

10417/10617

Intermediate Deep Learning:

Fall2019

Russ Salakhutdinov

Machine Learning Department

rsalakhu@cs.cmu.edu

<https://deeplearning-cmu-10417.github.io/>

Restricted Boltzmann Machines

Neural Networks Online Course

- **Disclaimer:** Much of the material and slides for this lecture were borrowed from Hugo Larochelle's class on Neural Networks:
<https://sites.google.com/site/deeplearningsummerschool2016/>

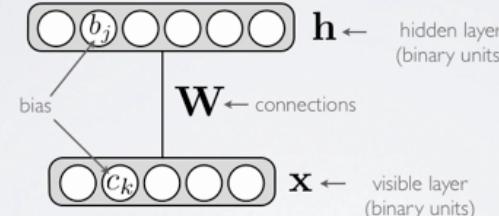
- Hugo's class covers many other topics: convolutional networks, neural language model, Boltzmann machines, autoencoders, sparse coding, etc.

- We will use his material for some of the other lectures.

http://info.usherbrooke.ca/hlarochelle/neural_networks

RESTRICTED BOLTZMANN MACHINE

Topics: RBM, visible layer; hidden layer; energy function



Energy function:
$$\begin{aligned} E(\mathbf{x}, \mathbf{h}) &= -\mathbf{h}^T \mathbf{W} \mathbf{x} - \mathbf{c}^T \mathbf{x} - \mathbf{b}^T \mathbf{h} \\ &= -\sum_j \sum_k W_{j,k} h_j x_k - \sum_k c_k x_k - \sum_j b_j h_j \end{aligned}$$

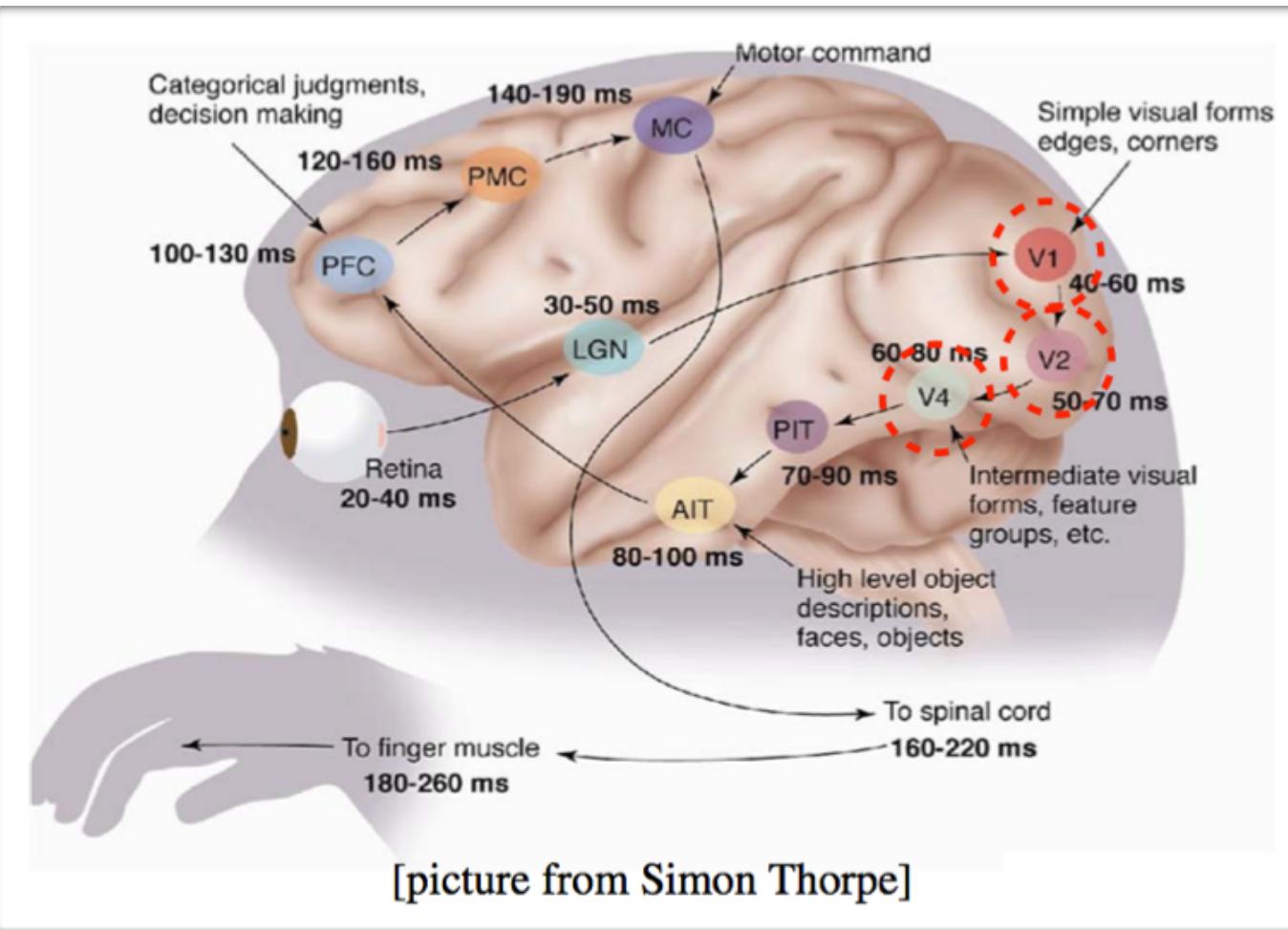
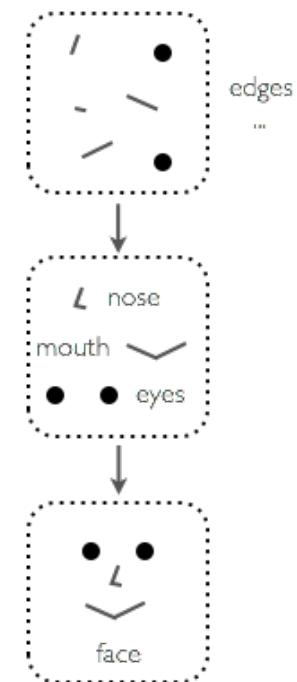
Distribution: $p(\mathbf{x}, \mathbf{h}) = \exp(-E(\mathbf{x}, \mathbf{h}))/Z$ ← partition function (intractable)

Click with the mouse or tablet to draw with pen 2

Learning Distributed Representations

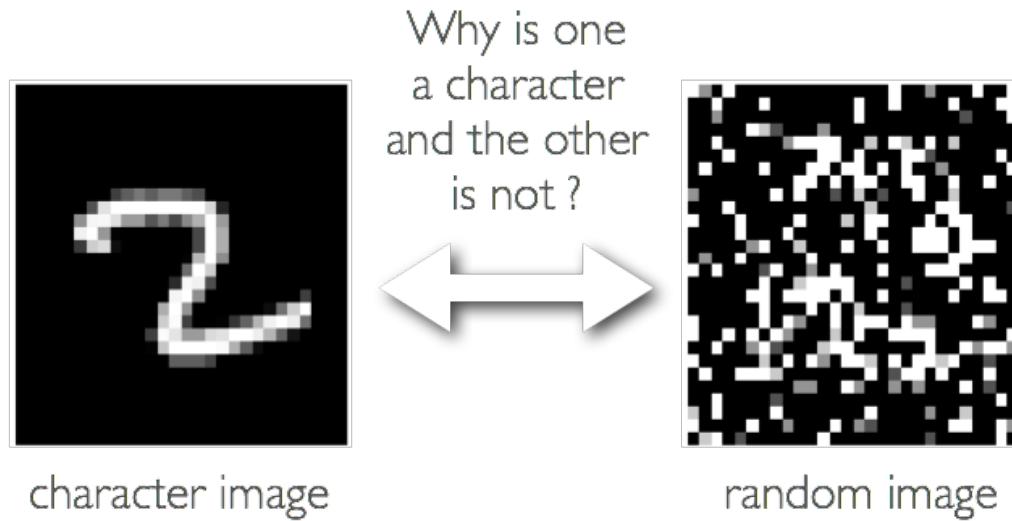
- Deep learning is research on learning models with **multilayer representations**
 - multilayer (feed-forward) neural networks
 - multilayer graphical model (deep belief network, deep Boltzmann machine)
- Each layer learns “**distributed representation**”
 - Units in a layer are not mutually exclusive
 - each unit is a separate feature of the input
 - two units can be “active” at the same time
 - Units do not correspond to a partitioning (clustering) of the inputs
 - in clustering, an input can only belong to a single cluster

