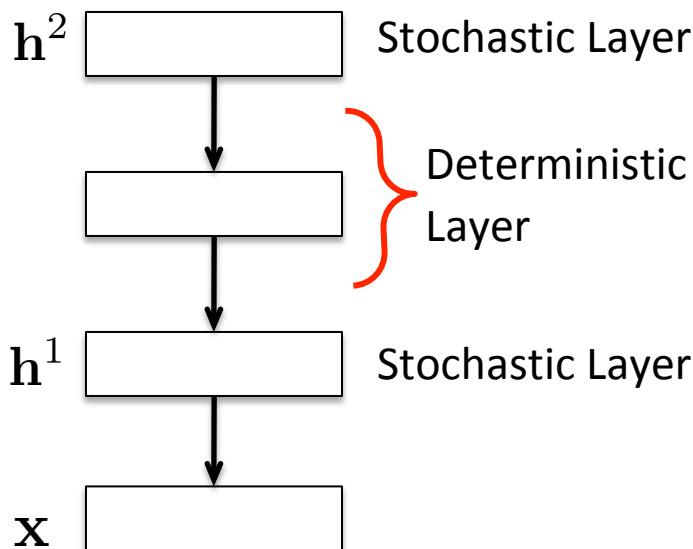


VAE: Example

- The VAE defines a generative process in terms of ancestral sampling through a cascade of hidden stochastic layers:

$$p(\mathbf{x}|\theta) = \sum_{\mathbf{h}^1, \mathbf{h}^2} p(\mathbf{h}^2|\theta)p(\mathbf{h}^1|\mathbf{h}^2, \theta)p(\mathbf{x}|\mathbf{h}^1, \theta)$$

This term denotes a one-layer neural net.



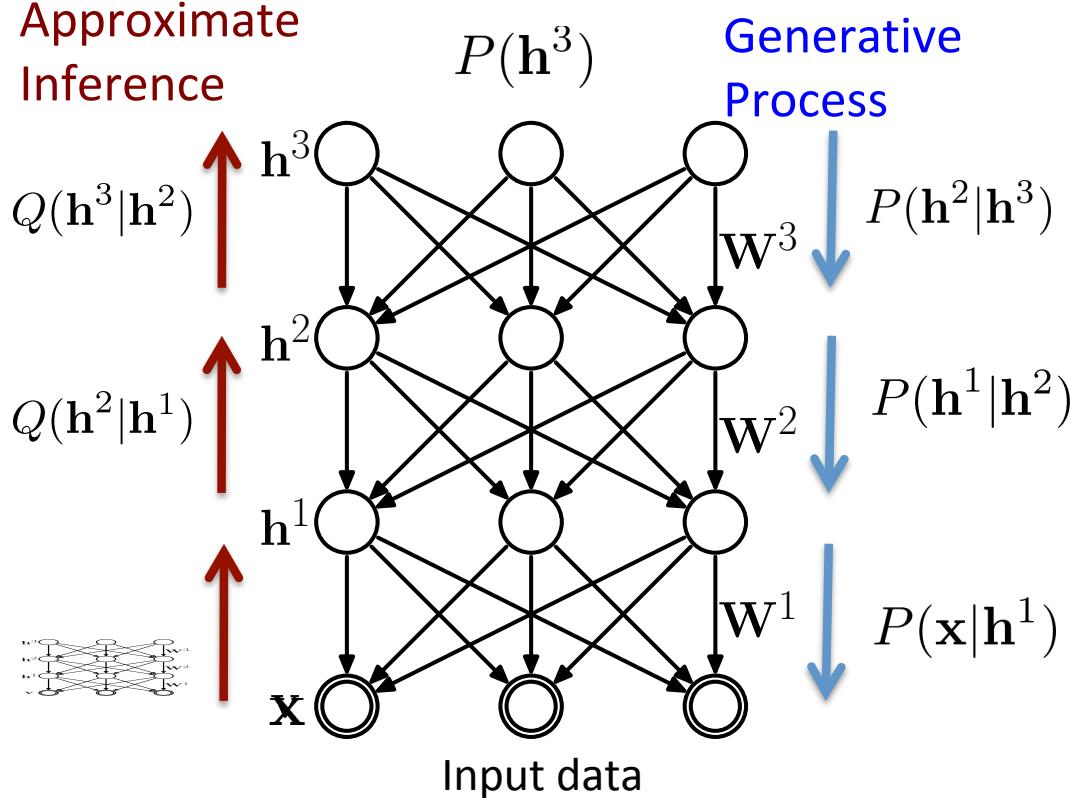
- θ denotes parameters of VAE.
- L is the number of **stochastic layers**.
- Sampling and probability evaluation is tractable for each $p(\mathbf{h}^\ell|\mathbf{h}^{\ell+1})$.

Recognition Network

- The recognition model is defined in terms of an analogous factorization:

$$q(\mathbf{h}|\mathbf{x}, \boldsymbol{\theta}) = q(\mathbf{h}^1|\mathbf{x}, \boldsymbol{\theta})q(\mathbf{h}^2|\mathbf{h}^1, \boldsymbol{\theta}) \cdots q(\mathbf{h}^L|\mathbf{h}^{L-1}, \boldsymbol{\theta})$$

Approximate
Inference



Each term may denote a
complicated nonlinear relationship

- We assume that $\mathbf{h}^L \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- The conditionals:

$$p(\mathbf{h}^\ell | \mathbf{h}^{\ell+1})$$
$$q(\mathbf{h}^\ell | \mathbf{h}^{\ell-1})$$

are Gaussians with
diagonal covariances

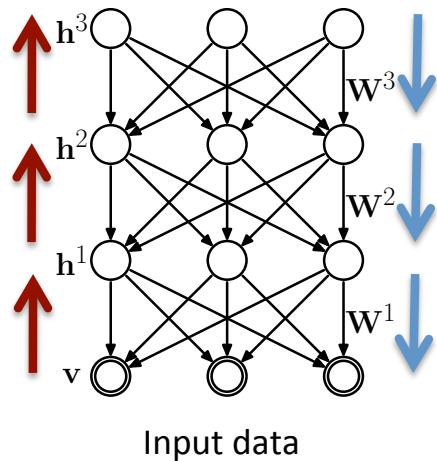
Variational Bound

- The VAE is trained to maximize the variational lower bound:

$$\log p(\mathbf{x}) = \log \mathbb{E}_{q(\mathbf{h}|\mathbf{x})} \left[\frac{p(\mathbf{x}, \mathbf{h})}{q(\mathbf{h}|\mathbf{x})} \right] \geq \mathbb{E}_{q(\mathbf{h}|\mathbf{x})} \left[\log \frac{p(\mathbf{x}, \mathbf{h})}{q(\mathbf{h}|\mathbf{x})} \right] = \mathcal{L}(\mathbf{x})$$

$$\mathcal{L}(\mathbf{x}) = \log p(\mathbf{x}) - D_{KL} (q(\mathbf{h}|\mathbf{x})) || p(\mathbf{h}|\mathbf{x}))$$

- Trading off the data log-likelihood and the KL divergence from the true posterior.



- Hard to optimize the variational bound with respect to the recognition network (high-variance).
- Key idea of Kingma and Welling is to use reparameterization trick.

Reparameterization Trick

- Assume that the recognition distribution is Gaussian:

$$q(\mathbf{h}^\ell | \mathbf{h}^{\ell-1}, \boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{\mu}(\mathbf{h}^{\ell-1}, \boldsymbol{\theta}), \boldsymbol{\Sigma}(\mathbf{h}^{\ell-1}, \boldsymbol{\theta}))$$

with mean and covariance computed from the state of the hidden units at the previous layer.

- Alternatively, we can express this in term of **auxiliary variable**:

$$\boldsymbol{\epsilon}^\ell \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

$$\mathbf{h}^\ell (\boldsymbol{\epsilon}^\ell, \mathbf{h}^{\ell-1}, \boldsymbol{\theta}) = \boldsymbol{\Sigma}(\mathbf{h}^{\ell-1}, \boldsymbol{\theta})^{1/2} \boldsymbol{\epsilon}^\ell + \boldsymbol{\mu}(\mathbf{h}^{\ell-1}, \boldsymbol{\theta})$$

Reparameterization Trick

- Assume that the recognition distribution is Gaussian:

$$q(\mathbf{h}^\ell | \mathbf{h}^{\ell-1}, \boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{\mu}(\mathbf{h}^{\ell-1}, \boldsymbol{\theta}), \boldsymbol{\Sigma}(\mathbf{h}^{\ell-1}, \boldsymbol{\theta}))$$

- Or

$$\boldsymbol{\epsilon}^\ell \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

$$\mathbf{h}^\ell (\boldsymbol{\epsilon}^\ell, \mathbf{h}^{\ell-1}, \boldsymbol{\theta}) = \boldsymbol{\Sigma}(\mathbf{h}^{\ell-1}, \boldsymbol{\theta})^{1/2} \boldsymbol{\epsilon}^\ell + \boldsymbol{\mu}(\mathbf{h}^{\ell-1}, \boldsymbol{\theta})$$

- The recognition distribution $q(\mathbf{h}^\ell | \mathbf{h}^{\ell-1}, \boldsymbol{\theta})$ can be expressed in terms of a deterministic mapping:

$$\underbrace{\mathbf{h}(\boldsymbol{\epsilon}, \mathbf{x}, \boldsymbol{\theta})}_{\text{Deterministic Encoder}}, \quad \text{with} \quad \boldsymbol{\epsilon} = \underbrace{(\boldsymbol{\epsilon}^1, \dots, \boldsymbol{\epsilon}^L)}_{\text{Distribution of } \boldsymbol{\epsilon} \text{ does not depend on } \boldsymbol{\theta}}$$

Deterministic
Encoder

Distribution of $\boldsymbol{\epsilon}$
does not depend on $\boldsymbol{\theta}$

Computing the Gradients

- The gradient w.r.t the parameters: both recognition and generative:

$$\nabla_{\theta} \mathbb{E}_{\mathbf{h} \sim q(\mathbf{h} | \mathbf{x}, \theta)} \left[\log \frac{p(\mathbf{x}, \mathbf{h} | \theta)}{q(\mathbf{h} | \mathbf{x}, \theta)} \right]$$

$$= \nabla_{\theta} \mathbb{E}_{\epsilon^1, \dots, \epsilon^L \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[\log \frac{p(\mathbf{x}, \mathbf{h}(\epsilon, \mathbf{x}, \theta) | \theta)}{q(\mathbf{h}(\epsilon, \mathbf{x}, \theta) | \mathbf{x}, \theta)} \right]$$

$$= \mathbb{E}_{\epsilon^1, \dots, \epsilon^L \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[\nabla_{\theta} \log \frac{p(\mathbf{x}, \mathbf{h}(\epsilon, \mathbf{x}, \theta) | \theta)}{q(\mathbf{h}(\epsilon, \mathbf{x}, \theta) | \mathbf{x}, \theta)} \right]$$

Gradients can be computed by backprop

The mapping \mathbf{h} is a deterministic neural net for fixed ϵ .

