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Neural Networks Online Course 

•  Hugo’s class covers 
many other topics: 
convolutional networks, 
neural language model, 
Boltzmann machines, 
autoencoders, sparse 
coding, etc. 

•  We will use his 
material for some of the 
other lectures.  

•  Disclaimer: Much of the material and slides for this lecture were 
borrowed from Hugo Larochelle’s class on Neural Networks: 
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Unsupervised	Learning	

Non-probabilistic	Models	
Ø  Sparse	Coding	
Ø  Autoencoders	
Ø  Others	(e.g.	k-means)	

	

Explicit	Density	p(x)	

Probabilistic	(Generative)	
Models	

Tractable	Models	
Ø  Fully	observed	

Belief	Nets	
Ø  NADE	
Ø  PixelRNN	

Non-Tractable	Models	
Ø  Boltzmann	Machines	
Ø  Variational	

Autoencoders	
Ø  Helmholtz	Machines	
Ø  Many	others…	

Ø  Generative	Adversarial	
Networks	

Ø  Moment	Matching	
Networks	

Implicit	Density	



Unsupervised Learning 
•  Unsupervised learning: we only use the inputs         for learning 

Restricted Boltzmann Machines

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 10, 2012

Abstract

Math for my slides “Restricted Boltzmann Machines”.

• x(t) � log p(x(t))
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Ø  automatically extract meaningful features for your data 

Ø  leverage the availability of unlabeled data 

Ø  add a data-dependent regularizer to training (                   ) 

Restricted Boltzmann Machines
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Abstract

Math for my slides “Restricted Boltzmann Machines”.

• x(t) � log p(x(t))
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•  We consider 3 models for unsupervised learning that will form 
the basic building blocks for deeper models: 

Ø  Restricted Boltzmann Machines 

Ø  Autoencoders  

Ø  Sparse coding models  
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Sparse Coding 
•   Sparse coding (Olshausen & Field, 1996). Originally developed to 
explain early visual processing in the brain (edge detection).  

•  For each input         find a latent representation       such that: 

Sparse coding
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Math for my slides “Sparse coding”.
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Ø  it is sparse: the vector        has many zeros 

Ø  we can good reconstruct the original input 

Sparse coding

Hugo Larochelle
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Sparse Coding 
•  For each        find a latent representation       such that: 
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•  In other words: 

Sparse coding
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Reconstruction	error	 Sparsity	penalty	

Reconstruction:	
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Sparsity	vs.	
reconstruction	control	

Ø  it is sparse: the vector        has many zeros 

Ø  we can good reconstruct the original input 
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Département d’informatique
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Sparse Coding 
•  For each        find a latent representation       such that: 
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Ø  we also constrain the columns of D to be of norm 1 

Ø  otherwise, D could grow big while h becomes small to satisfy the 

L1 constraint  

Ø  it is sparse: the vector        has many zeros 

Ø  we can good reconstruct the original input 
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Sparse Coding 
•  For each        find a latent representation       such that: 
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Ø  it is sparse: the vector        has many zeros 

Ø  we can good reconstruct the original input 

Sparse coding

Hugo Larochelle
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Département d’informatique
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Ø  D is equivalent to the autoencoder output weight matrix 

Ø  However,              is now a complicated function of  

Ø  Encoder is the minimization problem: 
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D	

Interpreting	Sparse	Coding	

x’	

Explicit	
Linear	
Decoding	
	

h	

f(x)	
Implicit	
nonlinear	
encoding	

x	

h	

• 	Sparse,	over-complete	representation	h.	
• 	Encoding	h	=	f(x)	is	implicit	and	nonlinear	function	of	x.		
• 	Reconstruction	(or	decoding)	x’	=	Dh	is	linear	and	explicit.		

Sparse	features	

Sparse coding
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Sparse Coding 
•  We can also write: 
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Ø  D is often referred to as Dictionary  

Ø  In certain applications, we know what dictionary matrix to use 

Ø  In many cases, we have to learn it 
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Learned	bases:		“Edges”					Natural	Images	
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	[0,	0,	…	0.8,	…,	0.3,	…,	0.5,	…]	=	coefficients	(feature	representation)		

= 0.8 *                   + 0.3 *                     + 0.5 * 

New	example 

Sparse	Coding	

     x      = 0.8 *       						         +  0.3 *        					
          

+ 0.5 *       	

Slide	Credit:	Honglak	Lee	
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Inference 
•  Given dictionary D , how do we compute            ? 

Sparse coding
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Ø  We need to optimize: 
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Ø  This is Lasso.  

Ø  We could use a gradient descent method: 
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Inference 
•  For a single hidden unit: 
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Ø  issue: L1 norm not differentiable at 0 

Ø  very unlikely for gradient descent to ‘‘land’’ on               (even if it’s 

the solution) 
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•  Solution: if       changes sign because of L1 norm gradient, 
clamp to 0. 
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•  Each hidden unit update would be performed as follows: 

Ø  Else       
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Ø  If                           then 
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ISTA Algorithm  
•  This process corresponds to the ISTA (Iterative Shrinkage and 
Thresholding) Algorithm: 

Ø  Initialize        (for example to 0) 

Ø  While        has not converged    
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•  ISTA updates all hidden units simultaneously  

Ø  this is wasteful if many hidden units have already converged 

•  Idea: update only the ‘‘most promising’’ hidden unit 

Ø  see coordinate descent algorithm in Learning Fast Approximations 

of Sparse Coding (Gregor and Lecun, 2010). 