Inspiration from Visual Cortex



Unsupervised Pre-training

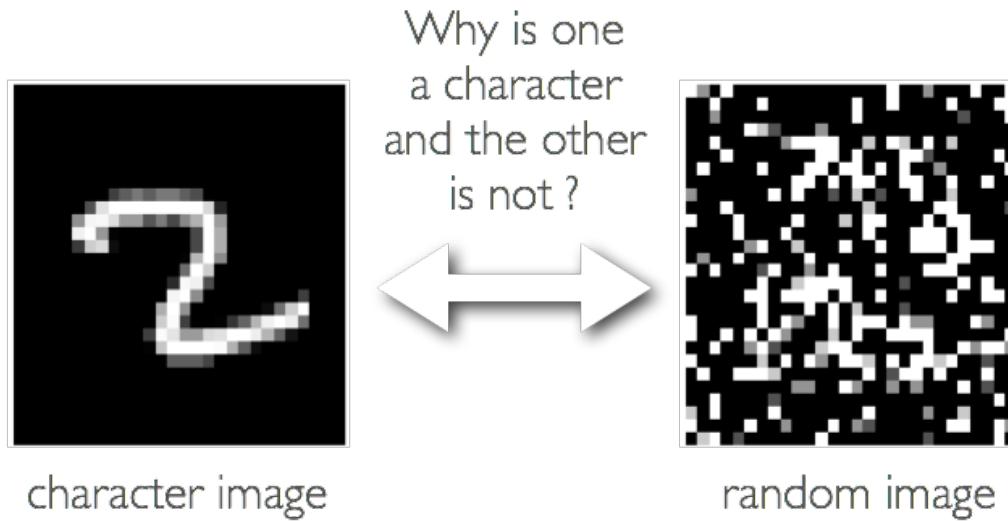
- Initialize hidden layers using unsupervised learning
 - Force network to represent latent structure of input distribution



- Encourage hidden layers to encode that structure

Unsupervised Pre-training

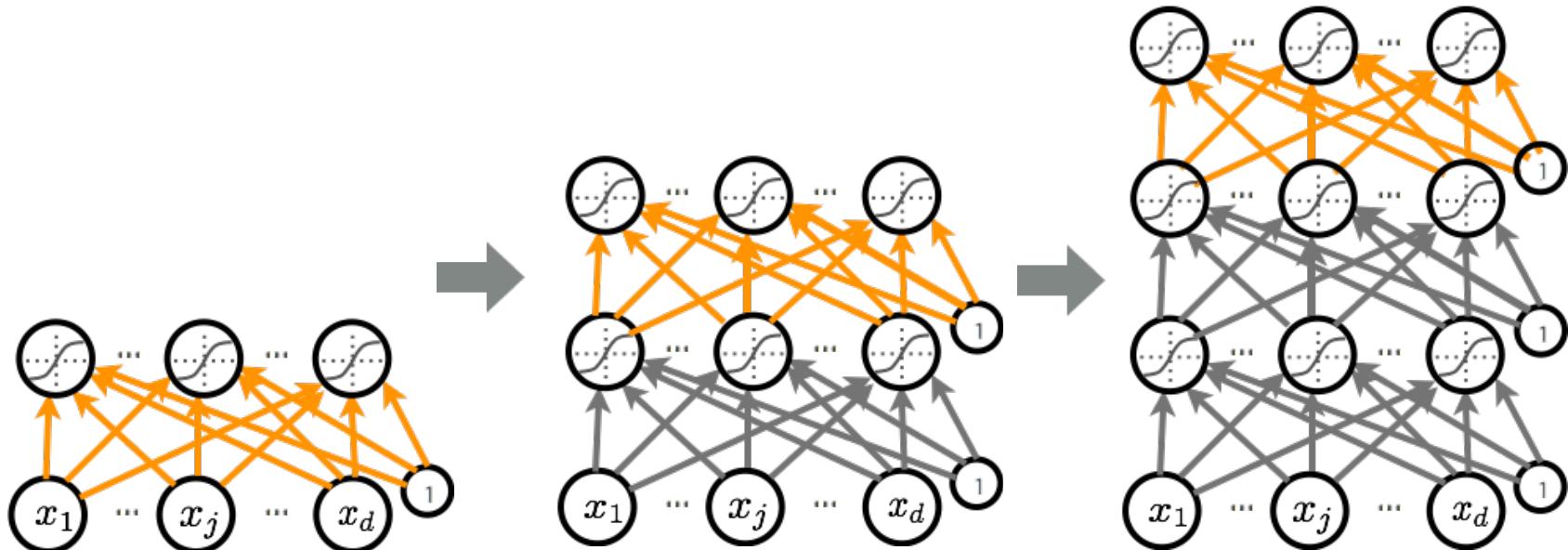
- Initialize hidden layers using unsupervised learning
 - This is a harder task than supervised learning (classification)



- Hence we expect less overfitting

Pre-training

- We will use a greedy, layer-wise procedure
 - Train one layer at a time with unsupervised criterion
 - Fix the parameters of previous hidden layers
 - Previous layers viewed as feature extraction

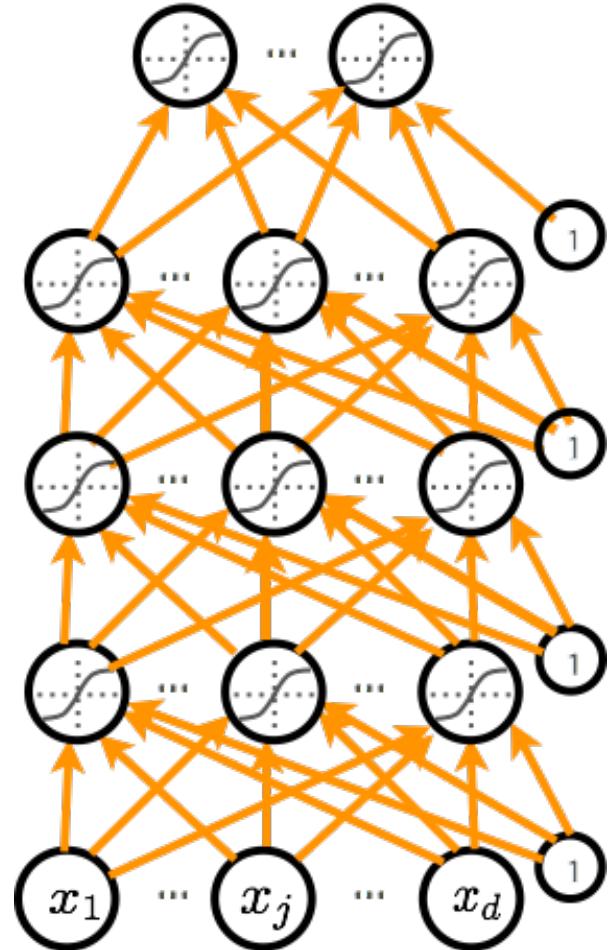


Pre-training

- Unsupervised Pre-training
 - **first layer**: find hidden unit features that are more common in training inputs than in random inputs
 - **second layer**: find combinations of hidden unit features that are more common than random hidden unit features
 - **third layer**: find combinations of combinations of ...
- Pre-training initializes the parameters in a region such that the near local optima overfit less the data

Fine-tuning

- Once all layers are pre-trained
 - add output layer
 - train the whole network using supervised learning
- Supervised learning is performed as in a regular network
 - forward propagation, backpropagation and update
- We call this last phase **fine-tuning**
 - all parameters are “tuned” for the supervised task at hand
 - representation is adjusted to be more discriminative



Stacking RBMs, Autoencoders

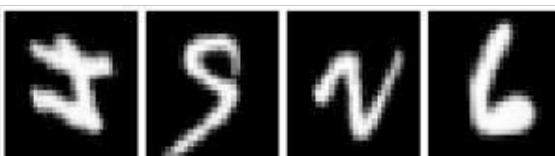
- Stacked Restricted Boltzmann Machines:
 - Hinton, Teh and Osindero suggested this procedure with RBMs,:
A fast learning algorithm for deep belief nets.
 - To recognize shapes, first learn to generate images.
Hinton, 2006.
- Stacked autoencoders, sparse-coding models, etc.
 - Bengio, Lamblin, Popovici and Larochelle (stacked autoencoders)
 - Ranzato, Poultney, Chopra and LeCun (stacked sparse coding models)
- Lots of others started stacking models together.

