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Neural Networks Online Course 

•  Hugo’s class covers 
many other topics: 
convolutional networks, 
neural language model, 
Boltzmann machines, 
autoencoders, sparse 
coding, etc. 

•  We will use his 
material for some of the 
other lectures.  

•  Disclaimer: Much of the material and slides for this lecture were 
borrowed from Hugo Larochelle’s class on Neural Networks: 
https://sites.google.com/site/deeplearningsummerschool2016/ 



Learning Distributed Representations 
•  Deep learning is research on learning models with multilayer 
representations 

Ø  multilayer (feed-forward) neural networks  

Ø  multilayer graphical model (deep belief network, deep Boltzmann 

machine) 

•  Each layer learns ‘‘distributed representation’’ 

Ø  Units in a layer are not mutually exclusive 

•  each unit is a separate feature of the input 

•  two units can be ‘‘active’’ at the same time 
Ø   Units do not correspond to a partitioning (clustering) of the inputs 

•  in clustering, an input can only belong to a single cluster 



Inspiration from Visual Cortex 



Unsupervised Pre-training 
•  Initialize hidden layers using unsupervised learning 

Ø  Force network to represent latent structure of input distribution 

Ø  Encourage hidden layers to encode that structure 



Unsupervised Pre-training 
•  Initialize hidden layers using unsupervised learning 

Ø  This is a harder task than supervised learning (classification) 

Ø  Hence we expect less overfitting 



Pre-training 
•  We will use a greedy, layer-wise procedure 

Ø  Train one layer at a time with unsupervised criterion 

Ø  Fix the parameters of previous hidden layers 

Ø  Previous layers viewed as feature extraction 



Pre-training 
•  Unsupervsed Pre-training 

Ø  first layer: find hidden unit features that are more common in 

training inputs than in random inputs 

Ø  second layer: find combinations of hidden unit features that are 
more common than random hidden unit features 

Ø  third layer: find combinations of combinations of ... 

•  Pre-training initializes the parameters in a region such that the 
near local optima overfit less the data 



Fine-tuning 
•  Once all layers are pre-trained 

Ø  add output layer 
Ø  train the whole network using 

supervised learning 

•  Supervised learning is performed as 
in a regular network 

Ø  forward propagation, 
backpropagation and update 

•  We call this last phase fine-tuning 

Ø  all parameters are ‘‘tuned’’ for the 
supervised task at hand 

Ø  representation is adjusted to be more 
discriminative 



Stacking RBMs, Autoencoders 
•  Stacked Restricted Boltzmann Machines: 

Ø  Hinton, Teh and Osindero suggested this procedure with RBMs,: 

A fast learning algorithm for deep belief nets.  
Ø  To recognize shapes, first learn to generate images.  

Hinton, 2006. 
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•  Stacked autoencoders, sparse-coding models, etc.  

Ø  Bengio, Lamblin, Popovici and Larochelle (stacked autoencoders) 

Ø  Ranzato, Poultney, Chopra and LeCun (stacked sparse coding 

models) 

•  Lots of others started stacking models together.  



Example 
•  Datasets generated with varying number of factors of variations 

11 An Empirical Evaluation of Deep Architectures on Problems with Many Factors 
of Variation, Larochelle, Erhan, Courville, Bergstra and Bengio, 2007 



Impact of Initialization 
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Impact of Pretraining 
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ERHAN, BENGIO, COURVILLE, MANZAGOL, VINCENT AND BENGIO

Figure 9: Effect of layer size on the changes brought by unsupervised pre-training, for networks
with 1, 2 or 3 hidden layers. Experiments on MNIST. Error bars have a height of two
standard deviations (over initialization seed). Pre-training hurts for smaller layer sizes
and shallower networks, but it helps for all depths for larger networks.

the small size of the hidden layers. As the model size decreases from 800 hidden units, the general-
ization error increases, and it increases more with unsupervised pre-training presumably because of
the extra regularization effect: small networks have a limited capacity already so further restricting
it (or introducing an additional bias) can harm generalization. Such a result seems incompatible
with a pure optimization effect. We also obtain the result that DBNs and SDAEs seem to have
qualitatively similar effects as pre-training strategies.

The effect can be explained in terms of the role of unsupervised pre-training as promoting input
transformations (in the hidden layers) that are useful at capturing the main variations in the input
distribution P(X). It may be that only a small subset of these variations are relevant for predicting
the class label Y . When the hidden layers are small it is less likely that the transformations for
predicting Y are included in the lot learned by unsupervised pre-training.