Ø  this algorithm has the advantage of not requiring a learning rate  
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(x(t) �D h(x(t))) h(x(t))>

•
D·,j (=

D·,j
||D·,j ||2

0 =
1

T

TX

t=1

(x(t) �D h(x(t))) h(x(t))j (1)

0 =
TX

t=1

0

@x(t) �

0

@
X

i 6=j

D·,i h(x
(t))i

1

A�D·,j h(x
(t))j

1

A h(x(t))j (2)

TX

t=1

D·,jh(x
(t))2j =

TX

t=1

0

@x(t) �

0

@
X

i 6=j

D·,i h(x
(t))i

1

A

1

A h(x(t))j (3)

D·,j =
1

PT
t=1 h(x

(t))2j

TX

t=1

0

@x(t) �

0

@
X

i 6=j

D·,i h(x
(t))i

1

A

1

A h(x(t))j (4)

(5)

D·,j =
1

PT
t=1 h(x

(t))2j

TX

t=1

0

@x(t) �

0

@
X

i 6=j

D·,i h(x
(t))i

1

A

1

A h(x(t))j (6)

=
1

PT
t=1 h(x

(t))2j

0

@
 

TX

t=1

x(t)h(x(t))j

!
�
X

i 6=j

D·,i

 
TX

t=1

h(x(t))ih(x
(t))j

!1

A (7)

(8)

•

argmin
D

1

T

TX

t=1

1

2
||x(t) �D h(x(t))||22 =

 
TX

t=1

x(t) h(x(t))>
! 

TX

t=1

h(x(t)) h(x(t))>
!�1

• A (=
PT

t=1 h(x
(t)) h(x(t))> B (=

PT
t=1 x

(t) h(x(t))>

• B·,j Ai,j Aj,j

•
B (= � B+ (1� �) x(t) h(x(t))>

2

ISTA Algorithm  
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Dictionary Learning I 
•  Remember our optimization problem: 

•
h(t) (= shrink(h(t),↵ � sign(h(t)))

•
shrink(a,b) = [. . . , sign(ai) max(|ai|� bi, 0), . . . ]

• shrink(ai, bi)

• 1
↵ D>D

min
D

1

T

TX

t=1

min
h(t)

l(x(t)) = min
D

1

T

TX

t=1

1

2
||x(t) �D h(x(t))||22 + �||h(x(t))||1

2

•  Let us first assume that              does not depend on D  

Sparse coding

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

November 1, 2012

Abstract

Math for my slides “Sparse coding”.

• x(t) h(t) D bx(t)

argmin
D

1

T

TX

t=1

argmin
h(t)

1

2
||x(t) �D h(t)||22 + �||h(t)||1

•
h(x(t)) = argmin

h(t)

1

2
||x(t) �D h(t)||22 + �||h(t)||1

•
bx(t) = D h(x(t)) =

X

k s.t.
h(x(t))k 6=0

D·,k h(x(t))k

•
l(x(t)) = ||x(t) �D h(t)||22 + �||h(t)||1

@

@h(t)
k

l(x(t)) = (D·,k)
>(D h(t) � x(t)) + � sign(h(t)

k )

rh(t) l(x(t)) = D>(D h(t) � x(t)) + � sign(h(t))

• h(t)

• h(t)
k = 0

• h(t)
k

• h(t)
k (= h(t)

k � ↵ DD>(D h(t) � x(t))

• sign(h(t)) 6= sign(h(t)
k � ↵ � sign(h(t)

k ))

• h(t)
k (= 0

• h(t)
k (= h(t)

k � ↵ � sign(h(t)
k )

•
h(t) (= h(t) � ↵ D>(D h(t) � x(t))

1

Ø  We then minimize: 

•
h(t) (= shrink(h(t),↵ � sign(h(t)))

•
shrink(a,b) = [. . . , sign(ai) max(|ai|� bi, 0), . . . ]

• shrink(ai, bi)

• 1
↵ D>D

min
D

1

T

TX

t=1

min
h(t)

l(x(t)) = min
D

1

T

TX

t=1

1

2
||x(t) �D h(x(t))||22 + �||h(x(t))||1

min
D

1

T

TX

t=1

1

2
||x(t) �D h(x(t))||22

2

Ø  we must also constrain the columns of D to be of unit norm 
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•  While D has not converged: 

Dictionary Learning I 
•  We can use projected gradient descent algorithm. 

Ø  Perform gradient update of D 

•
h(t) (= shrink(h(t),↵ � sign(h(t)))

•
shrink(a,b) = [. . . , sign(ai) max(|ai|� bi, 0), . . . ]

• shrink(ai, bi)

• 1
↵ D>D

min
D

1

T

TX

t=1

min
h(t)

l(x(t)) = min
D

1

T

TX

t=1

1

2
||x(t) �D h(x(t))||22 + �||h(x(t))||1

min
D

1

T

TX

t=1

1

2
||x(t) �D h(x(t))||22 (1)

= min
D

1

T

TX

t=1

1

2
x(t)>x(t) � x(t)>D h(x(t)) +

1

2

⇣
D h(x(t))

⌘>
D h(x(t)) (2)

= min
D

1

T
�
 

TX

t=1

x(t)>D h(x(t))

!
+

1

2

 
TX

t=1

⇣
D h(x(t))

⌘>
D h(x(t)

!
(3)

(4)

•

D (= D+ ↵
1

T

TX

t=1

(x(t) �D h(x(t))) h(x(t))>

•

argmin
D

1

T

TX

t=1

1

2
||x(t) �D h(x(t))||22 =

 
TX

t=1

x(t) h(x(t))>
! 

