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Neural Networks Online Course

e Disclaimer: Much of the material and slides for this lecture were
borrowed from Hugo Larochelle’s class on Neural Networks:
https://sites.google.com/site/deeplearningsummerschool2016/

http://info.usherbrooke.ca/hlarochelle/neural _networks

e Hugo’s class covers

many other topics: x o
convolutional networks, RESTRICTED BOLTZMANN MACHINE

neural language model,

_ Topics: RBM, visible layer; hidden layer, energy function
Boltzmann machines, OO0 h-
autoencoders, sparse —
. &
coding, etc.
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tion: p(x,h) = exp(—FE(x,h))/Z
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* We will use his don: E(x, )

material for some of the
other lectures.
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Learning Distributed Representations

e Deep learning is research on learning models with multilayer
representations

> multilayer (feed-forward) neural networks
> multilayer graphical model (deep belief network, deep Boltzmann

machine)
e Each layer learns “distributed representation™

> Units in a layer are not mutually exclusive
each unit is a separate feature of the input
two units can be “active” at the same time
>  Units do not correspond to a partitioning (clustering) of the inputs

in clustering, an input can only belong to a single cluster



Inspiration from Visual Cortex

Categorical judgments, i
decision making Simple visual forms
! edges, cormners

To spinal cord
———=160-220 ms

er muscle
260 ms

[picture from Simon Thorpe]




Unsupervised Pre-training

* |nitialize hidden layers using unsupervised learning

> Force network to represent latent structure of input distribution

Why is one
a character
and the other

IS not ?
1 /

character image random image

> Encourage hidden layers to encode that structure



Unsupervised Pre-training

* |nitialize hidden layers using unsupervised learning

> This is a harder task than supervised learning (classification)

Why is one
a character
and the other

IS not ?
1 /

character image random image

> Hence we expect less overfitting



Pre-training

* We will use a greedy, layer-wise procedure

> Train one layer at a time with unsupervised criterion

>  Fix the parameters of previous hidden layers

> Previous layers viewed as feature extraction




Pre-training

» Unsupervsed Pre-training

»  first layer: find hidden unit features that are more common in
training inputs than in random inputs
> second layer: find combinations of hidden unit features that are

more common than random hidden unit features

»  third layer: find combinations of combinations of ...

* Pre-training initializes the parameters in a region such that the
near local optima overfit less the data



Fine-tuning

e Once all layers are pre-trained

> add output layer
> train the whole network using

supervised learning

e Supervised learning is performed as
In a regular network

>  forward propagation,
backpropagation and update

* We call this last phase fine-tuning

> all parameters are “tuned” for the
supervised task at hand

> representation is adjusted to be more
discriminative



Stacking RBMs, Autoencoders

e Stacked Restricted Boltzmann Machines:

> Hinton, Teh and Osindero suggested this procedure with RBMs;:
A fast learning algorithm for deep belief nets.

> To recognize shapes, first learn to generate images.
Hinton, 2006.

o Stacked autoencoders, sparse-coding models, etc.

> Bengio, Lamblin, Popovici and Larochelle (stacked autoencoders)
> Ranzato, Poultney, Chopra and LeCun (stacked sparse coding

models)

o Lots of others started stacking models together.



Example

e Datasets generated with varying number of factors of variations

Variations on MNIST TaII or wide!
MNIST randorm- - 5 [rh_
background — L k.
MINIS T-image- Convex shape or not?
background ﬁ
background- \
rotation b

An Empirical Evaluation of Deep Architectures on Problems with Many Factors 11
of Variation, Larochelle, Erhan, Courville, Bergstra and Bengio, 2007