7.4 Experiment 4: Challenging the Optimization Hypothesis

Experiments 1–3 results are consistent with the regularization hypothesis and Experiments 2–3
would appear to directly support the regularization hypothesis over the alternative—that unsuper-
vised pre-training aids in optimizing the deep model objective function.

In the literature there is some support for the optimization hypothesis. Bengio et al. (2007)
constrained the top layer of a deep network to have 20 units and measured the training error of
networks with and without pre-training. The idea was to prevent the networks from overfitting the
training error simply with the top hidden layer, thus to make it clearer whether some optimization

646

Acts as a regularizer: overfits less with large 
capacity, underfits with small capacity 



Performance on Different Datasets 
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Extracting and Composing Robust Features with Denoising Autoencoders

Table 1. Comparison of stacked denoising autoencoders (SdA-3) with other models.
Test error rate on all considered classification problems is reported together with a 95% confidence interval. Best performer
is in bold, as well as those for which confidence intervals overlap. SdA-3 appears to achieve performance superior or
equivalent to the best other model on all problems except bg-rand. For SdA-3, we also indicate the fraction � of destroyed
input components, as chosen by proper model selection. Note that SAA-3 is equivalent to SdA-3 with � = 0%.

Dataset SVMrbf SVMpoly DBN-1 SAA-3 DBN-3 SdA-3 (�)
basic 3.03±0.15 3.69±0.17 3.94±0.17 3.46±0.16 3.11±0.15 2.80±0.14 (10%)
rot 11.11±0.28 15.42±0.32 14.69±0.31 10.30±0.27 10.30±0.27 10.29±0.27 (10%)
bg-rand 14.58±0.31 16.62±0.33 9.80±0.26 11.28±0.28 6.73±0.22 10.38±0.27 (40%)
bg-img 22.61±0.37 24.01±0.37 16.15±0.32 23.00±0.37 16.31±0.32 16.68±0.33 (25%)
rot-bg-img 55.18±0.44 56.41±0.43 52.21±0.44 51.93±0.44 47.39±0.44 44.49±0.44 (25%)
rect 2.15±0.13 2.15±0.13 4.71±0.19 2.41±0.13 2.60±0.14 1.99±0.12 (10%)
rect-img 24.04±0.37 24.05±0.37 23.69±0.37 24.05±0.37 22.50±0.37 21.59±0.36 (25%)
convex 19.13±0.34 19.82±0.35 19.92±0.35 18.41±0.34 18.63±0.34 19.06±0.34 (10%)

(a) No destroyed inputs (b) 25% destruction (c) 50% destruction

(d) Neuron A (0%, 10%, 20%, 50% destruction) (e) Neuron B (0%, 10%, 20%, 50% destruction)

Figure 3. Filters obtained after training the first denoising autoencoder.
(a-c) show some of the filters obtained after training a denoising autoencoder on MNIST samples, with increasing
destruction levels �. The filters at the same position in the three images are related only by the fact that the autoencoders
were started from the same random initialization point.
(d) and (e) zoom in on the filters obtained for two of the neurons, again for increasing destruction levels.
As can be seen, with no noise, many filters remain similarly uninteresting (undistinctive almost uniform grey patches).
As we increase the noise level, denoising training forces the filters to di�erentiate more, and capture more distinctive
features. Higher noise levels tend to induce less local filters, as expected. One can distinguish di�erent kinds of filters,
from local blob detectors, to stroke detectors, and some full character detectors at the higher noise levels.

Extracting and Composing Robust Features with Denoising Autoencoders,   
Vincent, Larochelle, Bengio and Manzagol, 2008. 



Deep Autoencoder 

Ø  Pre-training initializes the 
optimization problem  
in a region with better local 
optima of the training objective 

Ø  Each RBM used to initialize 
parameters both in encoder 
and decoder (‘‘unrolling’’) 

Ø  Better optimization algorithms 
can also help: Deep learning 
via Hessian-free optimization. 
Martens, 2010 
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•  Pre-training can be used to initialize a deep autoencoder 



Unsupervised Learning 
•  Unsupervised learning: we only use the inputs         for learning 
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Département d’informatique
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Math for my slides “Restricted Boltzmann Machines”.