Computing the Gradients

- The gradient w.r.t the parameters: recognition and generative:

$$\nabla_{\theta} \mathbb{E}_{\mathbf{h} \sim q(\mathbf{h}|\mathbf{x}, \theta)} \left[\log \frac{p(\mathbf{x}, \mathbf{h}|\theta)}{q(\mathbf{h}|\mathbf{x}, \theta)} \right] = \mathbb{E}_{\epsilon^1, \dots, \epsilon^L \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[\nabla_{\theta} \log \frac{p(\mathbf{x}, \mathbf{h}(\epsilon, \mathbf{x}, \theta)|\theta)}{q(\mathbf{h}(\epsilon, \mathbf{x}, \theta)|\mathbf{x}, \theta)} \right]$$

- Approximate expectation by generating k samples from ϵ :

$$\frac{1}{k} \sum_{i=1}^k \nabla_{\theta} \log w(\mathbf{x}, \mathbf{h}(\epsilon_i, \mathbf{x}, \theta), \theta)$$

where we defined unnormalized importance weights:

$$w(\mathbf{x}, \mathbf{h}, \theta) = p(\mathbf{x}, \mathbf{h}|\theta) / q(\mathbf{h}|\mathbf{x}, \theta)$$

- **VAE update:** Low variance as it uses the log-likelihood gradients with respect to the latent variables.

VAE: Assumptions

- Remember the variational bound:

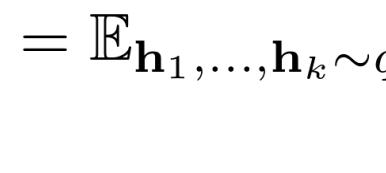
$$\mathcal{L}(\mathbf{x}) = \log p(\mathbf{x}) - D_{KL}(q(\mathbf{h}|\mathbf{x}))||p(\mathbf{h}|\mathbf{x}))$$

- The variational assumptions **must be approximately satisfied**.
- The posterior distribution must be approximately factorial (common practice) and predictable with a feed-forward net.
- We show that we can relax these assumptions using a tighter lower bound on marginal log-likelihood.

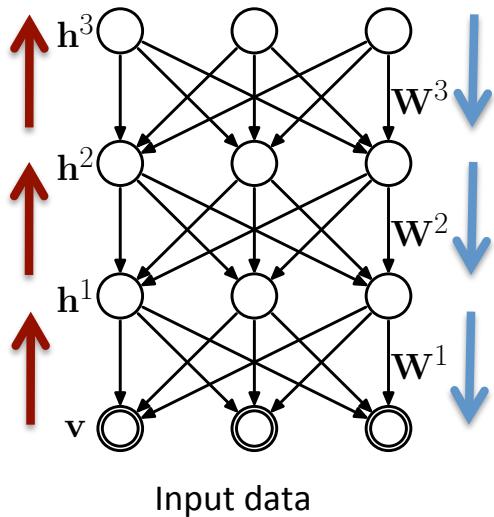
Importance Weighted Autoencoders

- Consider the following k-sample importance weighting of the log-likelihood:

$$\mathcal{L}_k(\mathbf{x}) = \mathbb{E}_{\mathbf{h}_1, \dots, \mathbf{h}_k \sim q(\mathbf{h}|\mathbf{x})} \left[\log \frac{1}{k} \sum_{i=1}^k \frac{p(\mathbf{x}, \mathbf{h}_i)}{q(\mathbf{h}_i|\mathbf{x})} \right]$$

$$= \mathbb{E}_{\mathbf{h}_1, \dots, \mathbf{h}_k \sim q(\mathbf{h}|\mathbf{x})} \left[\log \frac{1}{k} \sum_{i=1}^k w_i \right]$$


unnormalized
importance weights



where $\mathbf{h}_1, \dots, \mathbf{h}_k$ are sampled from the recognition network.

Importance Weighted Autoencoders

- Consider the following k -sample importance weighting of the log-likelihood:

$$\mathcal{L}_k(\mathbf{x}) = \mathbb{E}_{\mathbf{h}_1, \dots, \mathbf{h}_k \sim q(\mathbf{h}|\mathbf{x})} \left[\log \frac{1}{k} \sum_{i=1}^k \frac{p(\mathbf{x}, \mathbf{h}_i)}{q(\mathbf{h}_i|\mathbf{x})} \right]$$

- This is a lower bound on the marginal log-likelihood:

$$\mathcal{L}_k(\mathbf{x}) = \mathbb{E} \left[\log \frac{1}{k} \sum_{i=1}^k w_i \right] \leq \log \mathbb{E} \left[\frac{1}{k} \sum_{i=1}^k w_i \right] = \log p(\mathbf{x})$$

- Special Case of $k=1$:** Same as standard VAE objective.
- Using more samples \rightarrow Improves the tightness of the bound.

Tighter Lower Bound

- Using more samples can only improve the tightness of the bound.
- For all k , the lower bounds satisfy:

$$\log p(\mathbf{x}) \geq \mathcal{L}_{k+1}(\mathbf{x}) \geq \mathcal{L}_k(\mathbf{x})$$

- Moreover if $p(\mathbf{h}, \mathbf{x})/q(\mathbf{h}|\mathbf{x})$ is bounded, then:

$$\mathcal{L}_k(\mathbf{x}) \rightarrow \log p(\mathbf{x}), \quad \text{as } k \rightarrow \infty$$

Computing the Gradients

- We can use the unbiased estimate of the gradient using reparameterization trick:

$$\begin{aligned}\nabla_{\boldsymbol{\theta}} \mathcal{L}_k(\mathbf{x}) &= \nabla_{\boldsymbol{\theta}} \mathbb{E}_{\mathbf{h}_1, \dots, \mathbf{h}_k \sim q(\mathbf{h}|\mathbf{x})} \left[\log \frac{1}{k} \sum_{i=1}^k w_i \right] \\ &= \mathbb{E}_{\boldsymbol{\epsilon}_1, \dots, \boldsymbol{\epsilon}_k} \left[\nabla_{\boldsymbol{\theta}} \log \frac{1}{k} \sum_{i=1}^k w(\mathbf{x}, h(\boldsymbol{\epsilon}_i, \mathbf{x}, \boldsymbol{\theta}), \boldsymbol{\theta}) \right] \\ &= \mathbb{E}_{\boldsymbol{\epsilon}_1, \dots, \boldsymbol{\epsilon}_k} \left[\sum_{i=1}^k \tilde{w}_i \nabla_{\boldsymbol{\theta}} \log w(\mathbf{x}, h(\boldsymbol{\epsilon}_i, \mathbf{x}, \boldsymbol{\theta}), \boldsymbol{\theta}) \right]\end{aligned}$$

where we define normalized importance weights:

$$\tilde{w}_i = w_i / \sum_{i=1}^k w_i, \quad \text{where } w_i = \frac{p(\mathbf{x}, \mathbf{h}_i)}{q(\mathbf{h}_i | \mathbf{x})}$$

IWAEs vs. VAEs

- Draw k -samples from the recognition network $q(\mathbf{h}|\mathbf{x})$
 - or k -sets of auxiliary variables ϵ .
- Obtain the following Monte Carlo estimate of the gradient:

$$\nabla_{\theta} \mathcal{L}_k(\mathbf{x}) \approx \sum_{i=1}^k \tilde{w}_i \boxed{\nabla_{\theta} \log w(\mathbf{x}, \mathbf{h}(\epsilon_i, \mathbf{x}, \theta), \theta)}$$

- Compare this to the VAE's estimate of the gradient:

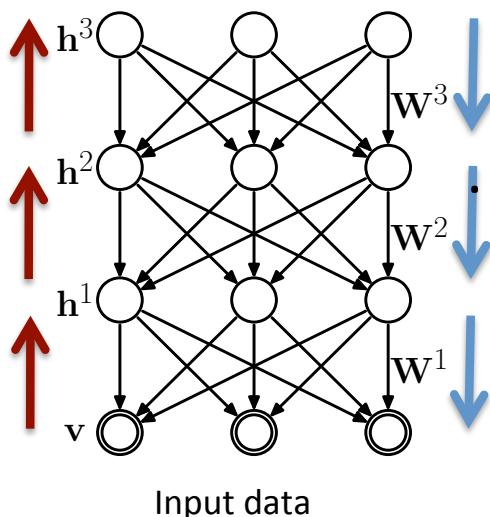
$$\nabla_{\theta} \mathcal{L}(\mathbf{x}) \approx \frac{1}{k} \sum_{i=1}^k \boxed{\nabla_{\theta} \log w(\mathbf{x}, \mathbf{h}(\epsilon_i, \mathbf{x}, \theta), \theta)}$$

IWAE: Intuition

- The gradient of the log weights decomposes:

$$\begin{aligned} \nabla_{\theta} \log w(\mathbf{x}, \mathbf{h}(\epsilon_i, \mathbf{x}, \theta), \theta) \\ = \nabla_{\theta} \log p(\mathbf{x}, \mathbf{h}(\epsilon_i, \mathbf{x}, \theta) | \theta) - \log q(\mathbf{h}(\epsilon_i, \mathbf{x}, \theta) | \mathbf{x}, \theta) \end{aligned}$$

Deterministic decoder Deterministic Encoder



First term:

- **Decoder**: encourages the generative model to assign high probability to each $\mathbf{h}^l | \mathbf{h}^{l+1}$.
- **Encoder**: encourages the recognition net to adjust its latent states \mathbf{h} so that the generative network makes better predictions.