Example

- Datasets generated with varying number of factors of variations

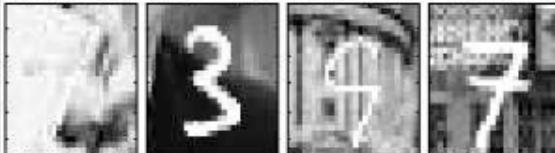
Variations on MNIST

MNIST-rotation



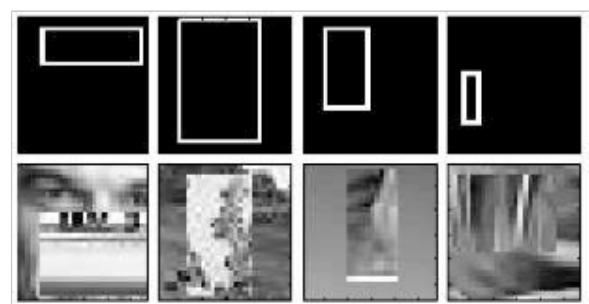
MNIST-random-
background

MNIST-image-
background

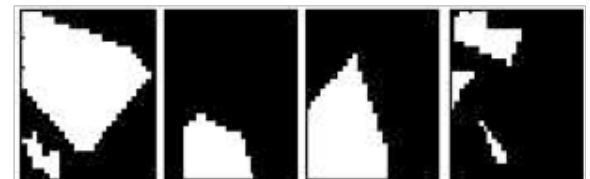


MNIST-
background-
rotation

Tall or wide?



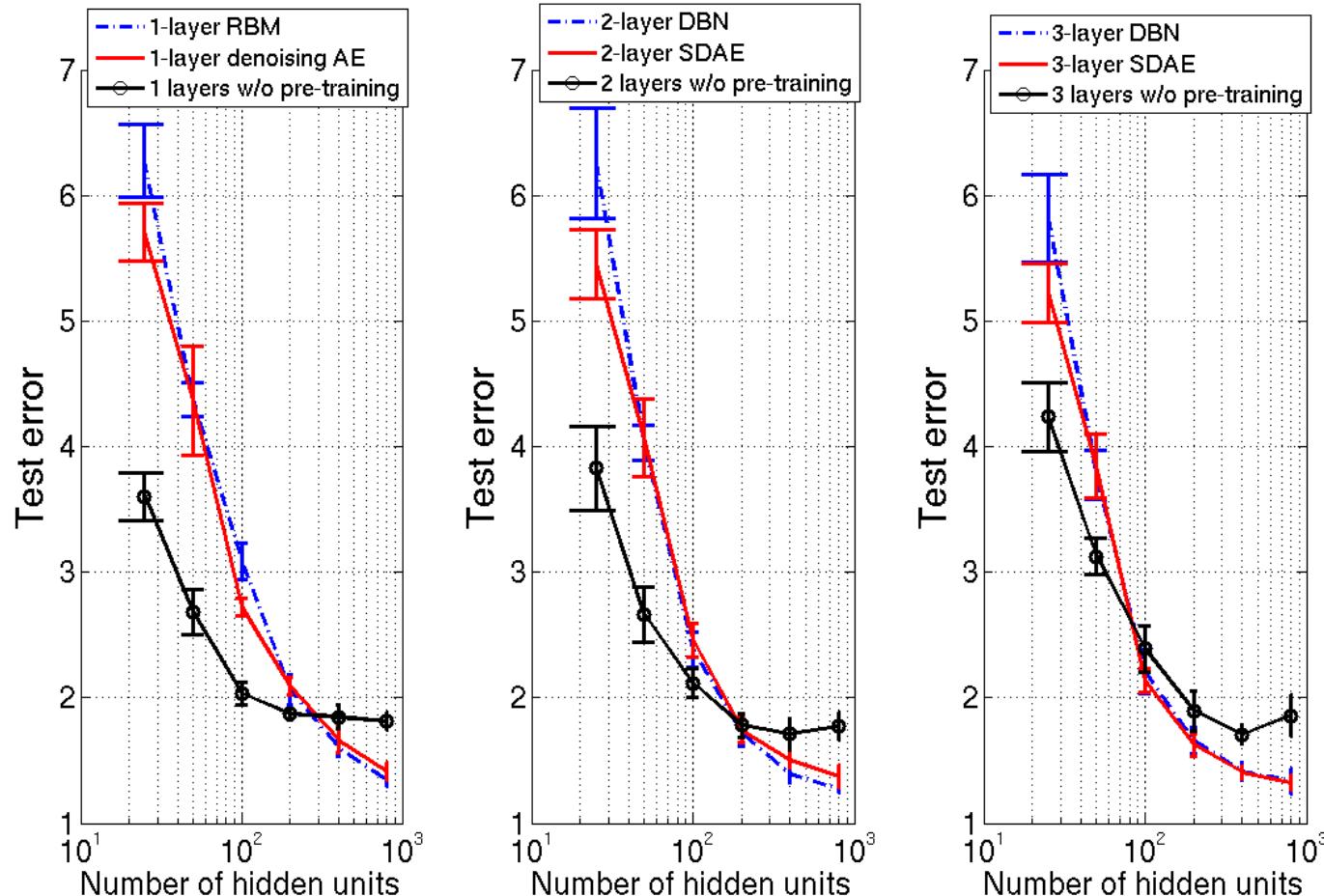
Convex shape or not?



Impact of Initialization

Network		MNIST-small classif. test error	MNIST-rotation classif. test error
Type	Depth		
Neural network Deep net	1	4.14 % ± 0.17	15.22 % ± 0.31
	2	4.03 % ± 0.17	10.63 % ± 0.27
	3	4.24 % ± 0.18	11.98 % ± 0.28
	4	4.47 % ± 0.18	11.73 % ± 0.29
Deep net + autoencoder	1	3.87 % ± 0.17	11.43% ± 0.28
	2	3.38 % ± 0.16	9.88 % ± 0.26
	3	3.37 % ± 0.16	9.22 % ± 0.25
	4	3.39 % ± 0.16	9.20 % ± 0.25
Deep net + RBM	1	3.17 % ± 0.15	10.47 % ± 0.27
	2	2.74 % ± 0.14	9.54 % ± 0.26
	3	2.71 % ± 0.14	8.80 % ± 0.25
	4	2.72 % ± 0.14	8.83 % ± 0.24

Impact of Pretraining



Acts as a regularizer: overfits less with large capacity, underfits with small capacity

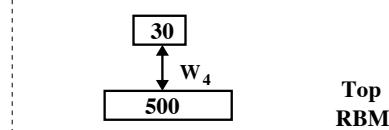
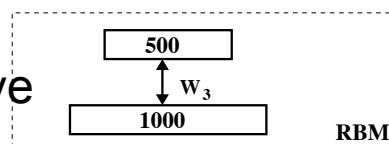
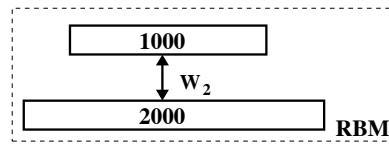
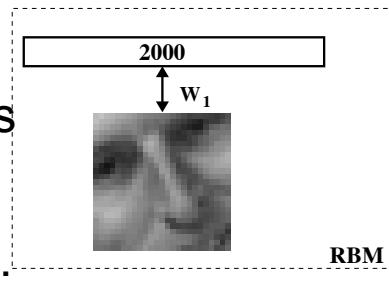
Performance on Different Datasets