TX

t=1

h(x(t)) h(x(t))>
!�1

•

D (=

 
TX

t=1

x(t) h(x(t))>
! 

TX

t=1

h(x(t)) h(x(t))>
!�1

• A (=
PT

t=1 x
(t) h(x(t))> B (=

PT
t=1 h(x

(t)) h(x(t))> D (= B A�1

•
B (= � B+ (1� �) x(t) h(x(t))>

•
A (= � A+ (1� �) h(x(T+1)) h(x(T+1))>

2

Ø  Renormalize the columns of D 

Ø  For each column of D: 

•
h(t) (= shrink(h(t),↵ � sign(h(t)))

•
shrink(a,b) = [. . . , sign(ai) max(|ai|� bi, 0), . . . ]

• shrink(ai, bi)

• 1
↵ D>D

min
D

1

T

TX

t=1

min
h(t)

l(x(t)) = min
D

1

T

TX

t=1

1

2
||x(t) �D h(x(t))||22 + �||h(x(t))||1

min
D

1

T

TX

t=1

1

2
||x(t) �D h(x(t))||22 (1)

= min
D

1

T

TX

t=1

1

2
x(t)>x(t) � x(t)>D h(x(t)) +

1

2

⇣
D h(x(t))

⌘>
D h(x(t)) (2)

= min
D

1

T
�
 

TX

t=1

x(t)>D h(x(t))

!
+

1

2

 
TX

t=1

⇣
D h(x(t))

⌘>
D h(x(t)

!
(3)

(4)

•

D (= D+ ↵
1

T

TX

t=1

(x(t) �D h(x(t))) h(x(t))>

•

argmin
D

1

T

TX

t=1

1

2
||x(t) �D h(x(t))||22 =

 
TX

t=1

x(t) h(x(t))>
! 

TX

t=1

h(x(t)) h(x(t))>
!�1

•
D·,j (=

D·,j
||D·,j ||2

• A (=
PT

t=1 x
(t) h(x(t))> B (=

PT
t=1 h(x

(t)) h(x(t))> D (= B A�1

•
B (= � B+ (1� �) x(t) h(x(t))>

•
A (= � A+ (1� �) h(x(T+1)) h(x(T+1))>

2
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Dictionary Learning II 
•  An alternative method is to solve for each column        in cycle. 

•
h(t) (= shrink(h(t),↵ � sign(h(t)))

•
shrink(a,b) = [. . . , sign(ai) max(|ai|� bi, 0), . . . ]

• shrink(ai, bi)

• 1
↵ D>D

min
D

1

T

TX

t=1

min
h(t)

l(x(t)) = min
D

1

T

TX

t=1

1

2
||x(t) �D h(x(t))||22 + �||h(x(t))||1

min
D

1

T

TX

t=1

1

2
||x(t) �D h(x(t))||22 (1)

= min
D

1

T

TX

t=1

1

2
x(t)>x(t) � x(t)>D h(x(t)) +

1

2

⇣
D h(x(t))

⌘>
D h(x(t)) (2)

= min
D

1

T
�
 

TX

t=1

x(t)>D h(x(t))

!
+

1

2

 
TX

t=1

⇣
D h(x(t))

⌘>
D h(x(t)

!
(3)

(4)

•

D (= D+ ↵
1

T

TX

t=1

(x(t) �D h(x(t))) h(x(t))>

•

argmin
D

1

T

TX

t=1

1

2
||x(t) �D h(x(t))||22 =

 
TX

t=1

x(t) h(x(t))>
! 

TX

t=1

h(x(t)) h(x(t))>
!�1

•
D·,j (= D·,j/||D·,j ||2

• A (=
PT

t=1 x
(t) h(x(t))> B (=

PT
t=1 h(x

(t)) h(x(t))> D (= B A�1

•
B (= � B+ (1� �) x(t) h(x(t))>

•
A (= � A+ (1� �) h(x(T+1)) h(x(T+1))>

2

Ø  setting the gradient for         to zero, we have 

•
h(t) (= shrink(h(t),↵ � sign(h(t)))

•
shrink(a,b) = [. . . , sign(ai) max(|ai|� bi, 0), . . . ]

• shrink(ai, bi)

• 1
↵ D>D

min
D

1

T

TX

t=1

min
h(t)

l(x(t)) = min
D

1

T

TX

t=1

1

2
||x(t) �D h(x(t))||22 + �||h(x(t))||1

min
D

1

T

TX

t=1

1

2
||x(t) �D h(x(t))||22 (1)

= min
D

1

T

TX

t=1

1

2
x(t)>x(t) � x(t)>D h(x(t)) +

1

2

⇣
D h(x(t))

⌘>
D h(x(t)) (2)

= min
D

1

T
�
 

TX

t=1

x(t)>D h(x(t))

!
+

1

2

 
TX

t=1

⇣
D h(x(t))

⌘>
D h(x(t)

!
(3)

(4)

•

D (= D+ ↵
1

T

TX

t=1

(x(t) �D h(x(t))) h(x(t))>

•

argmin
D

1

T

TX

t=1

1

2
||x(t) �D h(x(t))||22 =

 
TX

t=1

x(t) h(x(t))>
! 