IWAE: Intuition

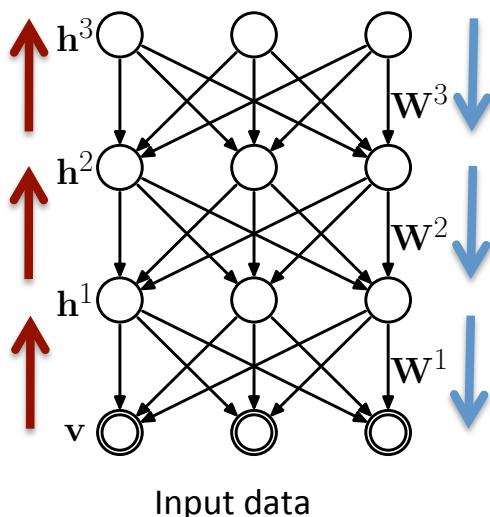
- The gradient of the log weights decomposes:

$$\nabla_{\theta} \log w(\mathbf{x}, \mathbf{h}(\epsilon_i, \mathbf{x}, \theta), \theta)$$

$$= \nabla_{\theta} \log p(\mathbf{x}, \mathbf{h}(\epsilon_i, \mathbf{x}, \theta) | \theta) - \log q(\mathbf{h}(\epsilon_i, \mathbf{x}, \theta) | \mathbf{x}, \theta)$$

Deterministic
decoder

Deterministic
Encoder



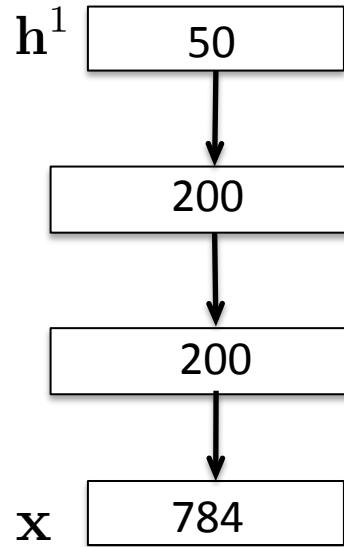
Second term:

- Encoder: encourages the recognition network to have a spread-out distribution over predictions.

Two Architectures

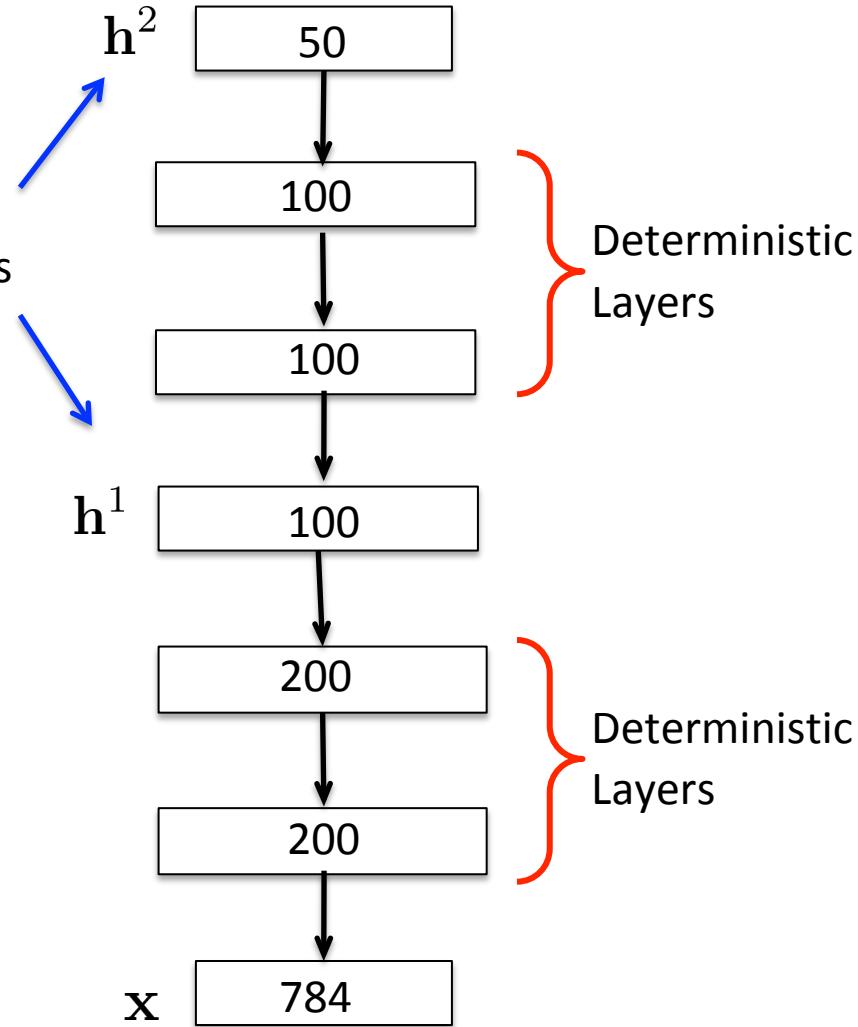
- For the MNIST experiments, we considered two architectures:

1-stochastic layer



Stochastic Layers

2-stochastic layers



Deterministic Layers

MNIST Results

# stoch. layers	k	MNIST			
		VAE		IWAE	
		NLL	active units	NLL	active units
1	1	86.76	19	86.76	19
	5	86.47	20	85.54	22
	50	86.35	20	84.78	25

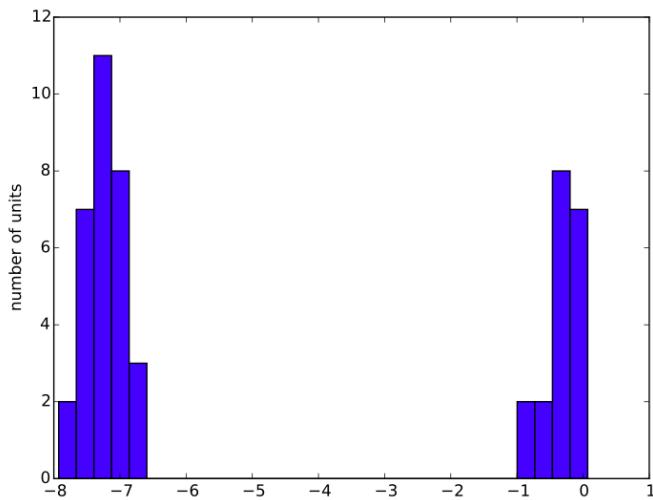
MNIST Results

# stoch. layers	k	MNIST			
		VAE		IWAE	
		NLL	active units	NLL	active units
1	1	86.76	19	86.76	19
	5	86.47	20	85.54	22
	50	86.35	20	84.78	25
2	1	85.33	16+5	85.33	16+5
	5	85.01	17+5	83.89	21+5
	50	84.78	17+5	82.90	26+7

Latent Space Representation

- Both VAEs and IWAEs tend to learn latent representations with effective dimensions far below their capacity.
- Measure the activity of the latent dimension u using the statistics:

$$A_u = \text{Cov}_{\mathbf{x}} (\mathbb{E}_{u \sim q(u|\mathbf{x})} [u])$$



- The distribution of $\log A_u$ consist of two separated modes.
- Inactive dimensions \rightarrow units dying out.
- Optimization issue?

IWAEs vs. VAEs

First stage

trained as	NLL	active units
VAE	86.76	19
IWAE, $k = 50$	84.78	25

IWAEs vs. VAEs

First stage

trained as	NLL	active units
VAE	86.76	19
IWAE, $k = 50$	84.78	25

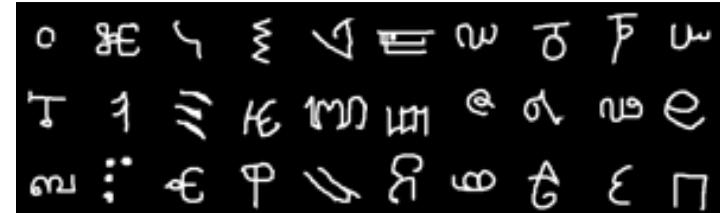
Second stage

trained as	NLL	active units
IWAE, $k = 50$	84.88	22
VAE	86.02	23

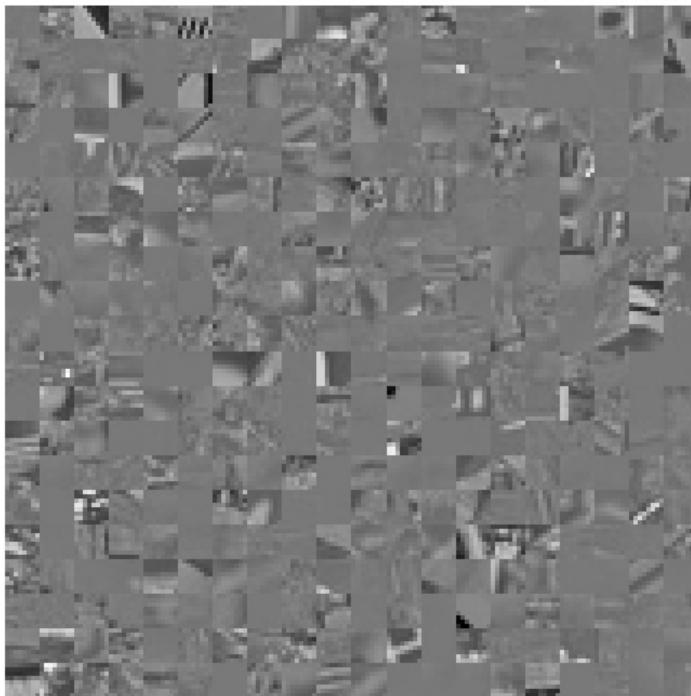
OMNIGLOT Experiments

OMNIGLOT

# stoch. layers	k	VAE		IWAE	
		NLL	active units	NLL	active units
1	1	108.11	28	108.11	28
	5	107.62	28	106.12	34
	50	107.80	28	104.67	41
2	1	107.58	28+4	107.56	30+5
	5	106.31	30+5	104.79	38+6
	50	106.30	30+5	103.38	44+7

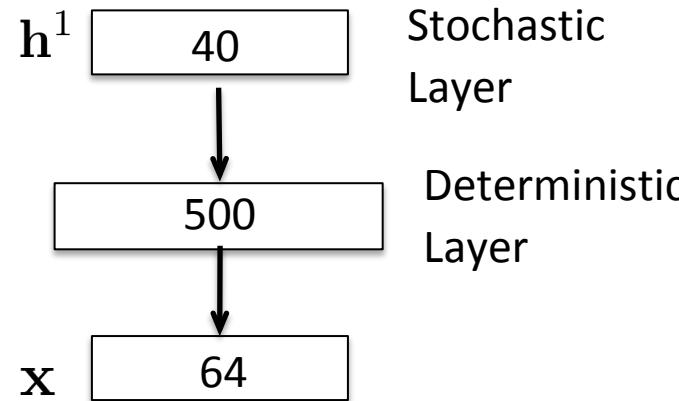


Modeling Image Patches BSDS Dataset



- Model 8x8 patches.