Stacked Autoencoders	Stacked RBMS	Stacked Denoising Autoencoders
SAA-3	DBN-3	SdA-3 (ν)
3.46 \pm 0.16	3.11 \pm 0.15	2.80\pm0.14 (10%)
10.30\pm0.27	10.30\pm0.27	10.29\pm0.27 (10%)
11.28 \pm 0.28	6.73\pm0.22	10.38 \pm 0.27 (40%)
23.00 \pm 0.37	16.31\pm0.32	16.68\pm0.33 (25%)
51.93 \pm 0.44	47.39 \pm 0.44	44.49\pm0.44 (25%)
2.41 \pm 0.13	2.60 \pm 0.14	1.99\pm0.12 (10%)
24.05 \pm 0.37	22.50 \pm 0.37	21.59\pm0.36 (25%)
18.41\pm0.34	18.63\pm0.34	19.06\pm0.34 (10%)

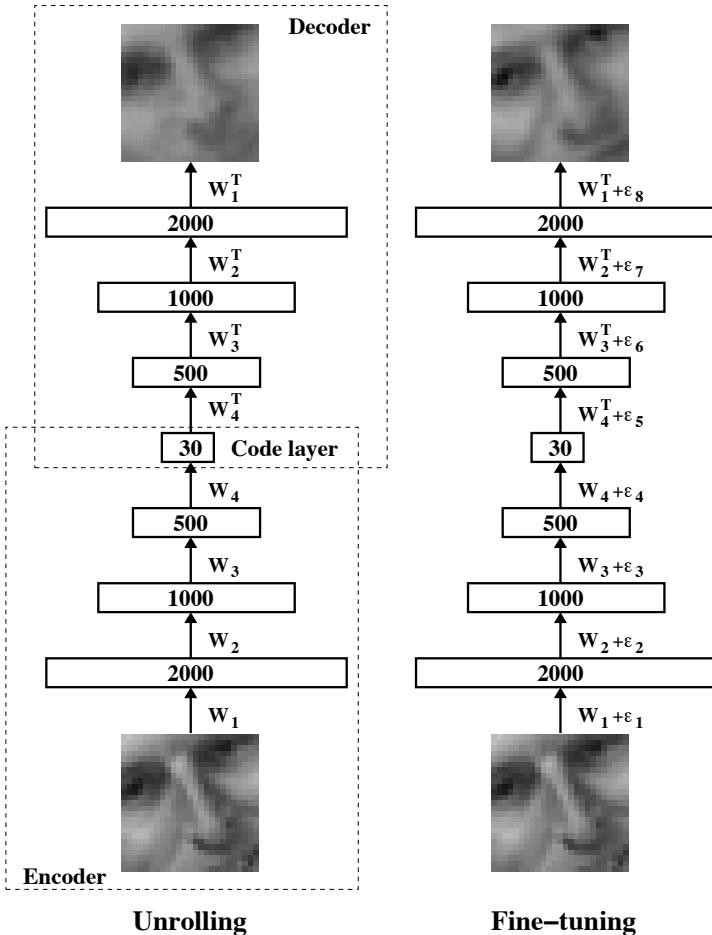
Deep Autoencoder

- Pre-training can be used to initialize a deep autoencoder

➤ Pre-training initializes the optimization problem in a region with better local optima of the training objective



Pretraining

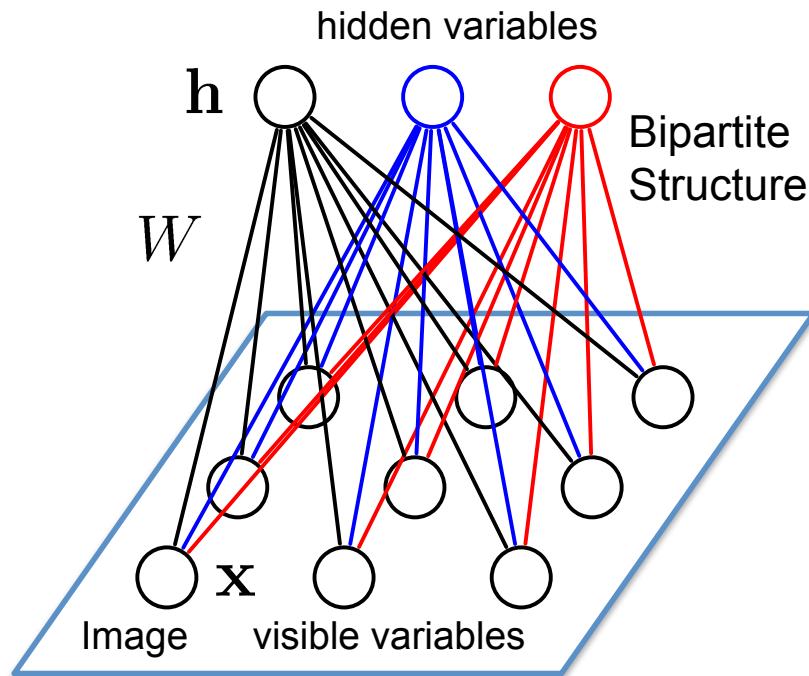


Martens, 2010

Unsupervised Learning

- Unsupervised learning: we only use the inputs $\mathbf{x}^{(t)}$ for learning
 - automatically extract meaningful features for your data
 - leverage the availability of unlabeled data
 - add a data-dependent regularizer to training ($-\log p(\mathbf{x}^{(t)})$)
- We will consider 3 models for unsupervised learning that will form the basic building blocks for deeper models:
 - Restricted Boltzmann Machines
 - Autoencoders
 - Sparse coding models

Restricted Boltzmann Machines

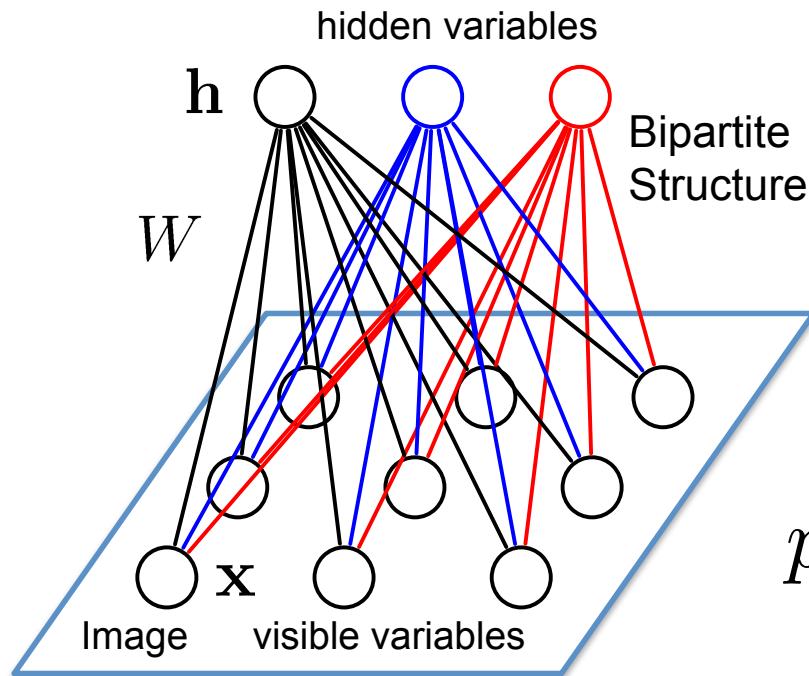


- Undirected bipartite graphical model
- Stochastic binary visible variables:
$$\mathbf{x} \in \{0, 1\}^D$$
- Stochastic binary hidden variables:
$$\mathbf{h} \in \{0, 1\}^F$$