TX

t=1

h(x(t)) h(x(t))>
!�1

•
D·,j (= D·,j/||D·,j ||2

• A (=
PT

t=1 x
(t) h(x(t))> B (=

PT
t=1 h(x

(t)) h(x(t))> D (= B A�1

•
B (= � B+ (1� �) x(t) h(x(t))>

•
A (= � A+ (1� �) h(x(T+1)) h(x(T+1))>

2

•
h(t) (= shrink(h(t),↵ � sign(h(t)))

•
shrink(a,b) = [. . . , sign(ai) max(|ai|� bi, 0), . . . ]

• shrink(ai, bi)

• 1
↵ D>D

min
D

1

T

TX

t=1

min
h(t)

l(x(t)) = min
D

1

T

TX

t=1

1

2
||x(t) �D h(x(t))||22 + �||h(x(t))||1

min
D

1

T

TX

t=1

1

2
||x(t) �D h(x(t))||22 (1)

= min
D

1

T

TX

t=1

1

2
x(t)>x(t) � x(t)>D h(x(t)) +

1

2

⇣
D h(x(t))

⌘>
D h(x(t)) (2)

= min
D

1

T
�
 

TX

t=1

x(t)>D h(x(t))

!
+

1

2

 
TX

t=1

⇣
D h(x(t))

⌘>
D h(x(t)

!
(3)

(4)

•

D (= D+ ↵
1

T

TX

t=1

(x(t) �D h(x(t))) h(x(t))>

•
D·,j (=

D·,j
||D·,j ||2

0 =
1

T

TX

t=1

(x(t) �D h(x(t))) h(x(t))j (5)

0 =
TX

t=1

0

@x(t) �

0

@
X

i 6=j

D·,i h(x
(t))i

1

A�D·,j h(x
(t))j

1

A h(x(t))j (6)

TX

t=1

D·,jh(x
(t))2j =

TX

t=1

0

@x(t) �

0

@
X

i 6=j

D·,i h(x
(t))i

1

A

1

A h(x(t))j (7)

D·,j =
1

PT
t=1 h(x

(t))2j

TX

t=1

0

@x(t) �

0

@
X

i 6=j

D·,i h(x
(t))i

1

A

1

A h(x(t))j (8)

(9)

D·,j =
1

PT
t=1 h(x

(t))2j

TX

t=1

0

@x(t) �

0

@
X

i 6=j

D·,i h(x
(t))i

1

A

1

A h(x(t))j (10)

=
1

PT
t=1 h(x

(t))2j

0

@
 

TX

t=1

x(t)h(x(t))j

!
�
X

i 6=j

D·,i

 
TX

t=1

h(x(t))ih(x
(t))j

!1

A (11)

(12)

2

Ø  Note that we don’t need to specify a learning rate to update D.  
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Dictionary Learning II 
•  An alternative method is to solve for each column        in cycle. 

•
h(t) (= shrink(h(t),↵ � sign(h(t)))

•
shrink(a,b) = [. . . , sign(ai) max(|ai|� bi, 0), . . . ]

• shrink(ai, bi)

• 1
↵ D>D

min
D

1

T

TX

t=1

min
h(t)

l(x(t)) = min
D

1

T

TX

t=1

1

2
||x(t) �D h(x(t))||22 + �||h(x(t))||1

min
D

1

T

TX

t=1

1

2
||x(t) �D h(x(t))||22 (1)

= min
D

1

T

TX

t=1

1

2
x(t)>x(t) � x(t)>D h(x(t)) +

1

2

⇣
D h(x(t))

⌘>
D h(x(t)) (2)

= min
D

1

T
�
 

TX

t=1

x(t)>D h(x(t))

!
+

1

2

 
TX

t=1

⇣
D h(x(t))

⌘>
D h(x(t)

!
(3)

(4)

•

D (= D+ ↵
1

T

TX

t=1

(x(t) �D h(x(t))) h(x(t))>

•

argmin
D

1

T

TX

t=1

1

2
||x(t) �D h(x(t))||22 =

 
TX

t=1

x(t) h(x(t))>
! 

TX

t=1

h(x(t)) h(x(t))>
!�1

•
D·,j (= D·,j/||D·,j ||2

• A (=
PT

t=1 x
(t) h(x(t))> B (=

PT
t=1 h(x

(t)) h(x(t))> D (= B A�1

•
B (= � B+ (1� �) x(t) h(x(t))>

•
A (= � A+ (1� �) h(x(T+1)) h(x(T+1))>

2

Ø  We can rewrite  

Ø  this way, we only need to store: 

•
h(t) (= shrink(h(t),↵ � sign(h(t)))

•
shrink(a,b) = [. . . , sign(ai) max(|ai|� bi, 0), . . . ]

• shrink(ai, bi)

• 1
↵ D>D

min
D

1

T

TX

t=1

min
h(t)

l(x(t)) = min
D

1

T

TX

t=1

1

2
||x(t) �D h(x(t))||22 + �||h(x(t))||1

min
D

1

T

TX

t=1

1

2
||x(t) �D h(x(t))||22 (1)

= min
D

1

T

TX

t=1

1

2
x(t)>x(t) � x(t)>D h(x(t)) +

1

2

⇣
D h(x(t))

⌘>
D h(x(t)) (2)

= min
D

1

T
�
 

TX

t=1

x(t)>D h(x(t))

!
+

1

2

 
TX

t=1

⇣
D h(x(t))

⌘>
D h(x(t)

!
(3)

(4)

•

D (= D+ ↵
1

T

TX

t=1

(x(t) �D h(x(t))) h(x(t))>

•
D·,j (=

D·,j
||D·,j ||2

0 =
1

T

TX

t=1

(x(t) �D h(x(t))) h(x(t))j (5)