1-stochastic layer

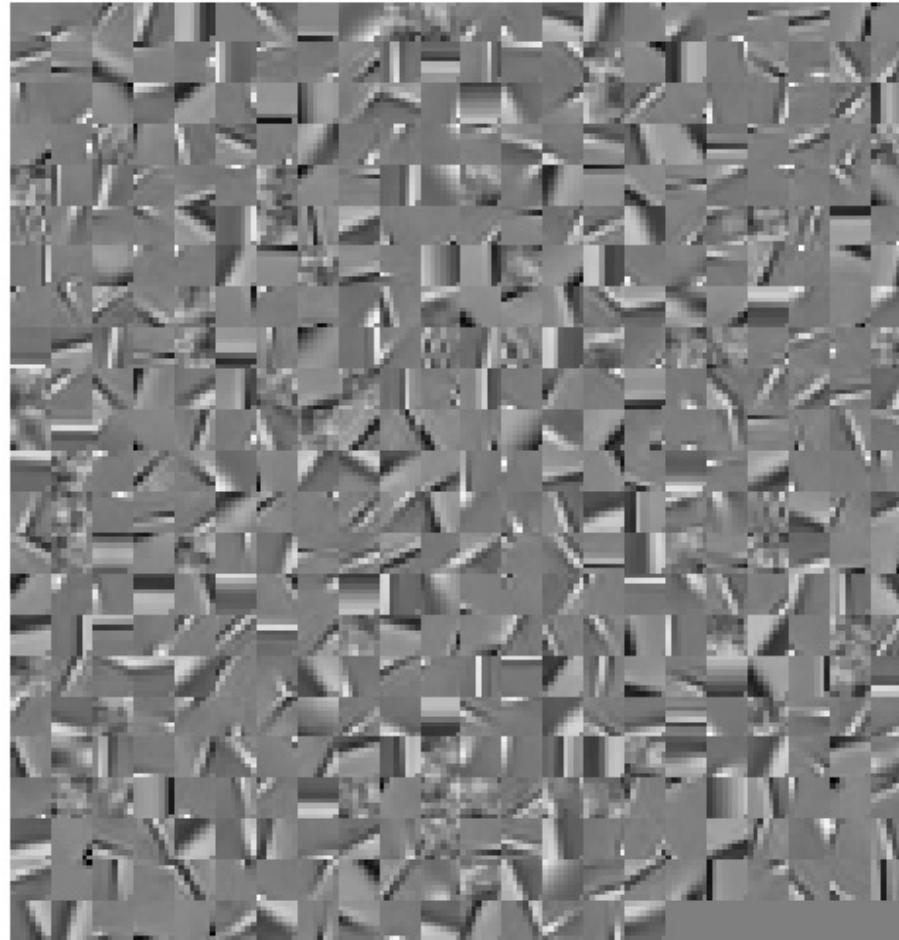


- Report test log-likelihoods on 10^6 8x8 patches, extracted from BSDS test dataset.
- Evaluation protocol established by Uria, Murray and Larochelle):
 - add uniform noise between 0 and 1, divide by 256,
 - subtract the mean and discarding the last pixel

Test Log-probabilities

Model	nats	Bits/pixel
RNADE 6 hidden layers (Uria et. al. 2013)	155.2 nats	3.55 bit/pixel
MoG, 200 full-covariance mixture (Zoran and Weiss, 2012)	152.8 nats	3.50 bit/pixel
IWAE (k=500)	151.4 nats	3.47 bit/pixel
VAE (k=500)	148.0 nats	3.39 bit/pixel
GSM (Gaussian Scale Mixture)	142 nats	3.25 bit/pixel
ICA	111 nats	2.54 bit/pixel
PCA	96 nats	2.21 bit/pixel

Learned Filters

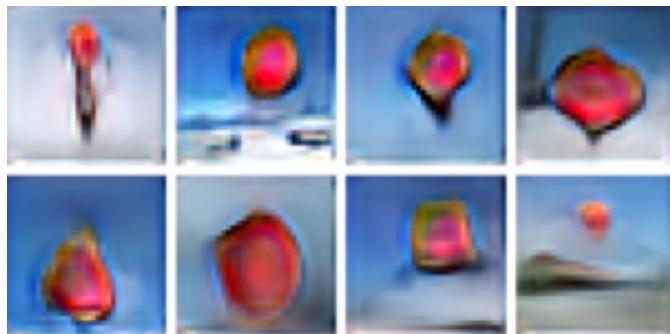


Motivating Example

(Mansimov, Parisotto, Ba, Salakhutdinov, 2015)

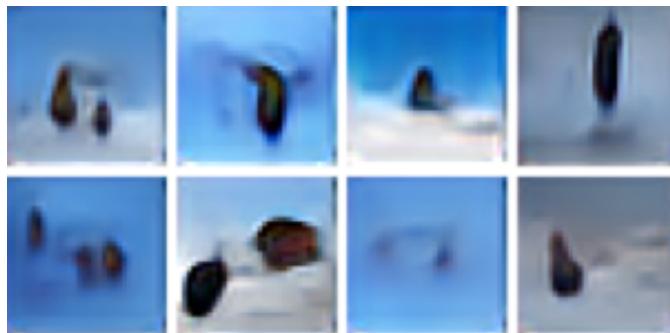
- Can we generate images from natural language descriptions?

A stop sign is flying in blue skies

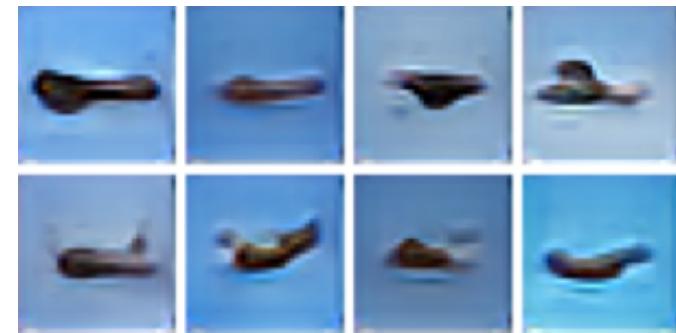


A pale yellow school bus is flying in blue skies

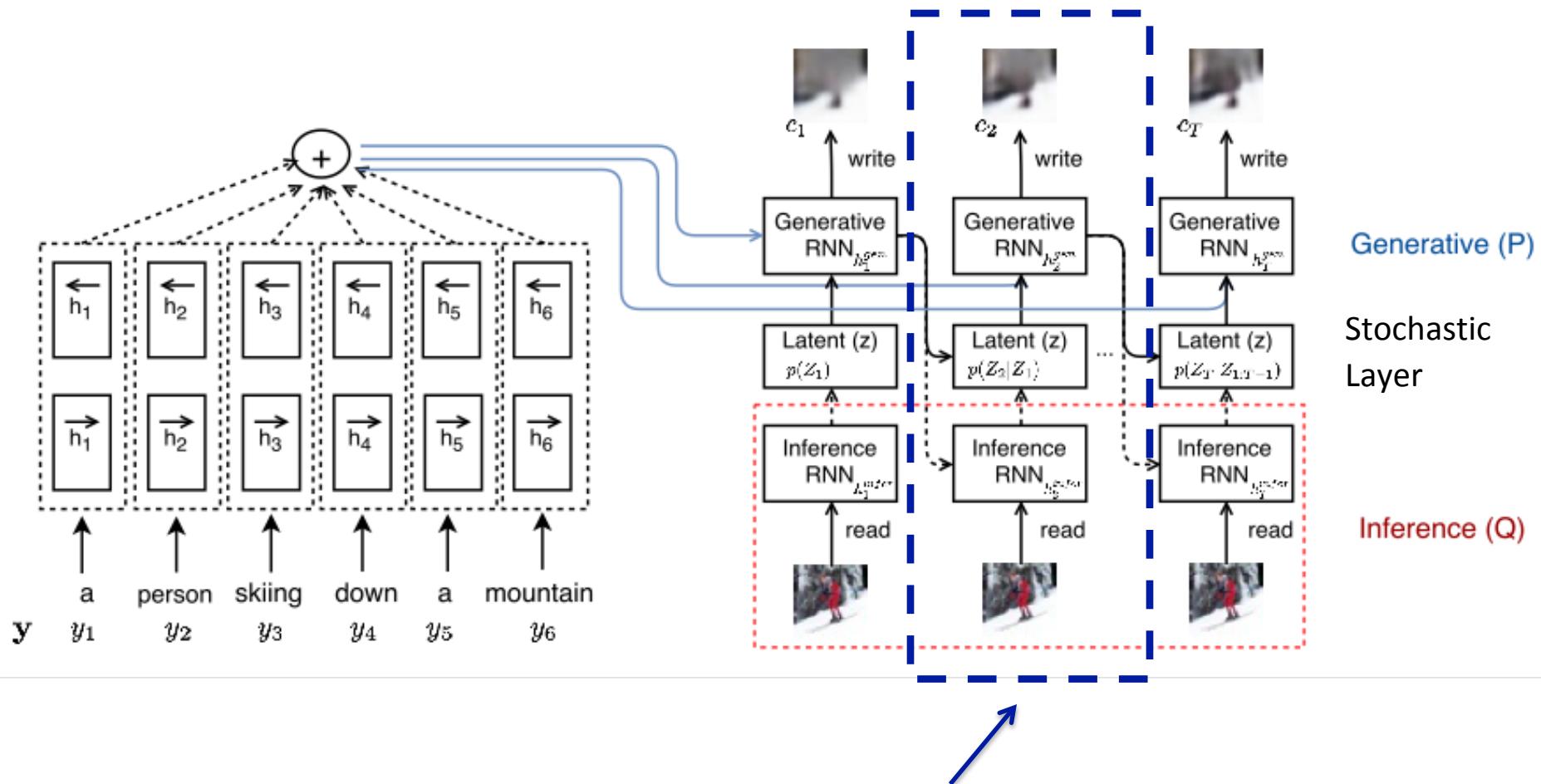
A herd of elephants is flying in blue skies