- The energy of the joint configuration:

$$\begin{aligned} E(\mathbf{x}, \mathbf{h}) &= -\mathbf{h}^\top \mathbf{W} \mathbf{x} - \mathbf{c}^\top \mathbf{x} - \mathbf{b}^\top \mathbf{h} \\ &= -\sum_j \sum_k W_{j,k} h_j x_k - \sum_k c_k x_k - \sum_j b_j h_j \end{aligned}$$

Restricted Boltzmann Machines



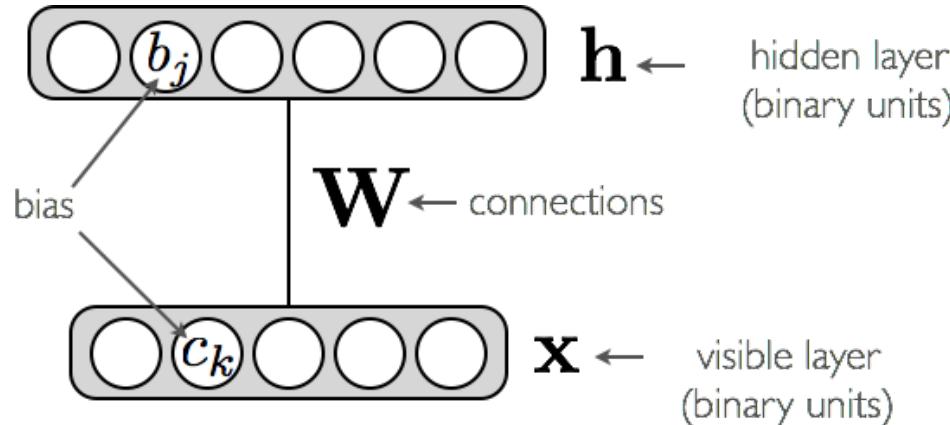
- Probability of the joint configuration is given by the Boltzmann distribution:

$$p(\mathbf{x}, \mathbf{h}) = \exp(-E(\mathbf{x}, \mathbf{h}))/Z$$

Partition function (intractable)

$$Z = \sum_{\mathbf{x}, \mathbf{h}} \exp(-E(\mathbf{x}, \mathbf{h}))$$

Restricted Boltzmann Machines

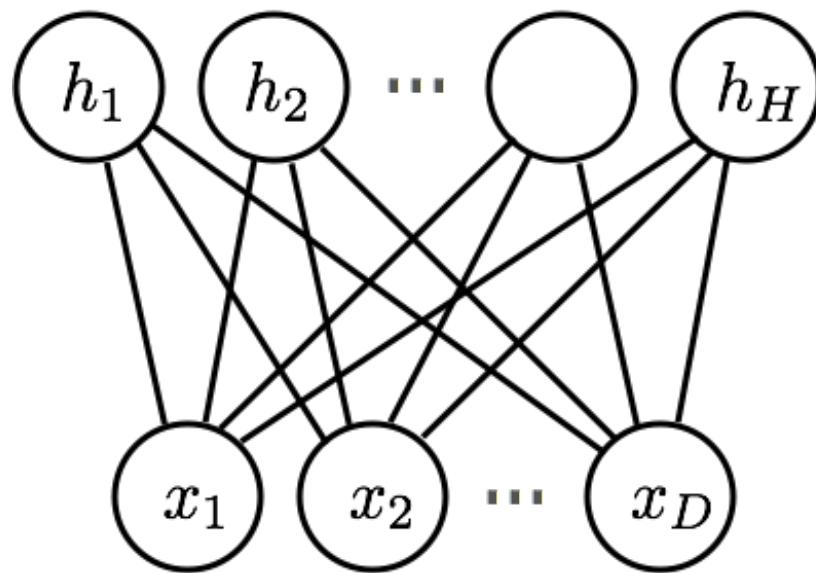


$$\begin{aligned} p(\mathbf{x}, \mathbf{h}) &= \exp(-E(\mathbf{x}, \mathbf{h}))/Z \\ &= \exp(\mathbf{h}^\top \mathbf{W} \mathbf{x} + \mathbf{c}^\top \mathbf{x} + \mathbf{b}^\top \mathbf{h})/Z \\ &= \exp(\mathbf{h}^\top \mathbf{W} \mathbf{x}) \exp(\mathbf{c}^\top \mathbf{x}) \exp(\mathbf{b}^\top \mathbf{h})/Z \end{aligned}$$

Factors

- The notation based on an **energy function** is simply an alternative to the representation as the product of factors

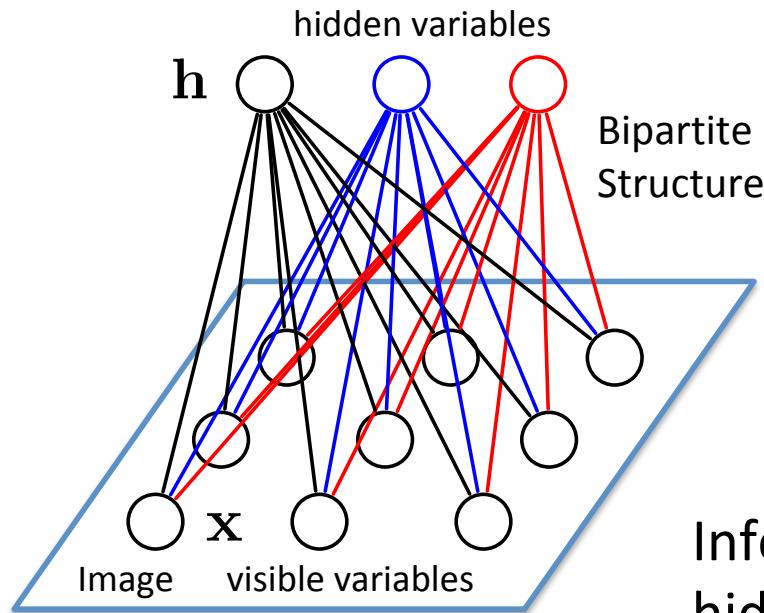
Restricted Boltzmann Machines



$$p(\mathbf{x}, \mathbf{h}) = \frac{1}{Z} \underbrace{\prod_j \prod_k}_{\text{Pair-wise factors}} \exp(W_{j,k} h_j x_k) \underbrace{\left. \begin{aligned} & \prod_k \exp(c_k x_k) \\ & \prod_j \exp(b_j h_j) \end{aligned} \right\}}_{\text{Unary factors}}$$

- The scalar visualization is more informative of the structure within the vectors.

Inference



Restricted: No interaction between hidden variables

Inferring the distribution over the hidden variables is easy:

$$p(\mathbf{h}|\mathbf{x}) = \prod_j p(h_j|\mathbf{x})$$

Factorizes: Easy to compute

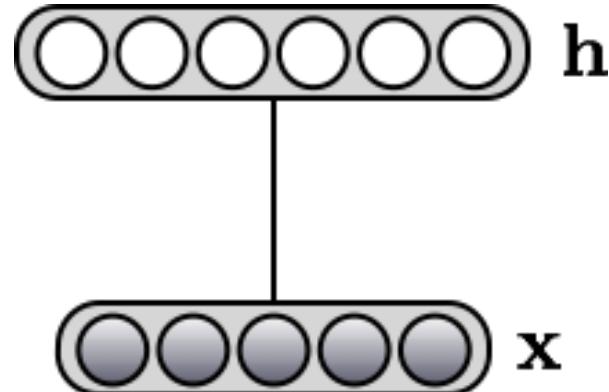
Similarly:

$$p(\mathbf{x}|\mathbf{h}) = \prod_k p(x_k|\mathbf{h})$$

Markov random fields, Boltzmann machines, log-linear models.