Impact of Initialization

Network MNIST-small MNIST-rotation

Type Depth || classif. test error || classif. test error
Nenral netwanrk 1 4.14 % + 0.17 15.22 % +0.31
2 4.03 % + 0.17 10.63 % +0.27
Deep net 3 4.24 % +0.18 11.98 % +0.28
4 4.47 % +0.18 11.73 % +0.29
1 3.87 % +0.17 11.43% + 0.28
Deep net + 2 3.38 % < 0.16 0.88 % + 0.26
autoencoder 3 3.37 % + 0.16 9.22 % +0.25
4 3.39 % +0.16 9.20 % +0.25
T~ i 1 3.17 % +0.15 10.47 % +0.27
Deep net + 2 274 % +0.14 0.54 % + 026
RBM 3 2.71 % +0.14 8.80 % +0.25
4 2.72 % +0.14 8.83 % +0.24
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Test error

| = 1-layer denoising AE

Impact of Pretraining

==1-layer RBM

—e—1 layers w/o pre-training

R I
10’ 10°

10°
Number of hidden units

Test error

71 —e—2 layers w/o pre-training

= =2-layer DBN
—2-layer SDAE

1 R P
10' 10°
Number of hidden units

10°

Test error

7 | ——3-layer SDAE

- =3-layer DBN

—&—3 layers w/o pre-training

1 R P
10' 10°
Number of hidden units

Acts as a regularizer: overfits less with large
capacity, underfits with small capacity

10°

13



Performance on Different Datasets

Stacked Stacked Stacked
Autoencoders RBMS Denoising Autoencoders

SAA-3 DBN-3 SdA-3 (v

)
3.46+£0.16 | 3.11+0.15 | 2.80+0.14 (10%)
10.30+£0.27 | 10.30+0.27 | 10.29£0.27 (10%)
11.28+0.28 | 6.7310.22 | 10.38+0.27 (40%)
23.00+£0.37 | 16.31+£0.32 | 16.68+0.33 (25%)
(25%)
(10%)
(25%)
(10%)

51.93+0.44 47.394+0.44 | 44.49+0.44 (25%
2.414+0.13 2.60£0.14 1.9940.12 (10%
24.05+0.37 22.504+0.37 | 21.59+0.36 (25%
18.41+0.34 | 18.63+0.34 | 19.06+0.34 (10%

Extracting and Composing Robust Features with Denoising Autoencoders,
Vincent, Larochelle, Bengio and Manzagol, 2008.



Deep Autoencoder

* Pre-training can be used to initialize a deep autoencoder

e ‘ Decoder ! =
.. T | 0 | | |
Pre-training initializes the § @W o ' s ’
3 A 4 4 TOp 3 % i
optimization problem O T mem :

777777777777777777777777777777777777777777 | T wr | T Wik,
: : : e ‘ i 2000 | 2000 |
in a region with better local e - i
optima of the training objective | W o Lw T L 1w ]
: 1000 : 3 W, : Wi+eg
S e a1 e
| : WI+£5
‘ E1
W,+ey

[ 500 ]

Y

Each RBM used to initialize
parameters both in encoder
and decoder (“unrolling™)

Wi+es
[ 1000 |
A

W, +e,
| 2000 |

TW1+81

Pretraining Unrolling Fine—tuning

Martens, 2010 15

Better optimization algorithms
can also help: Deep learning




Unsupervised Learning

e Unsupervised learning: we only use the inputs x () for learning

> automatically extract meaningful features for your data
> leverage the availability of unlabeled data

> add a data-dependent regularizer to training ( — log p(x(t)))

* We will consider 3 models for unsupervised learning that will
form the basic building blocks for deeper models:

> Restricted Boltzmann Machines
>  Autoencoders

> Sparse coding models



Restricted Boltzmann Machines

hidden variables

h

'.\ l.\ Bipartite « Undirected bipartite graphical model

\\//‘ k\ Structure
4 \ /{"Q!W'/IQ L N |

7240%aNVANAN * Stochastic binary visible variables:

PN :

he: HON x € {0,1)

), .I

« Stochastic binary hidden variables:

Image  visible variables

hc {0,1}"

* The energy of the joint configuration:

E(x,h) = —-h'Wx—-c'x—b'h

- Z Z Wj,khjflg — chibk — Z bjhj
J k J

k

. . . 2
Markov random fields, Boltzmann machines, log-linear models.