A large commercial airplane is flying in blue skies



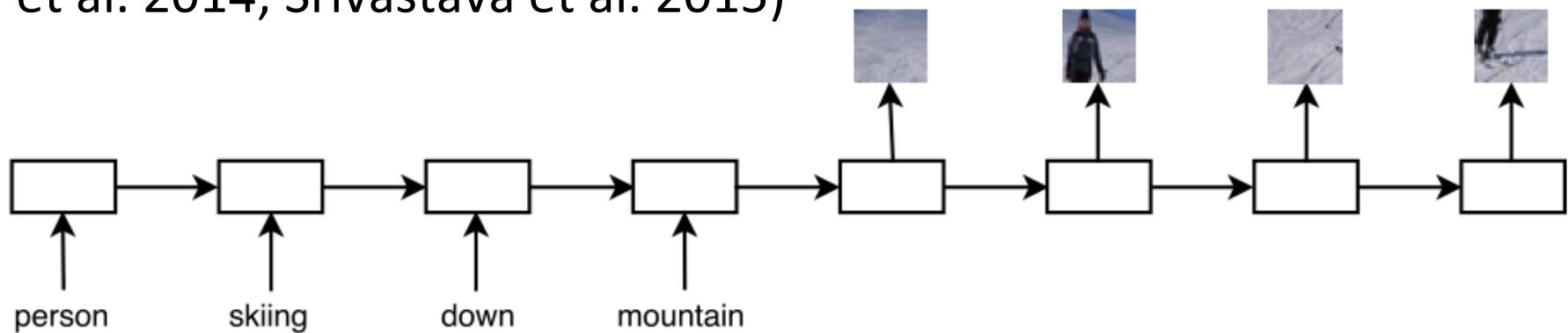
Overall Model



Variational Autoencoder

Sequence-to-Sequence

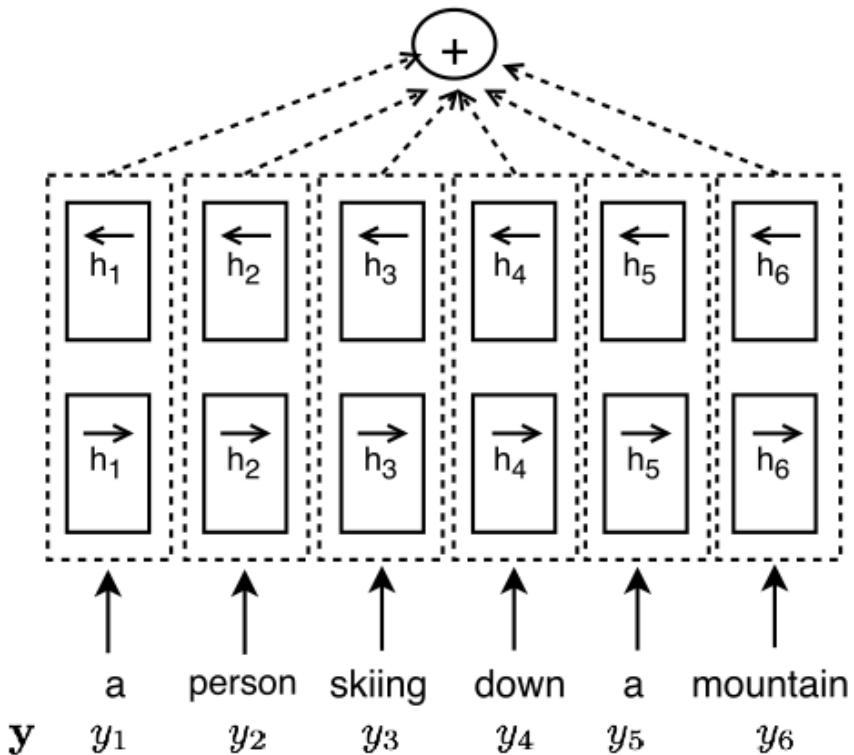
- Sequence-to-sequence framework. (Sutskever et al. 2014; Cho et al. 2014; Srivastava et al. 2015)



- Caption (**y**) is represented as a sequence of consecutive words.
- Image (**x**) is represented as a sequence of patches drawn on canvas.
- Attention mechanism over:
 - **Words**: Which words to focus on when generating a patch
 - **Image Location** Where to place the generated patches on the canvas

Representing Captions

Bidirectional RNN



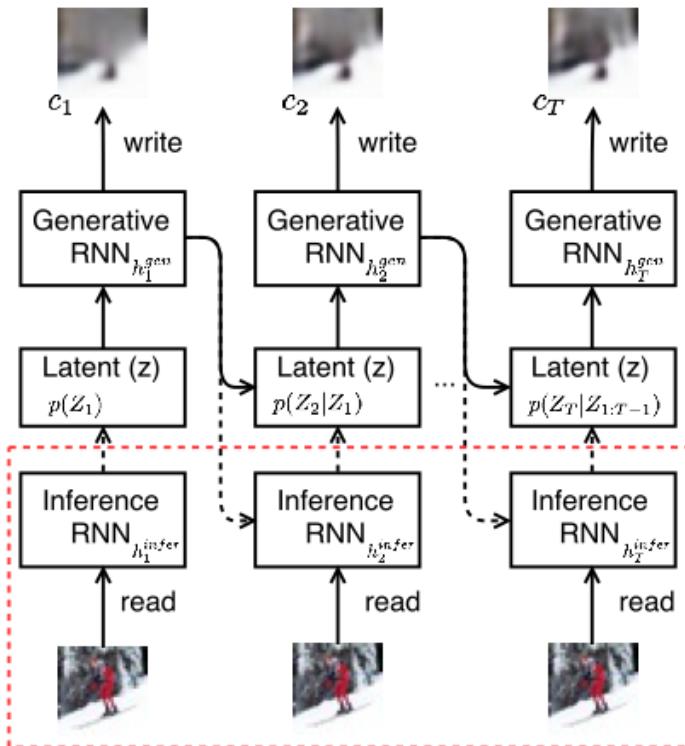
- Forward RNN reads the sentence \mathbf{y} from left to right:
 $[\overrightarrow{\mathbf{h}}_1^{lang}, \overrightarrow{\mathbf{h}}_2^{lang}, \dots, \overrightarrow{\mathbf{h}}_N^{lang}]$
- Backward RNN reads the sentence \mathbf{y} from right to left:
 $[\overleftarrow{\mathbf{h}}_1^{lang}, \overleftarrow{\mathbf{h}}_2^{lang}, \dots, \overleftarrow{\mathbf{h}}_N^{lang}]$

- The hidden states are then concatenated:

$$\mathbf{h}^{lang} = [\mathbf{h}_1^{lang}, \mathbf{h}_2^{lang}, \dots, \mathbf{h}_N^{lang}], \quad \text{with } \mathbf{h}_i^{lang} [\overrightarrow{\mathbf{h}}_i^{lang}, \overleftarrow{\mathbf{h}}_i^{lang}]$$

DRAW Model

(Gregor et. al. 2015)



write operator:

- At each step the model generates a $p \times p$ patch $K(\mathbf{h}_t^{gen}) \in R^{p \times p}$
- It gets transformed into $w \times h$ canvas using two arrays of Gaussian filter banks

$$F_x(\mathbf{h}_t^{gen}) \in R^{h \times p}$$

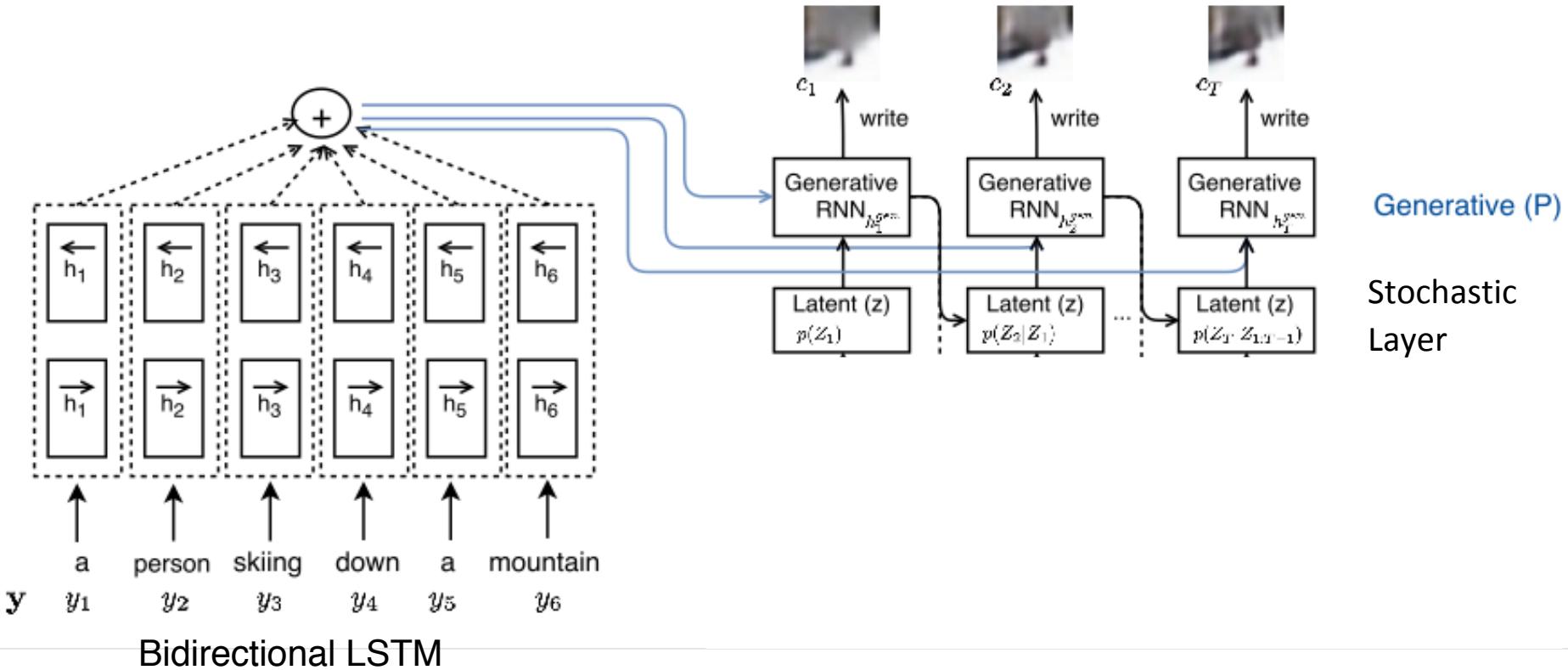
$$F_y(\mathbf{h}_t^{gen}) \in R^{w \times p}$$

whose filter locations and scales are computed from \mathbf{h}_t^{gen} :

$$write(\mathbf{h}_t^{gen}) = F_x(\mathbf{h}_t^{gen}) \times K(\mathbf{h}_t^{gen}) \times F_y(\mathbf{h}_t^{gen})$$