0 =
TX

t=1

0

@x(t) �

0

@
X

i 6=j

D·,i h(x
(t))i

1

A�D·,j h(x
(t))j

1

A h(x(t))j (6)

TX

t=1

D·,jh(x
(t))2j =

TX

t=1

0

@x(t) �

0

@
X

i 6=j

D·,i h(x
(t))i

1

A

1

A h(x(t))j (7)

D·,j =
1

PT
t=1 h(x

(t))2j

TX

t=1

0

@x(t) �

0

@
X

i 6=j

D·,i h(x
(t))i

1

A

1

A h(x(t))j (8)

(9)

D·,j =
1

PT
t=1 h(x

(t))2j

TX

t=1

0

@x(t) �

0

@
X

i 6=j

D·,i h(x
(t))i

1

A

1

A h(x(t))j (10)

=
1

PT
t=1 h(x

(t))2j

0

@
 

TX

t=1

x(t)h(x(t))j

!
�
X

i 6=j

D·,i

 
TX

t=1

h(x(t))ih(x
(t))j

!1

A (11)

(12)

2
=

1

Aj,j
(B·,j �D A·,j +D·,jAj,j)

•
h(t) (= shrink(h(t),↵ � sign(h(t)))

•
shrink(a,b) = [. . . , sign(ai) max(|ai|� bi, 0), . . . ]

• shrink(ai, bi)

• 1
↵ D>D

•

D (= D+ ↵
1

T

TX

t=1

(x(t) �D h(x(t))) h(x(t))>

•
D·,j (=

D·,j
||D·,j ||2

0 =
1

T

TX

t=1

(x(t) �D h(x(t))) h(x(t))j (1)

0 =
TX

t=1

0

@x(t) �

0

@
X

i 6=j

D·,i h(x
(t))i

1

A�D·,j h(x
(t))j

1

A h(x(t))j (2)

TX

t=1

D·,jh(x
(t))2j =

TX

t=1

0

@x(t) �

0

@
X

i 6=j

D·,i h(x
(t))i

1

A

1

A h(x(t))j (3)

D·,j =
1

PT
t=1 h(x

(t))2j

TX

t=1

0

@x(t) �

0

@
X

i 6=j

D·,i h(x
(t))i

1

A

1

A h(x(t))j (4)

(5)

D·,j =
1

PT
t=1 h(x

(t))2j

TX

t=1

0

@x(t) �

0

@
X

i 6=j

D·,i h(x
(t))i

1

A

1

A h(x(t))j (6)

=
1

PT
t=1 h(x

(t))2j

0

@
 

TX

t=1

x(t)h(x(t))j

!
�
X

i 6=j

D·,i

 
TX

t=1
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•  While D has not converged: 

Dictionary Learning II 
•  This leads to the following algorithm 

Ø  for each column         perform updates 
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•  This is referred to as a block-coordinate descent algorithm 
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•  While D has not converged: 

Learning Sparse Coding Model 
•  Putting it all together, we have the following algorithm, where 
learning alternates between inference and dictionary learning.  

Ø  find the sparse codes               for all         in the 

training set with ISTA 

Ø  Update the dictionary: 
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Ø   run block-coordinate descent algorithm to update D  

 
•  Similar in spirit to EM algorithm 
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ZCA Preprocessing  
•  Before running a sparse coding algorithm, it is beneficial to remove 
‘‘obvious’’ structure from the data 

Ø  normalize such that mean is 0 and covariance is the identity 

(whitening) 

Ø  this will remove 1st and 2nd order statistical structure 

•  ZCA preprocessing 

Ø  let the empirical mean be     and the empirical covariance matrix 

be                       (in its eigenvalue/eigenvector representation)  

Ø  ZCA transforms each input as follows: 
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ZCA Preprocessing  
•  After this transformation 

Ø  the empirical mean is 0 
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ZCA Preprocessing  
•  After this transformation 

Ø  the empirical covariance matrix is the identity 
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Feature Learning 
•  A sparse coding model can be used to extract features 

Ø  given a labeled training set 

Ø  train sparse coding dictionary only on training inputs 

Ø  this yields a dictionary             from which to infer sparse codes  
Ø  train your favorite classifier on transformed training set 
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•  When classifying test input x 
Ø  infer its sparse representation: 

Ø  feed it to the classifier 
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Evaluated	on	Caltech101	object	category	dataset.	

Classification 
Algorithm 

(SVM) 

Algorithm	 Accuracy	
Baseline	(Fei-Fei	et	al.,	2004)	 16%	

PCA	 37%	
Sparse	Coding	 47%	

Input	Image Features	(coefficients) 
Learned		
bases 

Image	Classification	

	9K	images,	101	classes	

Lee et al., NIPS 2006 
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Feature Learning  
•  Learned features on MNIST handwritten digits: Self-taught Learning

Figure 5. Left: Example images from the handwritten digit
dataset (top), the handwritten character dataset (middle)
and the font character dataset (bottom). Right: Example
sparse coding bases learned on handwritten digits.

Table 3. Top: Classification accuracy on 26-way handwrit-
ten English character classification, using bases trained on
handwritten digits. Bottom: Classification accuracy on
26-way English font character classification, using bases
trained on English handwritten characters. The numbers
in parentheses denote the accuracy using raw and sparse
coding features together. Here, sparse coding features
alone do not perform as well as the raw features, but per-
form significantly better when used in combination with
the raw features.