Restricted Boltzmann Machines

hidden variables

()
X
AN

b
R

AN DR\
JeghioN
e

Bipartite
Structure

 Probability of the joint configuration is
given by the Boltzmann distribution:

p(x,h) = exp(—E(x, h))/Z

0

Partition function (intractable)

7 = Zexp (— E(x,h))

Image  visible variables

Markov random fields, Boltzmann machines, log-linear models. 3



Restricted Boltzmann Machines

K}’ QOO0 b e e
b[as W<— connections

[O@OOO] X« visble layer

(binary units)
pch) = exp(—E(x.h))/Z
= exp(h' Wx+c'x+b'h)/Z
= exp(h' Wx)exp(c'x)exp(b'h)/Z

. J
Y

Factors

* The notation based on an energy function is simply an alternative to the
representation as the product of factors



Restricted Boltzmann Machines

Pair-wise factors

A
f N\
1
p(x,h) = ZHHQXP(W%khjxk)
ik
\
Hexp(ckxk)
k
] [ exp(b;n;)
; J

> Unary
factors

* The scalar visualization is more informative of the structure within
the vectors. 5



Inference

hidden variables

h ()
Bipartite
‘&4‘1&'/ \Strr)ucture Restricted: No interaction between
\%Q’\*I‘QY/'A@‘ hidden variables
'l»/ ';\
/5’ K
%

5 /

Inferring the distribution over the
hidden variables is easy:

p(hfx) = [T (s

J J
Y
Factorizes: Easy to compute

%

Image visible variables

Similarly:
p(xh) = [ p(as|h)
k

Markov random fields, Boltzmann machines, log-linear models.



Inference

e Conditional Distributions:
CO0000D b *hix = HP (ks
"1+ exp(—(b; + W;.x))

= sigm(b; + W;.x
©O000 x (b W)

_______________________________________ ffrowofW
(x|h) = [ p(zx/n)
@ooooon M-l
p(zr = 1[h) = 1

1+ exp(—(cr + BT W)

(OOOOC)) X = sigm(cy + hTW.k)

\ .
kth column of W




Learning Features

Observed Data Learned W: “edges”
Subset of 25,000 characters Subset of 1000 features

Most hidden
New Image: p(h7 = 1fv) (h29 =1v) variables are off

m 099><i+097><- 082><n

Logistic Function: Suitable for
1+eXP( ) modeling binary images

as P(h|v)=10,0,0.82,0,0,0.99,0,0 ... |

o(x) =

Represent:




Model Learning

hidden variables

h ‘\ \ | * Given a set of i.i.d. training examples we
\\//IA\ / \ want to minimize the average negative log-
NS likelihood (NLL):
WA ikelihood (NLL)
AORNTD /7 20 = 55 3~ logp(x®)
7atd t t
/"/
(v Remember:
Image visible variables p(X, h) — eXp(—E(X, h))/Z

 Derivative of the negative log-likelihood objective:

0 — log p(x*) _ g, lﬁE(X(t),h) ‘X(t)] B, [8E(X, h)]
o0 X’

00

00

\ J \ J
Y Y

Positive Phase Negative Phase

Hard to compute



Model Learning
p(x,h) = exp(—E(x,h))/Z
p(lx) = [T p(hs )

hidden variables

h €
iy

/

AN\ )
/@’o”}‘
,,/

U

Image visible variables

0 — log p(x)) B laE(X(t),h) X(t)] . lﬁE(X,h)]
h — Lix.h

* Derivative of the negative
log-likelihood objective:

00 00 00
\ J 4 J
Y Y
Data-Dependent Model: Expectation
Expectations w.r.t P(h|x) w.r.t joint P(x,h)

* Second term: intractable due to exponential number of
configurations.