Overall Model

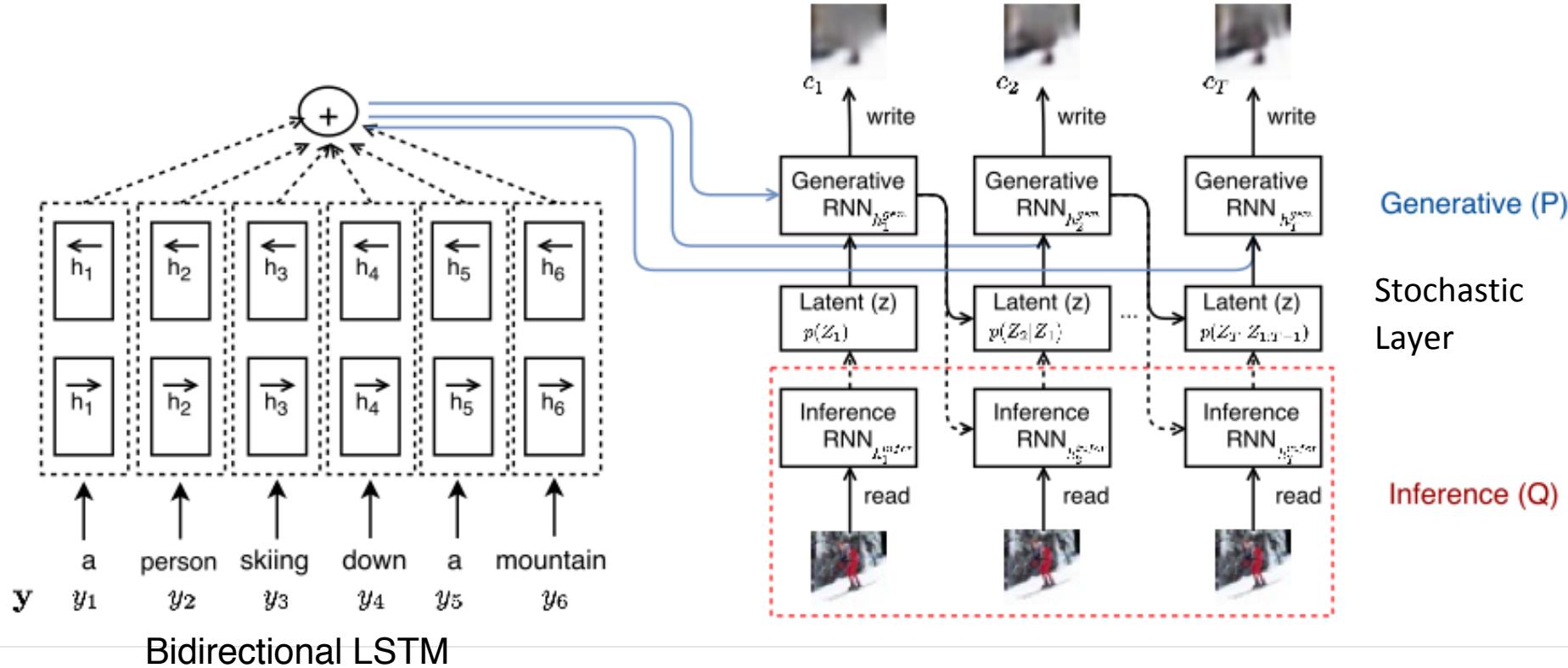
(Mansimov, Parisotto, Ba, Salakhutdinov, 2015)



- **Generative Model:** Stochastic Recurrent Network, chained sequence of Variational Autoencoders, with a single stochastic layer.

Overall Model

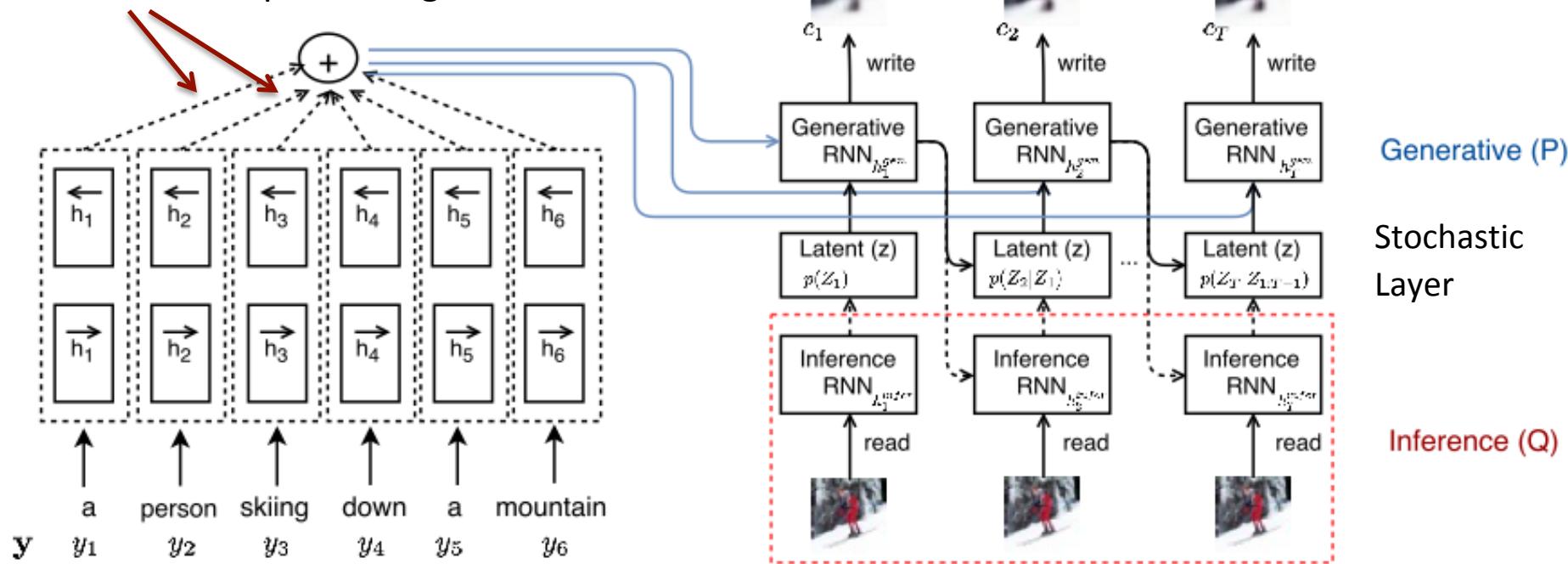
(Mansimov, Parisotto, Ba, Salakhutdinov, 2015)



- **Generative Model:** Stochastic Recurrent Network, chained sequence of Variational Autoencoders, with a single stochastic layer.
- **Recognition Model:** Deterministic Recurrent Network.

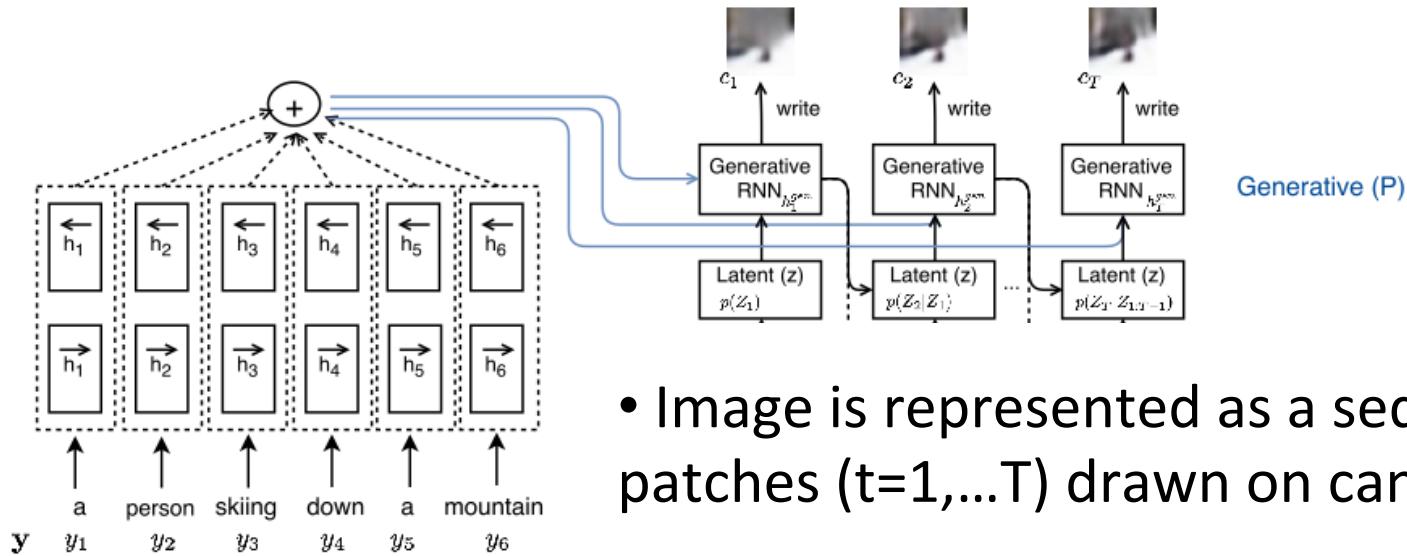
Overall Model

Sentence representation:
dynamically weighted average of the
hidden states representing words.



- **Attention (alignment):** Focus on different words at different time steps when generating patches and placing them on the canvas.

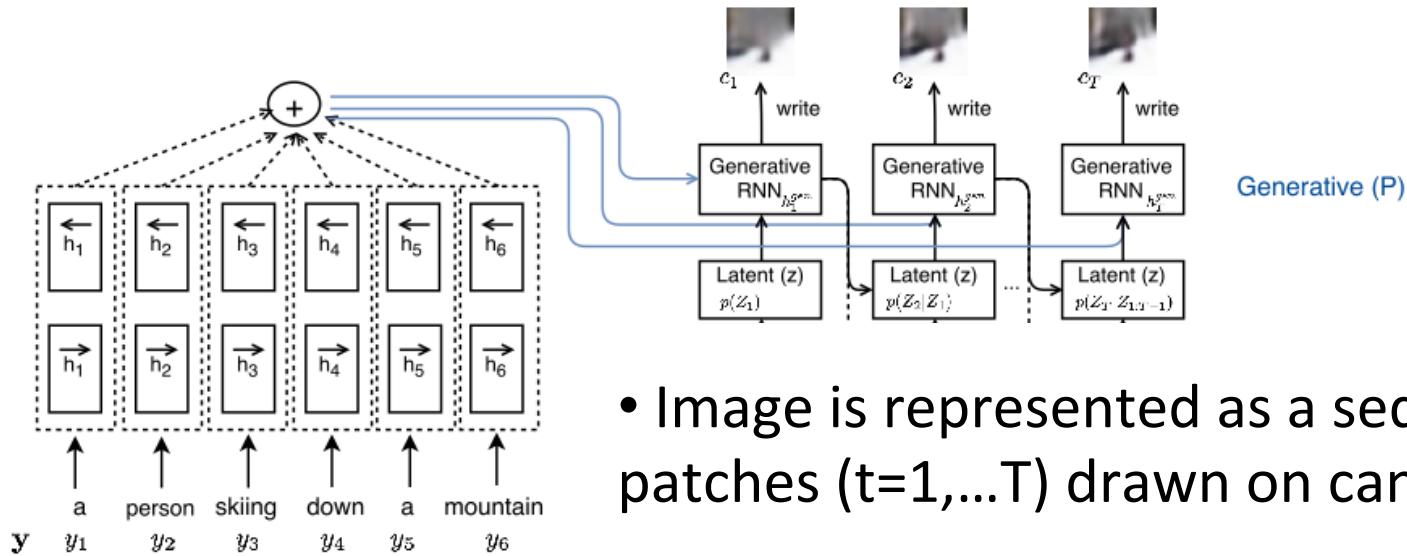
Generating Images



- Image is represented as a sequence of patches ($t=1, \dots, T$) drawn on canvas:

$$\mathbf{z}_t \sim P(\mathbf{Z}_t | \mathbf{Z}_{1:t-1}) = \mathcal{N}(\mu(\mathbf{h}_{t-1}^{gen}), \sigma(\mathbf{h}_{t-1}^{gen})), \quad P(\mathbf{Z}_1) = \mathcal{N}(\mathbf{0}, \mathbf{I})$$