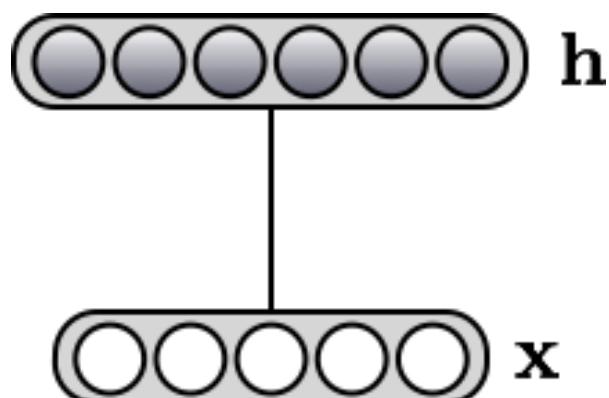
Inference

- Conditional Distributions:



$$p(\mathbf{h}|\mathbf{x}) = \prod p(h_j|\mathbf{x})$$
$$p(h_j = 1|\mathbf{x}) = \frac{1}{1 + \exp(-(b_j + \mathbf{W}_j \cdot \mathbf{x}))}$$
$$= \text{sigm}(b_j + \mathbf{W}_j \cdot \mathbf{x})$$

 j^{th} row of \mathbf{W}

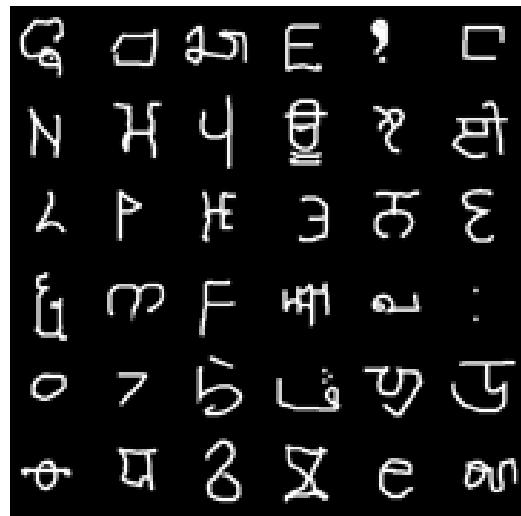


$$p(\mathbf{x}|\mathbf{h}) = \prod_k p(x_k|\mathbf{h})$$
$$p(x_k = 1|\mathbf{h}) = \frac{1}{1 + \exp(-(c_k + \mathbf{h}^\top \mathbf{W}_{\cdot k}))}$$
$$= \text{sigm}(c_k + \mathbf{h}^\top \mathbf{W}_{\cdot k})$$

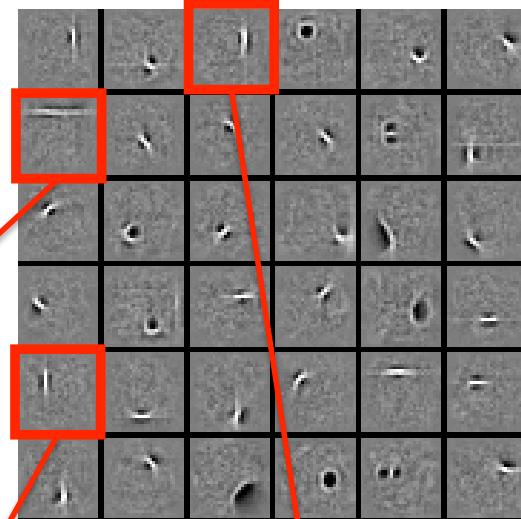
 k^{th} column of \mathbf{W}

Learning Features

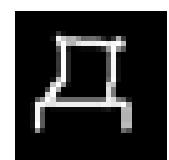
Observed Data
Subset of 25,000 characters



Learned W: “edges”
Subset of 1000 features



New Image: $p(h_7 = 1|v)$



$$= \sigma \left(0.99 \times \begin{matrix} \text{small image of 'ਾ'} \\ \text{with a horizontal stroke} \end{matrix} + 0.97 \times \begin{matrix} \text{small image of 'ਾ'} \\ \text{with a vertical stroke} \end{matrix} + 0.82 \times \begin{matrix} \text{small image of 'ਾ'} \\ \text{with a vertical stroke} \end{matrix} \dots \right)$$

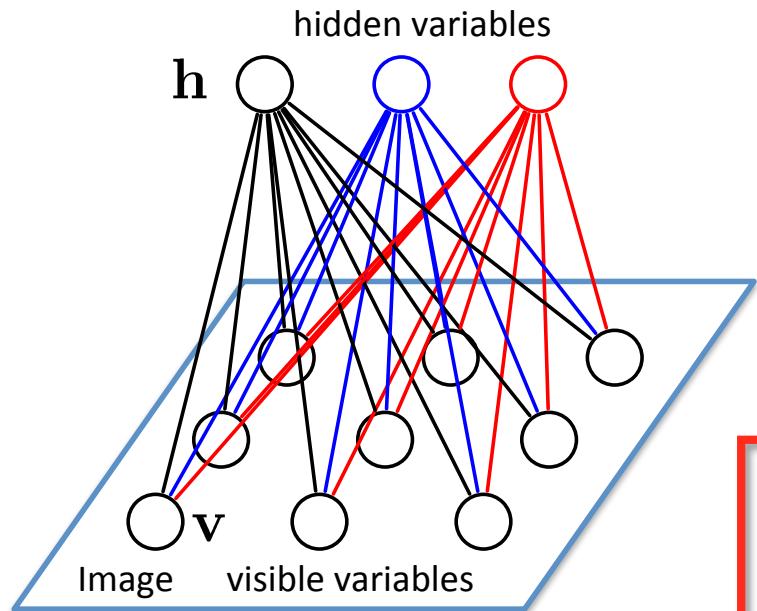
$$\sigma(x) = \frac{1}{1+\exp(-x)}$$

Logistic Function: Suitable for
modeling binary images

Represent:

$$\text{as } P(\mathbf{h}|\mathbf{v}) = [0, 0, 0.82, 0, 0, 0.99, 0, 0 \dots]$$

Model Learning



- Given a set of *i.i.d.* training examples we want to minimize the average negative log-likelihood (NLL):

$$\frac{1}{T} \sum_t l(f(\mathbf{x}^{(t)})) = \frac{1}{T} \sum_t -\log p(\mathbf{x}^{(t)})$$

Remember:

$$p(\mathbf{x}, \mathbf{h}) = \exp(-E(\mathbf{x}, \mathbf{h}))/Z$$

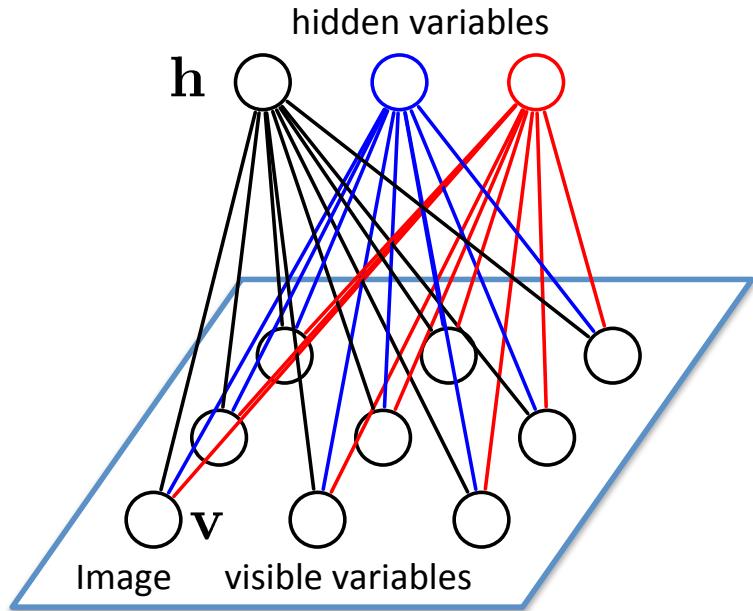
- Derivative of the negative log-likelihood objective:

$$\frac{\partial -\log p(\mathbf{x}^{(t)})}{\partial \theta} = \mathbb{E}_{\mathbf{h}} \left[\frac{\partial E(\mathbf{x}^{(t)}, \mathbf{h})}{\partial \theta} \mid \mathbf{x}^{(t)} \right] - \mathbb{E}_{\mathbf{x}, \mathbf{h}} \left[\frac{\partial E(\mathbf{x}, \mathbf{h})}{\partial \theta} \right]$$