10



Gaussian Bernoulli RBMs

hidden variables Pair-wise Unary

h .\/ — ~— —~
‘\\\\//\"l!\\'// PQ(V, h) = ! exp i i Wz‘jhj & + i (vi _ 2bz)2 + i ajhj
/){ﬂ":\ »/A‘Q \ 2(0) i=1 j=1 oi I 20 j=1

O )= (W,0,0)
D D F

Py(vih) = [ Po(vilh) = [NV [ 0 + > Wijhy, 07
i=1 i=1 j=1

Learned features (out of 10,000)

NN
LA
Ve

/" /

Image visible variables

4 million unlabelled images

(Notation: vector x is replaced with v).



Gaussian Bernoulli RBMs

Learned features (out of 10,000)

4 million unlabelled images

New Image

12



RBMs for Word Counts

h[OO000 p(x,h) = exp(—E(x,h))/Z
W
|C3>é o p(hlx) = Hp hjlx)
@0 O,
Ol
O ol
O

«— D —
Replicated Softmax Model: undirected topic model:

* Stochastic 1-of-K visible variables.
* Stochastic binary hidden variables h € {0,1}"".

* Bipartite connections.
13
(Salakhutdinov & Hinton, NIPS 2010, Srivastava & Salakhutdinov, NIPS 2012)



RBMs for Word Counts
» OO0 p(x, h) = exp(— E(x, h))/Z

T p(h|x) = Hp hj|x)

O
Q.
Ol
O
O

A% REUTERS
=5 AP associsted Press Learned features: ““topics”
russian clinton computer trade stock
Reuters dataset: russia house system country wall
804,414 unlabeled :> moscow | president | product import street
newswire stories yeltsin bill software world point
soviet congress develo econom dow
Bag-of-Words & P Y

14



RBMs for Word Counts

One-step reconstruction from the Replicated Softmax

model.

Input

Reconstruction

chocolate, cake

nyc

dog

flower, high, /£

girl, rain, station, norway
fun, life, children

forest, blur

espafia, agua, granada

cake, chocolate, sweets, dessert, cupcake, food, sugar, cream, birthday
nyc, newyork, brooklyn, queens, gothamist, manhattan, subway, streetart
dog, puppy, perro, dogs, pet, filmshots, tongue, pets, nose, animal
flower, 1t high, japan, sakura, H 7K, blossom, tokyo, lily, cherry
norway, station, rain, girl, oslo, train, umbrella, wet, railway, weather
children, fun, life, kids, child, playing, boys, kid, play, love

forest, blur, woods, motion, trees, movement, path, trail, green, focus
espafia, agua, spain, granada, water, andalucia, naturaleza, galicia, nieve

15



Collaborative Filtering

1
Py(v,h) = Z(0) exp <Z W,;;-’Ufhj + bevf + Zajhj>
ik J

ijk

Binary hidden: user preferences

Learned features: ‘genre”’

Fahrenheit 9/11 Independence Day
Bowling for Columbine The Day After Tomorrow
_ 0 _ The People vs. Larry Flynt Con Air
Multinomial visible: user ratings Canadian Bacon Men in Black Ii
] La Dolce Vita Men in Black
Netflix dataset:
480,189 users |:> Friday the 13th Scary Movie
. The Texas Chainsaw Massacre Naked Gun
17’770 mo.vloes . Children of the Corn Hot Shots!
Over 100 million ratings Child's Play American Pie
The Return of Michael Myers Police Academy

NETIELLX
State-of-the-art performance
on the Netflix dataset.

(Salakhutdinov, Mnih, Hinton, ICML ?OO?)