• x(t) � log p(x(t))
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Ø  automatically extract meaningful features for your data 

Ø  leverage the availability of unlabeled data 

Ø  add a data-dependent regularizer to training (                   ) 
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•  We will consider 3 models for unsupervised learning that will 
form the basic building blocks for deeper models: 

Ø  Restricted Boltzmann Machines 

Ø  Autoencoders  

Ø  Sparse coding models  

1 



Restricted Boltzmann Machines 

•  Stochastic binary hidden variables:  

Image      visible variables 

  hidden variables 

Bipartite  
Structure 

•  Undirected bipartite graphical model 

•  The energy of the joint configuration:  
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•  Stochastic binary visible variables: 

x 2 {0,1}D

Markov random fields, Boltzmann machines, log-linear models. 

x

2 



Restricted Boltzmann Machines 

Image      visible variables 

  hidden variables 

Bipartite  
Structure 

•  Probability of the joint configuration is 
given by the Boltzmann distribution: 

Markov random fields, Boltzmann machines, log-linear models. 

p(x,h) = exp(�E(x,h))/Z

Partition function (intractable) 

x

Z =
X

x,h

exp
�
� E(x,h)

�
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Factors 

•  The notation based on an energy function is simply an alternative to the 
representation as the product of factors 
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•  The scalar visualization is more informative of the structure within 
the vectors. 

Pair-wise factors 

Unary 
factors 
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Inference	

Restricted:			No	interaction	between	
	 	 		hidden	variables	

Inferring	the	distribution	over	the	
hidden	variables	is	easy:	

Factorizes:	Easy	to	compute	

Image						visible	variables	

		hidden	variables	

Bipartite		
Structure	

Markov	random	fields,	Boltzmann	machines,	log-linear	models.	

x

p(h|x) =
�

j

p(hj |x)

Similarly:	

p(x|h) =
�

k

p(xk|h)
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Inference	
•  Conditional Distributions: 

p(h|x) =
�

j

p(hj |x)

p(hj = 1|x) =
1

1 + exp(�(bj + Wj·x))
= sigm(bj + Wj·x)

jth row of W 

p(xk = 1|h) =
1

1 + exp(�(ck + h⇥W·k))

p(x|h) =
�

k

p(xk|h)

= sigm(ck + h⇥W·k)

kth column of W 
7 



Learned	W:		“edges”	
Subset	of	1000	features	

Learning	Features	

=	 ….	

New	Image:	

Logistic	Function:	Suitable	for	
modeling	binary	images	

Most	hidden		
variables	are	off	

Observed		Data		
Subset	of	25,000	characters	

Represent:	 as	
8 



Model	Learning	

Image						visible	variables	

		hidden	variables	
• 	Given	a	set	of	i.i.d.	training	examples	we	
want	to	minimize	the	average	negative	log-
likelihood	(NLL):	

	 	 	 	 						.				
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Negative	Phase	
Hard	to	compute	

Remember: 
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• 	Derivative	of	the	negative	log-likelihood	objective:	
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Model	Learning	

Image						visible	variables	

		hidden	variables	
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• 	Derivative	of	the	negative	
log-likelihood	objective:	

Data-Dependent	
Expectations	w.r.t	P(h|x)	

Model:	Expectation	
w.r.t	joint	P(x,h)	

p(x,h) = exp(�E(x,h))/Z

p(h|x) =
�

j

p(hj |x)

• 	Second	term:	intractable	due	to	exponential	number	of	
configurations.		 10 



Pair-wise	 Unary	

Image						visible	variables	

		hidden	variables	

Learned	features	(out	of	10,000)	
4	million	unlabelled	images	

Gaussian Bernoulli RBMs 

(Notation: vector x is replaced with v). 11 



=  0.9 *            +  0.8 *            + 0.6 *            … 
New	Image	

Learned	features	(out	of	10,000)	
4	million	unlabelled	images	

Gaussian Bernoulli RBMs 

12 



RBMs	for	Word	Counts	

Replicated	Softmax	Model:	undirected	topic	model:	

• 	Stochastic	1-of-K	visible	variables.	
• 	Stochastic	binary	hidden	variables																							
• 	Bipartite	connections.	

0	
0	
1	
0	

0	

(Salakhutdinov & Hinton, NIPS 2010, Srivastava & Salakhutdinov, NIPS 2012)
13 
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RBMs	for	Word	Counts	

0	
0	
1	
0	

0	

Learned	features:	``topics’’	

russian	
russia	
moscow	
yeltsin	
soviet	

clinton	
house	
president	
bill	
congress	

computer	
system	
product	
software	
develop	

trade	
country	
import	
world	
economy	

stock	
wall	
street	
point	
dow	

Reuters	dataset:	
804,414	unlabeled	
newswire	stories	
Bag-of-Words		 14 
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RBMs	for	Word	Counts	

One-step	reconstruction	from	the	Replicated	Softmax	
model.		