Positive Phase

Negative Phase
Hard to compute

Model Learning



$$p(\mathbf{x}, \mathbf{h}) = \exp(-E(\mathbf{x}, \mathbf{h}))/Z$$

$$p(\mathbf{h}|\mathbf{x}) = \prod_j p(h_j|\mathbf{x})$$

- Derivative of the negative log-likelihood objective:

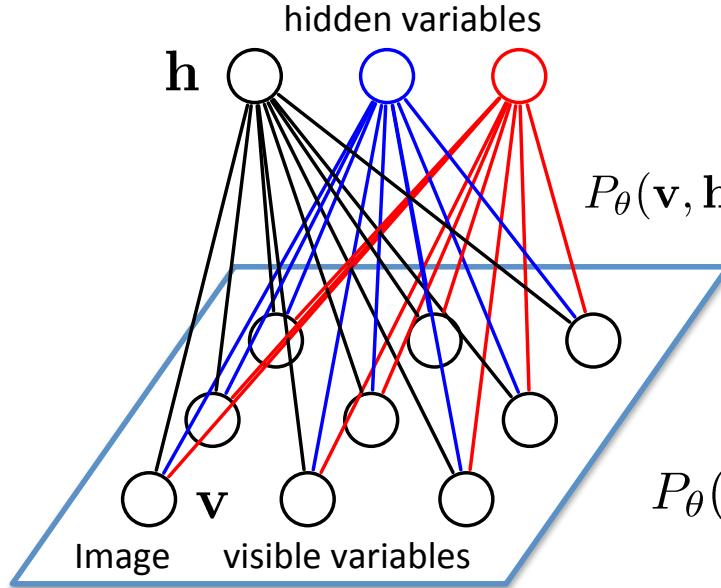
$$\frac{\partial -\log p(\mathbf{x}^{(t)})}{\partial \theta} = \mathbb{E}_{\mathbf{h}} \left[\frac{\partial E(\mathbf{x}^{(t)}, \mathbf{h})}{\partial \theta} \mid \mathbf{x}^{(t)} \right] - \mathbb{E}_{\mathbf{x}, \mathbf{h}} \left[\frac{\partial E(\mathbf{x}, \mathbf{h})}{\partial \theta} \right]$$

Data-Dependent
Expectations w.r.t $P(\mathbf{h}|\mathbf{x})$

Model: Expectation
w.r.t joint $P(\mathbf{x}, \mathbf{h})$

- Second term: intractable due to exponential number of configurations.

Gaussian Bernoulli RBMs



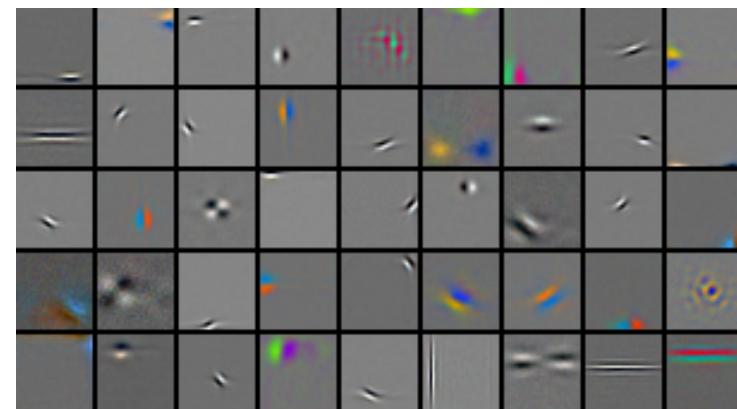
$$P_{\theta}(\mathbf{v}, \mathbf{h}) = \frac{1}{Z(\theta)} \exp \left(\sum_{i=1}^D \sum_{j=1}^F W_{ij} h_j \frac{v_i}{\sigma_i} + \sum_{i=1}^D \frac{(v_i - b_i)^2}{2\sigma_i^2} + \sum_{j=1}^F a_j h_j \right)$$

$$\theta = \{W, a, b\}$$

$$P_{\theta}(\mathbf{v}|\mathbf{h}) = \prod_{i=1}^D P_{\theta}(v_i|\mathbf{h}) = \prod_{i=1}^D \mathcal{N} \left(b_i + \sum_{j=1}^F W_{ij} h_j, \sigma_i^2 \right)$$

4 million **unlabelled** images

Learned features (out of 10,000)

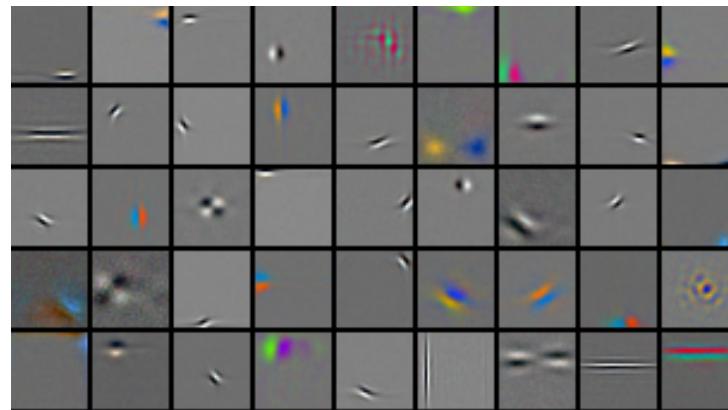


(Notation: vector x is replaced with v).

Gaussian Bernoulli RBMs

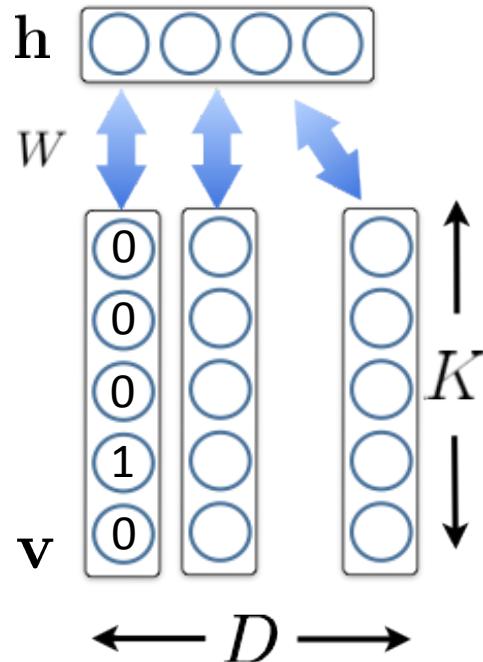
4 million **unlabelled** images

Learned features (out of 10,000)



$$\text{New Image} \quad p(h_7 = 1|v) \quad p(h_{29} = 1|v)$$
$$= 0.9 * \quad + 0.8 * \quad + 0.6 * \quad \dots$$

RBM¹³ for Word Counts



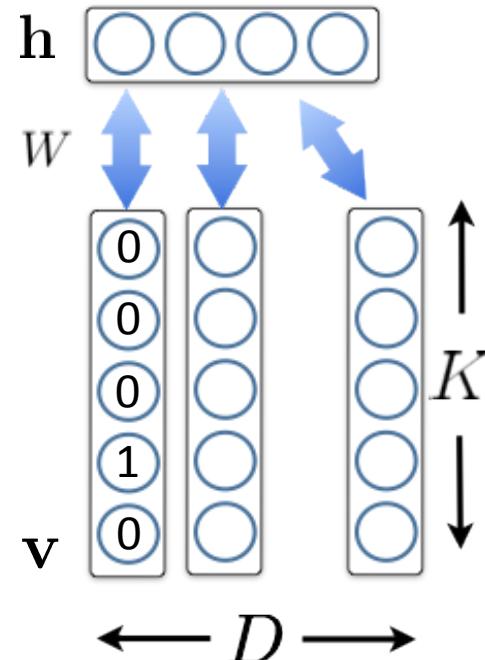
$$p(\mathbf{x}, \mathbf{h}) = \exp(-E(\mathbf{x}, \mathbf{h}))/Z$$

$$p(\mathbf{h}|\mathbf{x}) = \prod_j p(h_j|\mathbf{x})$$

Replicated Softmax Model: undirected topic model:

- Stochastic 1-of- K visible variables.
- Stochastic binary hidden variables $\mathbf{h} \in \{0, 1\}^F$.
- Bipartite connections.