Different Data Modalities

* Binary/Gaussian/Softmax RBMs: All have binary hidden
variables but use them to model different kinds of data.

hidden variables h ‘O O O O ’

4
Binary ¥ X

K

00000"

@O
™~ /V‘@IO

Real-valued 1-of-K «—])—>

* It is easy to infer the states of the hidden variables:

F

17
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Learned first-layer bases

18

Lee et.al., NIPS 2009
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Comparison of bases to phonemes

;§

Phoneme

oo b A n
i I@““ i .h“. 13

First layer bases

“oy”

Example phones ("oy

W

=

=
"—';
-
-
—

First layer bases

e
TR T A

H LT

Ilelll

Example phones ("el")

.¥
¥
; |
i h

a

e R e

oa_n

S

Example phones ("s")

o

. e
K

m o R - SR

“ -
. -

- i
T

First layer bases

i

i)
3 '.', i
g 4

First layer bases

i

43 g
¥
!

@

e | IR ma=— ==

| 1
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Slide credit: Honglak Lee




Pg (V, h) =

1

Marginalizing over hidden variables:

Py(v) = Z Py(v,h) = % Hexp(bivi) H G—F exp(a; + Z Wijvi)>
h i J z

government
authority
power
empire
federation

clinton
house
president
bill
congress

bribery
corruption
dishonesty
corrupt
fraud

Silvio Berlusconi

mafia
business
gang
mob
insider

Product of Experts

The joint distribution is given by:

Z(Q) exXp (Z Wijvihj + Z bi’Ui + Z ajhj)
1] 7 J

A Product o\f Experts

stock
wall
street
point
dow

”n n

Topics “government”, “corruption”
and “mafia” can combine to give very
high probability to a word “Silvio
Berlusconi”.

20



Product of Experts

The joint distribution is given by:

1
Py(v,h) = Z(0) exp ( g Wijvih; + g bivi + § ajh;)
ij i J

Marginalizing ¢

iduct of Experts

50—mm™ \
P, = A ..
o(v) Z Replicated Vij Uz))
h 40 Softmax 50-D
government | clint &\i
authority hou ¢ 30
d o)
power pres "7, LDA 50-D
empire bill 'O 20!
federation cony &,

10F
\ , ”corruption”

0.0010.006 0.051 0.4 1.6 64 256 100 Pne toBivevery
Recall (%) word “Silvio

D e—
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Local vs. Distributed Representations

* Clustering, Nearest * RBMs, Factor models,
Neighbors, RBF SVM, local PCA, Sparse Coding,
density estimators Deep models

4 )

* Parameters for each region.
 # of regions is linear with
# of parameters.

Cl1 C2 C3 “s

Learned
prototypes

Bengio, 2009, Foundations and Trends in Machine Lé%rning



Local vs. Distributed Representations

* Clustering, Nearest * RBMs, Factor models,

Neighbors, RBF SVM, local PCA, Sparse Coding,

density estimators Deep models | C1=1
4 ) |

* Parameters for each region.
 # of regions is linear with
# of parameters.

Cl1 C2 C3 \

Learned
prototypes

Bengio, 2009, Foundations and Trends in Machine Légrning



Local vs. Distributed Representations

* Clustering, Nearest * RBMs, Factor models,
Neighbors, RBF SVM, local PCA, Sparse Coding,
density estimators Deep models \ E}=}
r \ (- B
* Parameters for each region. * Each parameter affects many
 # of regions is linear with regions, not just local.
# of parameters. y  # of regions grows (roughly)
pronentially in # of parameters. y

CI=T =< CZ=T CI=0
C2=0 S~ _ C3=0 \ Cc2=1
C3:O C].:O “ ~ ~ y C3:1

C2=0 ~d

-\\
C3=0 | x\\
. ~
Cl C2 C3 | c120 °~
| C2=0
Learned C3=1
prototypes

Bengio, 2009, Foundations and Trends in Machine Lezgrning



Multiple Application Domains

Natural Images
Text/Documents
Collaborative Filtering / Matrix Factorization

Video (Langford, et al. ICML 2009)

Motion Capture (Taylor et.al. NIPS 2007)
Speech Perception (Dahl et. al. NIPS 2010, Lee et.al. NIPS 2010)

Same learning algorithm --
multiple input domains.

Limitations on the types of structure that can be
represented by a single layer of low-level features!