Digits → English handwritten characters
Training set size Raw PCA Sparse coding

100 39.8% 25.3% 39.7%
500 54.8% 54.8% 58.5%
1000 61.9% 64.5% 65.3%

Handwritten characters → Font characters
Training set size Raw PCA Sparse coding

100 8.2% 5.7% 7.0% (9.2%)
500 17.9% 14.5% 16.6% (20.2%)
1000 25.6% 23.7% 23.2% (28.3%)

data (as described in Section 3.3). In the PCA re-
sults presented in this paper, the number of principal
components used was always fixed at the number of
principal components used for preprocessing the raw
input before applying sparse coding. This control ex-
periment allows us to evaluate the effects of PCA pre-
processing and the later sparse coding step separately,
but should therefore not be treated as a direct evalua-
tion of PCA as a self-taught learning algorithm (where
the number of principal components could then also be
varied).

Tables 3.3-4 report the results for various domains.
Sparse coding features, possibly in combination with
raw features, significantly outperform the raw features
alone as well as PCA features on most of the domains.

On the 101-way Caltech 101 image classification task
with 15 training images per class (Table 3.3), sparse
coding features achieve a test accuracy of 46.6%. In
comparison, the first published supervised learning al-
gorithm for this dataset achieved only 16% test accu-
racy even with computer vision specific features (in-
stead of raw pixel intensities).8

8Since the time we ran our experiments, other re-
searchers have reported better results using highly spe-
cialized computer vision algorithms (Zhang et al., 2006:
59.1%; Lazebnik et al., 2006: 56.4%). We note that our
algorithm was until recently state-of-the-art for this well-

Table 4. Accuracy on 7-way music genre classification.
Training set size Raw PCA Sparse coding

100 28.3% 28.6% 44.0%
1000 34.0% 26.3% 45.5%
5000 38.1% 38.1% 44.3%

Table 5. Text bases learned on 100,000 Reuters newswire
documents. Top: Each row represents the basis most ac-
tive on average for documents with the class label at the
left. For each basis vector, the words corresponding to the
largest magnitude elements are displayed. Bottom: Each
row represents the basis that contains the largest magni-
tude element for the word at the left. The words corre-
sponding to other large magnitude elements are displayed.

Design design, company, product, work, market
Business car, sale, vehicle, motor, market, import

vaccine infect, report, virus, hiv, decline, product
movie share, disney, abc, release, office, movie, pay

Figure 5 shows example inputs from the three char-
acter datasets, and some of the learned bases. The
learned bases appear to represent “pen strokes.” In
Table 4, it is thus not surprising that sparse cod-
ing is able to use bases (“strokes”) learned on dig-
its to significantly improve performance on handwrit-
ten characters—it allows the supervised learning algo-
rithm to “see” the characters as comprising strokes,
rather than as comprising pixels.

For audio classification, our algorithm outperforms the
original (spectral) features (Table 4).9 When applied
to text, sparse coding discovers word relations that
might be useful for classification (Table 5). The per-
formance improvement over raw features is small (Ta-
ble 4).10 This might be because the bag-of-words rep-
resentation of text documents is already sparse, unlike
the raw inputs for the other applications.11

We envision self-taught learning as being most use-
ful when labeled data is scarce. Table 4 shows that
with small amounts of labeled data, classification per-
formance deteriorates significantly when the bases (in
sparse coding) or principal components (in PCA) are

known dataset, even with almost no explicit computer-
vision engineering, and indeed it significantly outperforms
many carefully hand-designed, computer-vision specific
methods published on this task (E.g., Fei-Fei et al., 2004:
16%; Serre et al., 2005: 35%; Holub et al., 2005: 40.1%).

9Details: We learned bases over songs from 10 genres,
and used these bases to construct features for a music genre
classification over songs from 7 different genres (with dif-
ferent artists, and possibly different instruments). Each
training example comprised a labeled 50ms song snippet;
each test example was a 1 second song snippet.

10Details: Learned bases were evaluated on 30 binary
webpage category classification tasks. PCA applied to text
documents is commonly referred to as latent semantic anal-
ysis. (Deerwester et al., 1990)

11The results suggest that algorithms such as LDA (Blei
et al., 2002) might also be appropriate for self-taught learn-
ing on text (though LDA is specific to a bag-of-words rep-
resentation and would not apply to the other domains).

Self-taught	Learning:	Transfer	Learning	from	
Unlabeled	DataRaina,	Battle,	Lee,	Packer	and	Ng.	28 



Self-Taught Learning 
•  Self-taught learning: when features trained on different input 
distribution  

Self-taught	Learning:	Transfer	Learning	from	
Unlabeled	DataRaina,	Battle,	Lee,	Packer	and	Ng.	

•  Example: 

Ø  train sparse coding dictionary on handwritten digits 

Ø  use codes (features) to classify handwritten characters 

Self-taught Learning

Figure 5. Left: Example images from the handwritten digit
dataset (top), the handwritten character dataset (middle)
and the font character dataset (bottom). Right: Example
sparse coding bases learned on handwritten digits.

Table 3. Top: Classification accuracy on 26-way handwrit-
ten English character classification, using bases trained on
handwritten digits. Bottom: Classification accuracy on
26-way English font character classification, using bases
trained on English handwritten characters. The numbers
in parentheses denote the accuracy using raw and sparse
coding features together. Here, sparse coding features
alone do not perform as well as the raw features, but per-
form significantly better when used in combination with
the raw features.