15 



Learned	features:	``genre’’	

Fahrenheit	9/11	
Bowling	for	Columbine	
The	People	vs.	Larry	Flynt	
Canadian	Bacon	
La	Dolce	Vita	

Independence	Day	
The	Day	After	Tomorrow	
Con	Air	
Men	in	Black	II	
Men	in	Black	

Friday	the	13th	
The	Texas	Chainsaw	Massacre	
Children	of	the	Corn	
Child's	Play	
The	Return	of	Michael	Myers	

Scary	Movie	
Naked	Gun		
Hot	Shots!	
American	Pie		
Police	Academy	

Netflix	dataset:		
480,189	users		
17,770	movies		
Over	100	million	ratings	

State-of-the-art	performance		
on	the	Netflix	dataset.		

Collaborative	Filtering	

(Salakhutdinov, Mnih, Hinton, ICML 2007)

h

v

W1

Multinomial	visible:	user	ratings	

Binary	hidden:	user	preferences	

16 



Different	Data	Modalities	

• 	It	is	easy	to	infer	the	states	of	the	hidden	variables:		

• 	Binary/Gaussian/Softmax	RBMs:	All	have	binary	hidden	
variables	but	use	them	to	model	different	kinds	of	data.	

Binary	

Real-valued	 1-of-K	

0	
0	
1	
0	

0	

17 



Speech	

Learned	first-layer	bases	

Lee	et.al.,	NIPS	2009	
18 



Comparison	of	bases	to	phonemes	
Ph

on
em

e	
Fi
rs
t	l
ay
er
	b
as
es
	

“oy”	 “el”	 “s”	

Slide	credit:	Honglak	Lee	
19 



Product	of	Experts	

Marginalizing	over	hidden	variables:	 Product	of	Experts	

The	joint	distribution	is	given	by:	

Silvio	Berlusconi	

government	
authority	
power	
empire	
federation	

clinton	
house	
president	
bill	
congress	

bribery	
corruption	
dishonesty	
corrupt	
fraud	

mafia	
business	
gang	
mob	
insider	

stock	
wall	
street	
point	
dow	

…	

Topics	“government”,	”corruption”	
and	”mafia”	can	combine	to	give	very	
high	probability	to	a	word	“Silvio	
Berlusconi”.	

20 
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Local	vs.	Distributed	Representations	
• 	Clustering,	Nearest	
Neighbors,	RBF	SVM,	local	
density	estimators			

Learned	
prototypes	

Local	regions	
C1=1	

C1=0	

C2=1	

C2=1	C1=1	
C2=0	

C1=0	
C2=0	

• 	RBMs,	Factor	models,	
PCA,	Sparse	Coding,	
Deep	models	

C2	C1	 C3	

• 	Parameters	for	each	region.	
• 	#	of	regions	is	linear	with							
		#	of	parameters.	

Bengio, 2009, Foundations and Trends in Machine Learning22 
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C1=0	
C2=0	
C3=0	

C1=1	
C2=1	
C3=1	

C1=0	
C2=1	
C3=1	

C1=0	
C2=0	
C3=1	

• 	RBMs,	Factor	models,	
PCA,	Sparse	Coding,	
Deep	models	

• 	Parameters	for	each	region.	
• 	#	of	regions	is	linear	with							
		#	of	parameters.	

• 	Each	parameter	affects	many	
regions,	not	just	local.	
• 	#	of	regions	grows	(roughly)	
exponentially	in	#	of	parameters.	

C2	C1	 C3	
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Multiple	Application	Domains	

Same	learning	algorithm	--				 	 	 			
	 	 	 	multiple	input	domains. 

Limitations	on	the	types	of	structure	that	can	be	
represented	by	a	single	layer	of	low-level	features!	

•  Video	(Langford,	et	al.	ICML	2009)		

•  Collaborative	Filtering	/	Matrix	Factorization		
•  Text/Documents	
•  Natural	Images	

•  Motion	Capture	(Taylor	et.al.	NIPS	2007)	
•  Speech	Perception	(Dahl	et.	al.	NIPS	2010,	Lee	et.al.	NIPS	2010)	
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