Generating Images

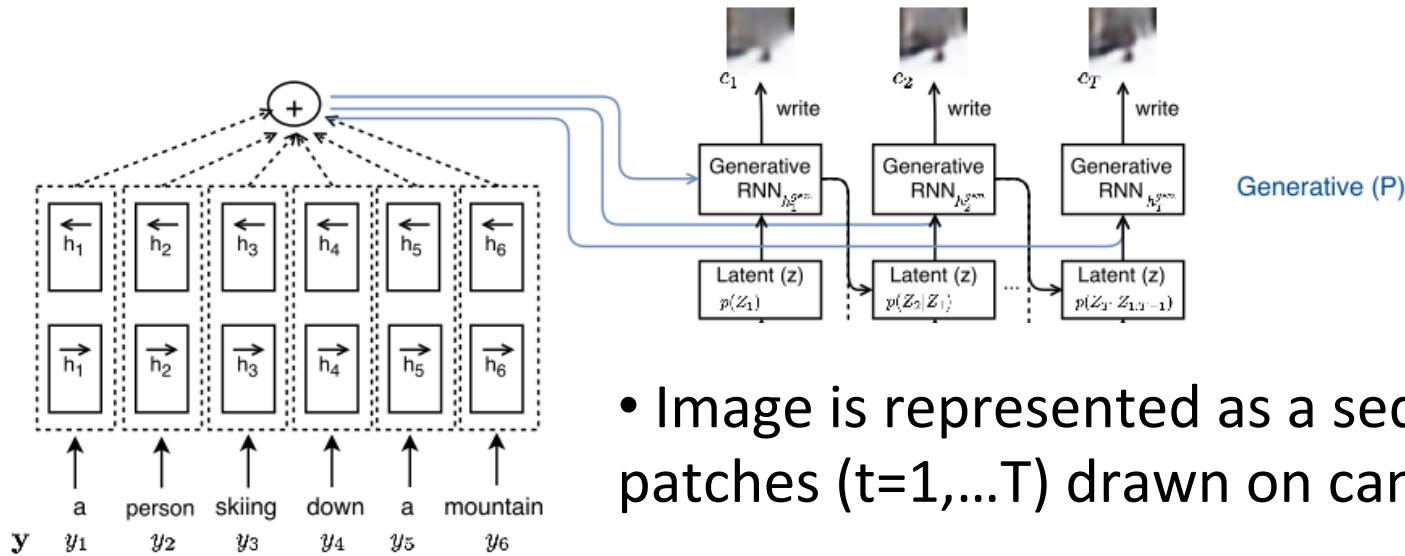


- Image is represented as a sequence of patches ($t=1, \dots, T$) drawn on canvas:

$$\mathbf{z}_t \sim P(\mathbf{Z}_t | \mathbf{Z}_{1:t-1}) = \mathcal{N}(\mu(\mathbf{h}_{t-1}^{gen}), \sigma(\mathbf{h}_{t-1}^{gen})), \quad P(\mathbf{Z}_1) = \mathcal{N}(\mathbf{0}, \mathbf{I})$$

$$s_t = align(\mathbf{h}_{t-1}^{gen}, \mathbf{h}^{lang}) \quad \mathbf{h}_t^{gen} = LSTM^{gen}(\mathbf{h}_{t-1}^{gen}, [\mathbf{z}_t, s_t])$$

Generating Images



- Image is represented as a sequence of patches ($t=1, \dots, T$) drawn on canvas:

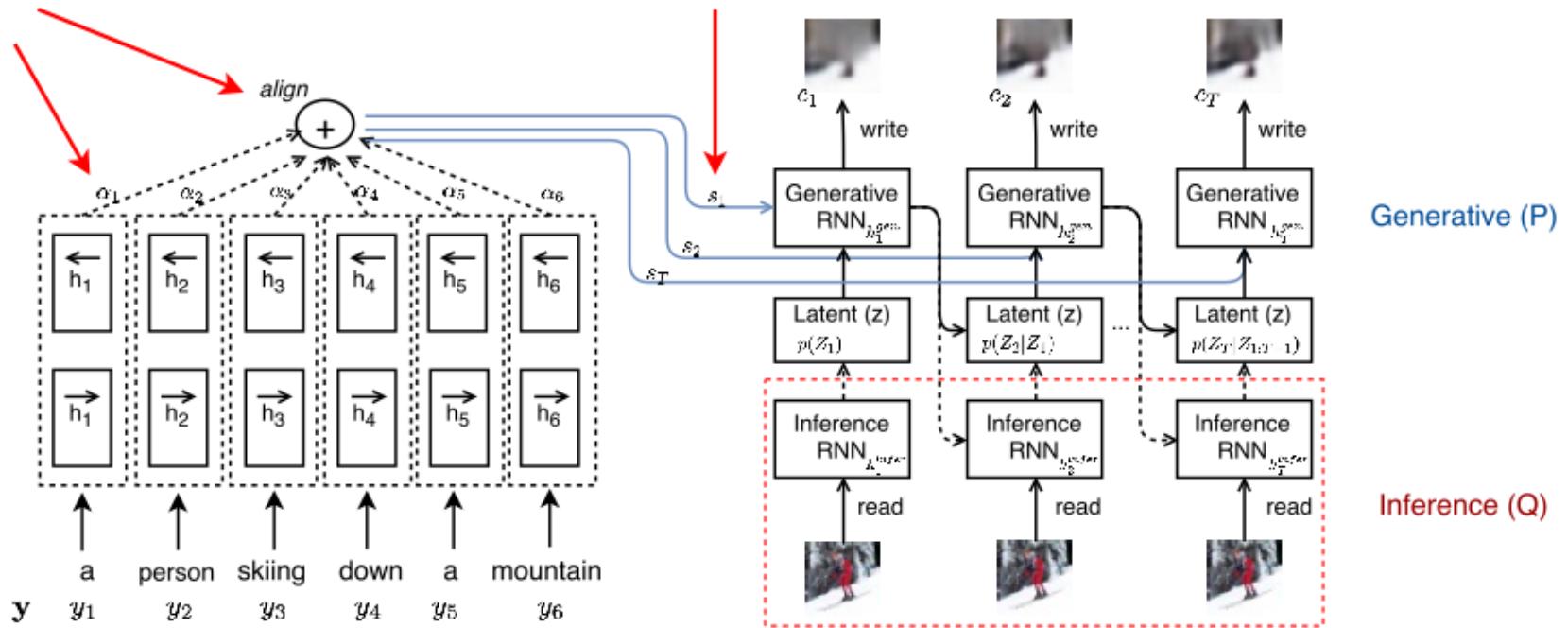
$$\mathbf{z}_t \sim P(\mathbf{Z}_t | \mathbf{Z}_{1:t-1}) = \mathcal{N}(\mu(\mathbf{h}_{t-1}^{gen}), \sigma(\mathbf{h}_{t-1}^{gen})), \quad P(\mathbf{Z}_1) = \mathcal{N}(\mathbf{0}, \mathbf{I})$$

$$s_t = align(\mathbf{h}_{t-1}^{gen}, \mathbf{h}^{lang}) \quad \mathbf{h}_t^{gen} = LSTM^{gen}(\mathbf{h}_{t-1}^{gen}, [\mathbf{z}_t, s_t])$$

$$\mathbf{c}_t = \mathbf{c}_{t-1} + write(\mathbf{h}_t^{gen}) \quad \mathbf{x} \sim P(\mathbf{x} | \mathbf{y}, \mathbf{Z}_{1:T}) = \prod_i \text{Bern}(\boldsymbol{\sigma}(c_{T,i}))$$

- In practice, we use the conditional mean: $\mathbf{x} = \boldsymbol{\sigma}(\mathbf{c}_T)$.

Alignment Model



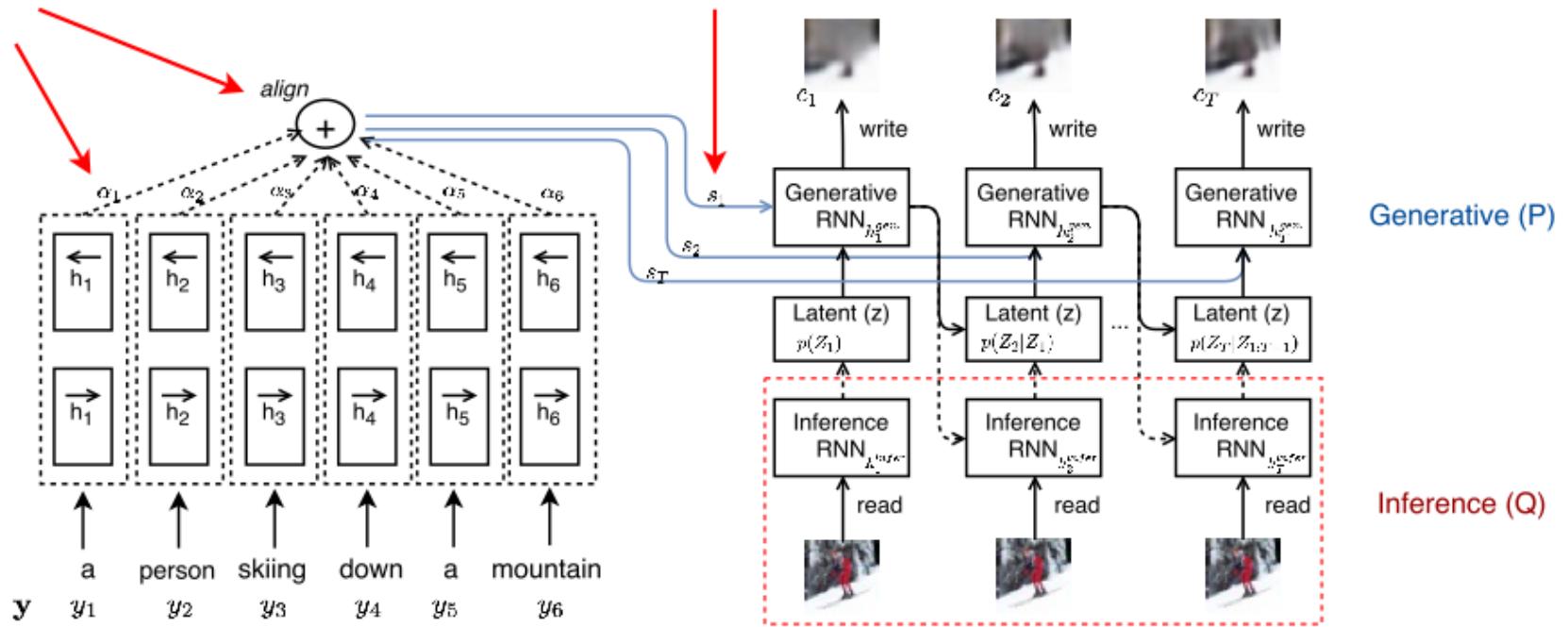
- **Dynamic sentence representation** at time t : weighted average of the bi-directional hidden states:

$$s_t = align(\mathbf{h}_{t-1}^{gen}, \mathbf{h}^{lang}) = \alpha_1^t \mathbf{h}_1^{lang} + \alpha_2^t \mathbf{h}_2^{lang} + \dots + \alpha_N^t \mathbf{h}_N^{lang}$$

where the alignment probabilities are computed as:

$$e_k^t = \mathbf{v}^\top \tanh (U \mathbf{h}_k^{lang} + W \mathbf{h}_{t-1}^{gen} + b), \quad \alpha_k^t = \frac{\exp(e_k^t)}{\sum_{i=1}^N \exp(e_i^t)}$$

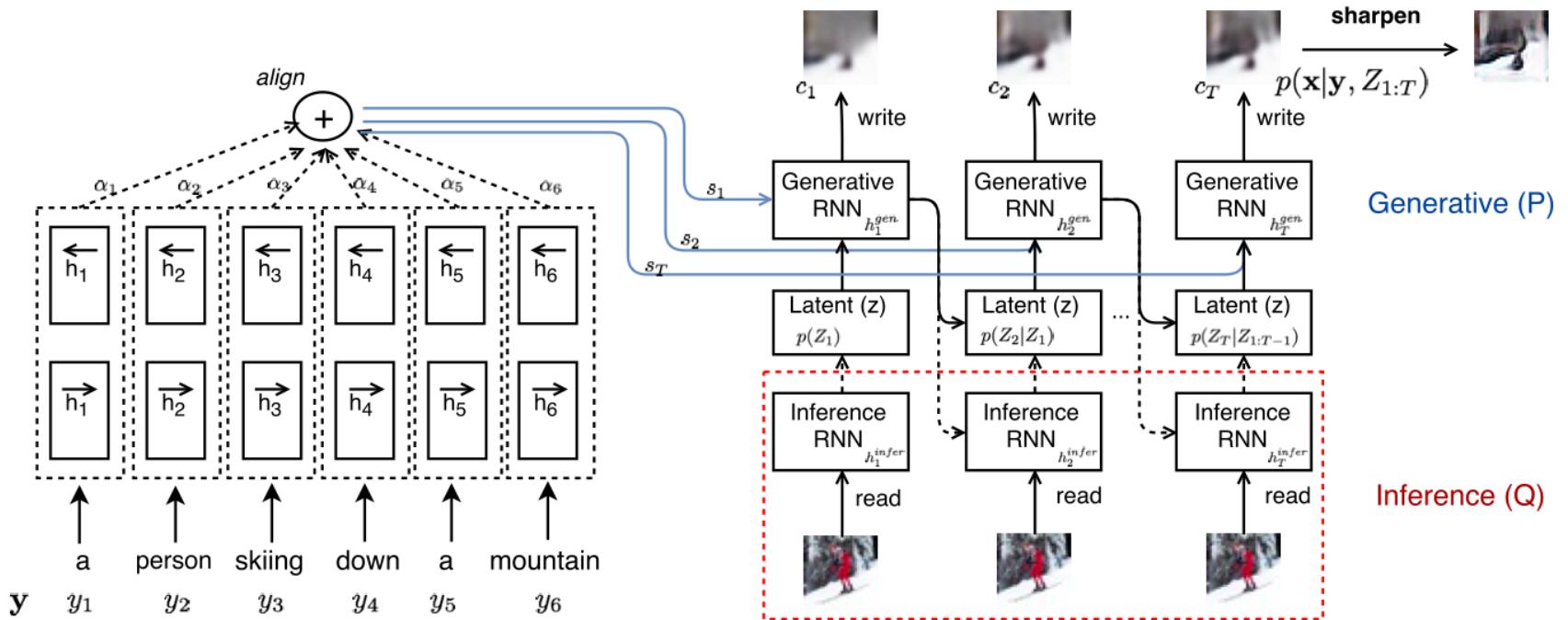
Learning



- Maximize the variational lower bound on the marginal log-likelihood of the correct image x given the caption y :

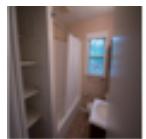
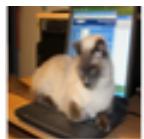
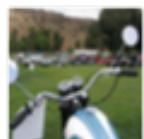
$$\begin{aligned}
 \mathcal{L} &= \sum_Z Q(Z|x, y) \log P(x|Z, y) - D_{KL}(Q(Z|x, y) || P(Z|y)) \\
 &\leq \log P(x|y)
 \end{aligned}$$

Sharpening



- **Additional post processing step:** use an adversarial network trained on residuals of a Laplacian pyramid to sharpen the generated images (Denton et. al. 2015).

MS COCO Dataset



- Contains 83K images.
- Each image contains 5 captions.
- Standard benchmark dataset for many of the recent image captioning systems.

Flipping Colors

A **yellow school bus** parked in the parking lot

A **red school bus** parked in the parking lot

A **green school bus** parked in the parking lot

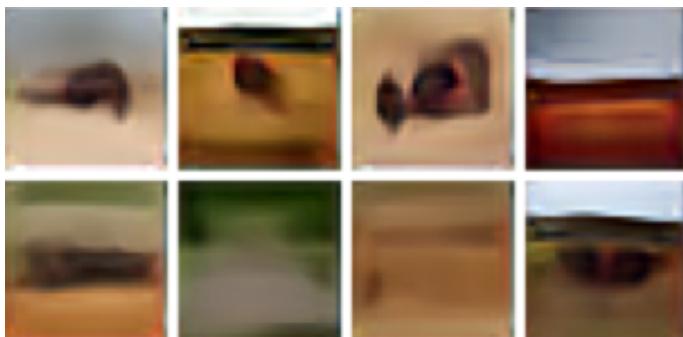
A **blue school bus** parked in the parking lot

Flipping Backgrounds

A very large commercial plane flying **in clear skies**.

A very large commercial plane flying **in rainy skies**.

A herd of elephants walking across a **dry grass field**.



A herd of elephants walking across a **green grass field**.

Flipping Objects

The decadent chocolate desert is on the table.

A bowl of bananas is on the table..

A vintage photo of a cat.

A vintage photo of a dog.

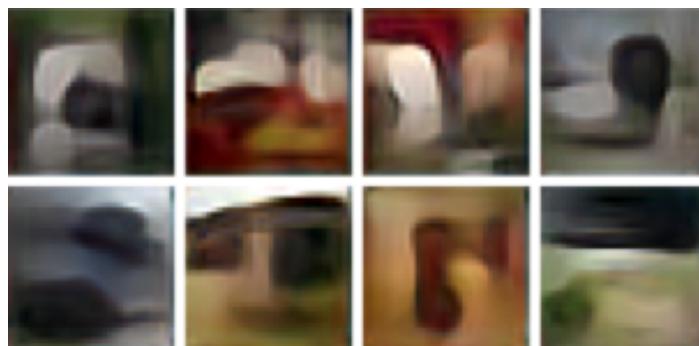
Qualitative Comparison

A group of people walk on a beach with surf boards

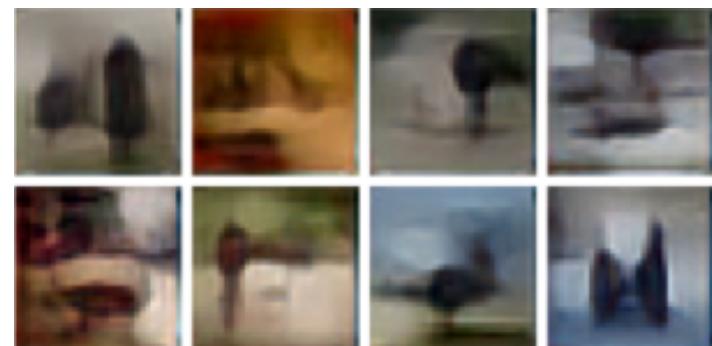
Our Model

LAPGAN (Denton et. al. 2015)

Conv-Deconv VAE



Fully Connected VAE



Variational Lower-Bound

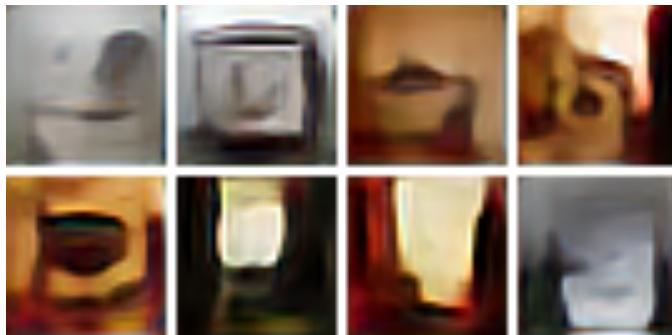
- We can estimate the variational lower-bound on the average test log-probabilities:

Model	Training	Test
Our Model	-1792,15	-1791,53
Skipthought-Draw	-1794,29	-1791,37
noAlignDraw	-1792,14	-1791,15

- At least we can see that we do not overfit to the training data, unlike many other approaches.

Novel Scene Compositions

A toilet seat sits open in the bathroom



A toilet seat sits open in the grass field

Ask Google?