Digits → English handwritten characters
Training set size Raw PCA Sparse coding

100 39.8% 25.3% 39.7%
500 54.8% 54.8% 58.5%
1000 61.9% 64.5% 65.3%

Handwritten characters → Font characters
Training set size Raw PCA Sparse coding

100 8.2% 5.7% 7.0% (9.2%)
500 17.9% 14.5% 16.6% (20.2%)
1000 25.6% 23.7% 23.2% (28.3%)

data (as described in Section 3.3). In the PCA re-
sults presented in this paper, the number of principal
components used was always fixed at the number of
principal components used for preprocessing the raw
input before applying sparse coding. This control ex-
periment allows us to evaluate the effects of PCA pre-
processing and the later sparse coding step separately,
but should therefore not be treated as a direct evalua-
tion of PCA as a self-taught learning algorithm (where
the number of principal components could then also be
varied).

Tables 3.3-4 report the results for various domains.
Sparse coding features, possibly in combination with
raw features, significantly outperform the raw features
alone as well as PCA features on most of the domains.

On the 101-way Caltech 101 image classification task
with 15 training images per class (Table 3.3), sparse
coding features achieve a test accuracy of 46.6%. In
comparison, the first published supervised learning al-
gorithm for this dataset achieved only 16% test accu-
racy even with computer vision specific features (in-
stead of raw pixel intensities).8

8Since the time we ran our experiments, other re-
searchers have reported better results using highly spe-
cialized computer vision algorithms (Zhang et al., 2006:
59.1%; Lazebnik et al., 2006: 56.4%). We note that our
algorithm was until recently state-of-the-art for this well-

Table 4. Accuracy on 7-way music genre classification.
Training set size Raw PCA Sparse coding

100 28.3% 28.6% 44.0%
1000 34.0% 26.3% 45.5%
5000 38.1% 38.1% 44.3%

Table 5. Text bases learned on 100,000 Reuters newswire
documents. Top: Each row represents the basis most ac-
tive on average for documents with the class label at the
left. For each basis vector, the words corresponding to the
largest magnitude elements are displayed. Bottom: Each
row represents the basis that contains the largest magni-
tude element for the word at the left. The words corre-
sponding to other large magnitude elements are displayed.

Design design, company, product, work, market
Business car, sale, vehicle, motor, market, import

vaccine infect, report, virus, hiv, decline, product
movie share, disney, abc, release, office, movie, pay

Figure 5 shows example inputs from the three char-
acter datasets, and some of the learned bases. The
learned bases appear to represent “pen strokes.” In
Table 4, it is thus not surprising that sparse cod-
ing is able to use bases (“strokes”) learned on dig-
its to significantly improve performance on handwrit-
ten characters—it allows the supervised learning algo-
rithm to “see” the characters as comprising strokes,
rather than as comprising pixels.

For audio classification, our algorithm outperforms the
original (spectral) features (Table 4).9 When applied
to text, sparse coding discovers word relations that
might be useful for classification (Table 5). The per-
formance improvement over raw features is small (Ta-
ble 4).10 This might be because the bag-of-words rep-
resentation of text documents is already sparse, unlike
the raw inputs for the other applications.11

We envision self-taught learning as being most use-
ful when labeled data is scarce. Table 4 shows that
with small amounts of labeled data, classification per-
formance deteriorates significantly when the bases (in
sparse coding) or principal components (in PCA) are

known dataset, even with almost no explicit computer-
vision engineering, and indeed it significantly outperforms
many carefully hand-designed, computer-vision specific
methods published on this task (E.g., Fei-Fei et al., 2004:
16%; Serre et al., 2005: 35%; Holub et al., 2005: 40.1%).

9Details: We learned bases over songs from 10 genres,
and used these bases to construct features for a music genre
classification over songs from 7 different genres (with dif-
ferent artists, and possibly different instruments). Each
training example comprised a labeled 50ms song snippet;
each test example was a 1 second song snippet.

10Details: Learned bases were evaluated on 30 binary
webpage category classification tasks. PCA applied to text
documents is commonly referred to as latent semantic anal-
ysis. (Deerwester et al., 1990)

11The results suggest that algorithms such as LDA (Blei
et al., 2002) might also be appropriate for self-taught learn-
ing on text (though LDA is specific to a bag-of-words rep-
resentation and would not apply to the other domains).
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g(a)	

Interpreting	Sparse	Coding	

x’	

Explicit	
Linear	
Decoding	
	

a	

f(x)	
Implicit	
nonlinear	
encoding	

x	

a	

• 	Sparse,	over-complete	representation	a.	
• 	Encoding	a	=	f(x)	is	implicit	and	nonlinear	function	of	x.		
• 	Reconstruction	(or	decoding)	x’	=	g(a)	is	linear	and	explicit.		

Sparse	features	

30 



Autoencoder	

Encoder Decoder 

Input Image 

Feature Representation 

Feed-back, 
generative, 
top-down 
path	

Feed-forward,  
bottom-up	

• 	Details	of	what	goes	insider	the	encoder	and	decoder	matter!	
• 	Need	constraints	to	avoid	learning	an	identity.		 31 



Autoencoder	

z=σ(Wx) Dz 

Input Image x 

 Binary Features z 

Decoder 
filters D 
 
Linear 
function 
path	

Encoder 
filters W. 
 
Sigmoid 
function	
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Predictive	Sparse	Decomposition	

z=σ(Wx) Dz 

Real-valued Input x 

 Binary Features z 

Decoder 
filters D 
path	

Encoder 
filters W. 
 
Sigmoid 
function	

L1 Sparsity 

Encoder	Decoder	

At training 
time 
path	

Kavukcuoglu et al., ‘09 
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Stacked	Sparse	Coding?	

Input x 

Features 

Decoder 

Class Labels 

Decoder 

Sparsity 

Features 

Decoder Sparsity 
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Modeling Image Patches 
•  Natural image patches: 

Ø  small image regions extracted from an image of nature (forest, 

grass, ...) 

LETTERS

Emergence of complex cell properties by learning to
generalize in natural scenes
Yan Karklin1{ & Michael S. Lewicki1{

A fundamental function of the visual system is to encode the build-
ing blocks of natural scenes—edges, textures and shapes—that sub-
serve visual tasks such as object recognition and scene
understanding. Essential to this process is the formation of abstract
representations that generalize from specific instances of visual
input. A common view holds that neurons in the early visual system
signal conjunctions of image features1,2, but how these produce
invariant representations is poorly understood. Here we propose that
to generalize over similar images, higher-level visual neurons encode
statistical variations that characterize local image regions. We pre-
sent a model in which neural activity encodes the probability distri-
bution most consistent with a given image. Trained on natural
images, the model generalizes by learning a compact set of dictionary
elements for image distributions typically encountered in natural
scenes. Model neurons show a diverse range of properties observed
in cortical cells. These results provide a new functional explanation
for nonlinear effects in complex cells3–6 and offer insight into coding
strategies in primary visual cortex (V1) and higher visual areas.

As we scan across a complex natural scene, fixations at multiple
locations (for example, on the trunk of a tree or along its edge)
produce a coherent percept of the underlying structure (the bark
texture or the contour of the edge), even though individual images
collected at the retina are inherently highly variable. Figure 1 illus-
trates the problem our brain solves so effortlessly: perceptually dis-
tinct image regions produce response patterns that are highly
overlapping and cannot be easily distinguished using low-level, linear
representations. What sort of computations are required to achieve
generalization across natural stimuli?

Early visual neurons are typically described as linear feature detec-
tors1,2. Models developed around this idea can accurately capture the
behaviour of neurons from the retina7 to simple cells in the cortex8

but, as the examples in Fig. 1 illustrate, neither individual features nor
linear transformations can reliably discriminate images of one struc-
ture from another. More abstract features are presumably computed
in later stages of the visual system, but our knowledge of processing
by these neurons is limited. In V1, complex cells respond to an edge
over a range of positions1, but classical models of these cells9,10 fail to
explain a number of nonlinear effects, such as surround suppression
and cross-orientation inhibition3–5. More importantly, there is no
functional explanation for the role of these behaviours in the percep-
tion of natural scenes. In higher visual areas such as V2 and V4,
neurons are more invariant to image properties such as position
and scale11–13 and might be encoding shape or texture12,14,15. For these
neurons to generalize effectively, the neural circuitry must generate a
representation that is similar across the wide distribution of images of
a given type (for example, a texture or contour) yet distinct across the
much larger distribution of all other images.

Previous theoretical work has shown that neurons in the primary
visual cortex form an efficient code adapted to the statistics of natural
images16,17, but this says nothing about how neurons generalize across

1Computer Science Department & Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA. {Present address: Center for Neural Science, New
York University, New York, New York, USA (Y.K.); Electrical Engineering and Computer Science Department, Case Western University, Cleveland, Ohio, USA and Wissenschaftskolleg
(Institute for Advanced Study) zu Berlin, Germany (M.S.L.).
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Figure 1 | Statistical patterns distinguish local regions of natural scenes.
a, A natural scene with four distinct regions outlined (image courtesy of
E. Doi). b, The scatter plot shows the joint output of a pair of linear feature
detectors (oriented Gabor filters) for 20 3 20-image patches sampled from
the four regions. The outputs from different regions are highly overlapping,
indicating that linear features provide no means to distinguish between the
regions. c, Each column shows the joint output of a different pair of linear
feature detectors sampled from the regions containing the tree bark or the
tree edge (the first column corresponds to features in b). The correlations in
each panel can be described by a Gaussian distribution and its covariance
(ellipses). The differences in the distributions between the rows reveal
characteristic patterns in correlations, which become even more prominent
as projections onto more features are considered. These patterns can be used
to generalize within regions while still distinguishing among them. As an
example, we highlight two patches in each region, shown by the circle and
triangle in each panel. Although the pairs of images are visibly quite
different, each image is consistent with the distribution of the local image
region. By contrasting the distributions across multiple dimensions, it is
possible to infer image type for single patches, even if the patches have
similar projections along some image features.

doi:10.1038/nature07481
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Image	taken	from:		
Emergence	of	complex	cell	properties		
by	learning	to	generalize	in	natural	scenes.	
Karklin	and	Lewicki,	2009	 35 



Relationship to V1 
•  When trained on natural image patches 

Ø  the dictionary columns 
(‘‘atoms’’) look like edge 
detectors 

Ø  each atom is tuned to a 
particular position, 
orientation and spatial 
frequency 

Ø  V1 neurons in the 
mammalian brain have a 
similar behavior 

Emergence	of	simple-cell	receptive	field	
properties	by	learning	a	sparse	code	of	natural	
images.Olshausen	and	Field,	1996.	 36 



Relationship to V1 
•  Suggests that the brain might be learning a sparse code of visual 
stimulus 
 

Ø  Since then, many other 
models have been shown 
to learn similar features 

Ø  they usually all 
incorporate a notion of 
sparsity 
 

Emergence	of	simple-cell	receptive	field	
properties	by	learning	a	sparse	code	of	natural	
images.Olshausen	and	Field,	1996.	 37 