RBMs for Word Counts



$$p(\mathbf{x}, \mathbf{h}) = \exp(-E(\mathbf{x}, \mathbf{h}))/Z$$

$$p(\mathbf{h}|\mathbf{x}) = \prod_j p(h_j|\mathbf{x})$$

REUTERS

Associated Press

Reuters dataset:
804,414 **unlabeled**
newswire stories
Bag-of-Words

Learned features: "topics"

russian	clinton	computer	trade	stock
russia	house	system	country	wall
moscow	president	product	import	street
yeltsin	bill	software	world	point
soviet	congress	develop	economy	dow

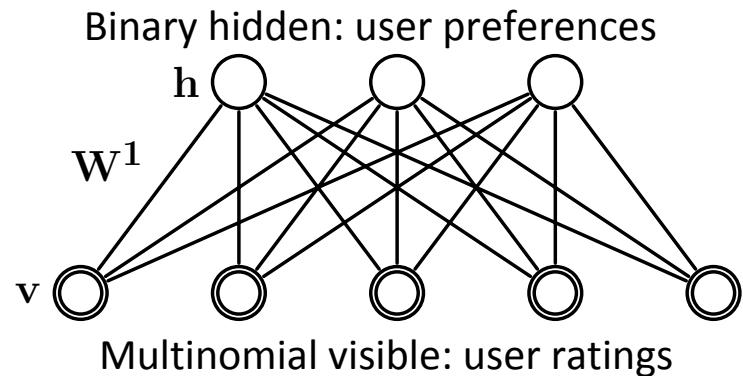
RBM_s for Word Counts

One-step reconstruction from the Replicated Softmax model.

Input	Reconstruction
chocolate, cake	cake, chocolate, sweets, dessert, cupcake, food, sugar, cream, birthday
nyc	nyc, newyork, brooklyn, queens, gothamist, manhattan, subway, streetart
dog	dog, puppy, perro, dogs, pet, filmshots, tongue, pets, nose, animal
flower, high, 花	flower, 花, high, japan, sakura, 日本, blossom, tokyo, lily, cherry
girl, rain, station, norway	norway, station, rain, girl, oslo, train, umbrella, wet, railway, weather
fun, life, children	children, fun, life, kids, child, playing, boys, kid, play, love
forest, blur	forest, blur, woods, motion, trees, movement, path, trail, green, focus
españa, agua, granada	españa, agua, spain, granada, water, andalucía, naturaleza, galicia, nieve

Collaborative Filtering

$$P_{\theta}(\mathbf{v}, \mathbf{h}) = \frac{1}{\mathcal{Z}(\theta)} \exp \left(\sum_{ijk} W_{ij}^k v_i^k h_j + \sum_{ik} b_i^k v_i^k + \sum_j a_j h_j \right)$$



Netflix dataset:
480,189 users
17,770 movies
Over 100 million ratings

Learned features: ``genre''

Fahrenheit 9/11
Bowling for Columbine
The People vs. Larry Flynt
Canadian Bacon
La Dolce Vita

Independence Day
The Day After Tomorrow
Con Air
Men in Black II
Men in Black

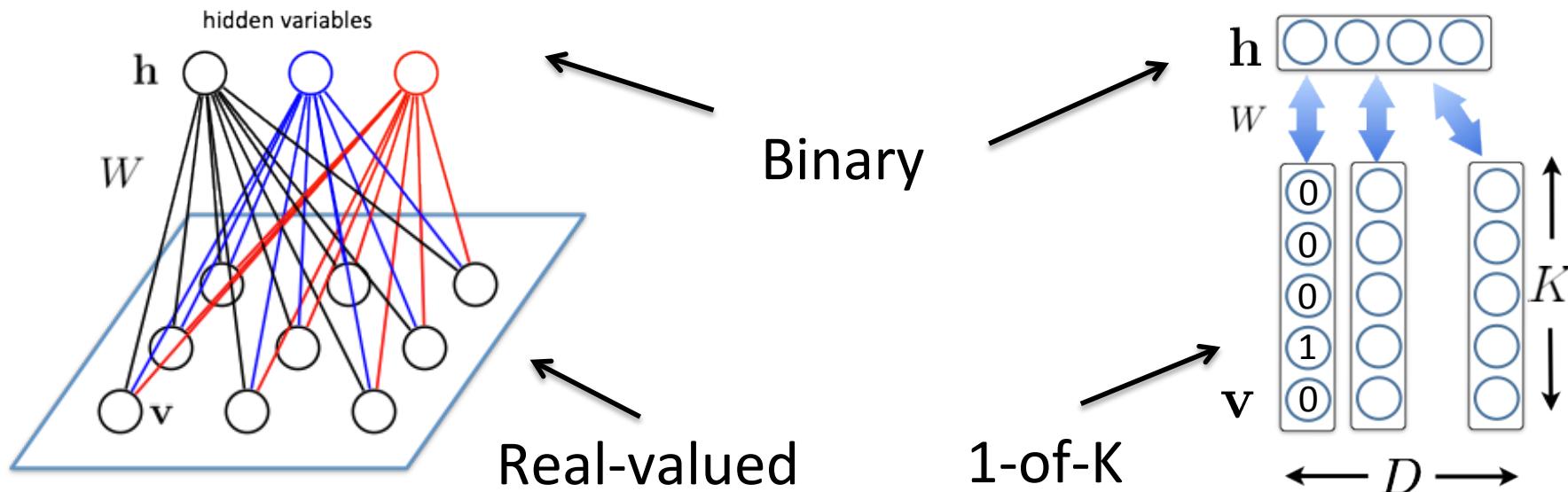
Friday the 13th
The Texas Chainsaw Massacre
Children of the Corn
Child's Play
The Return of Michael Myers

Scary Movie
Naked Gun
Hot Shots!
American Pie
Police Academy

State-of-the-art performance
on the Netflix dataset.

Different Data Modalities

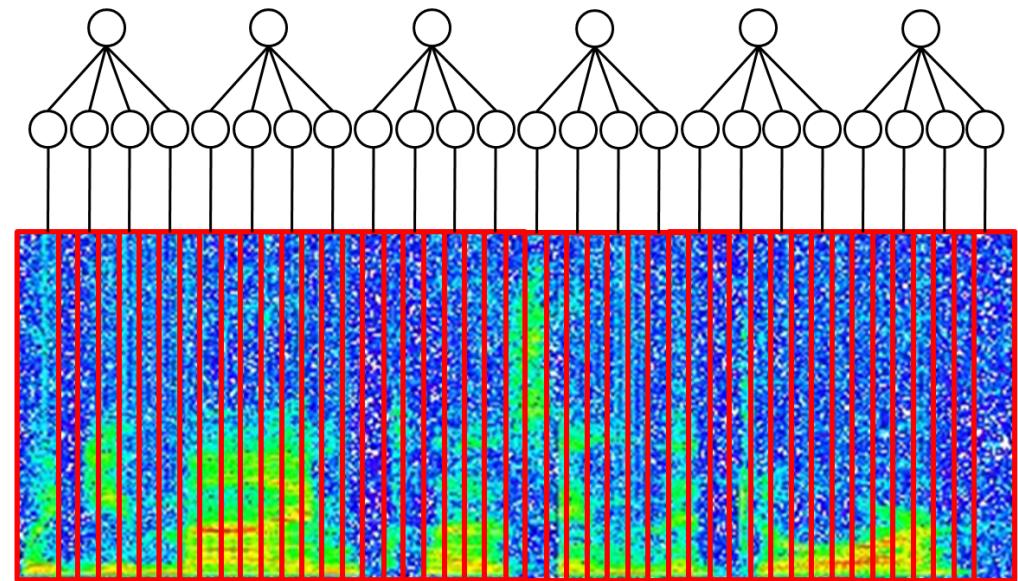
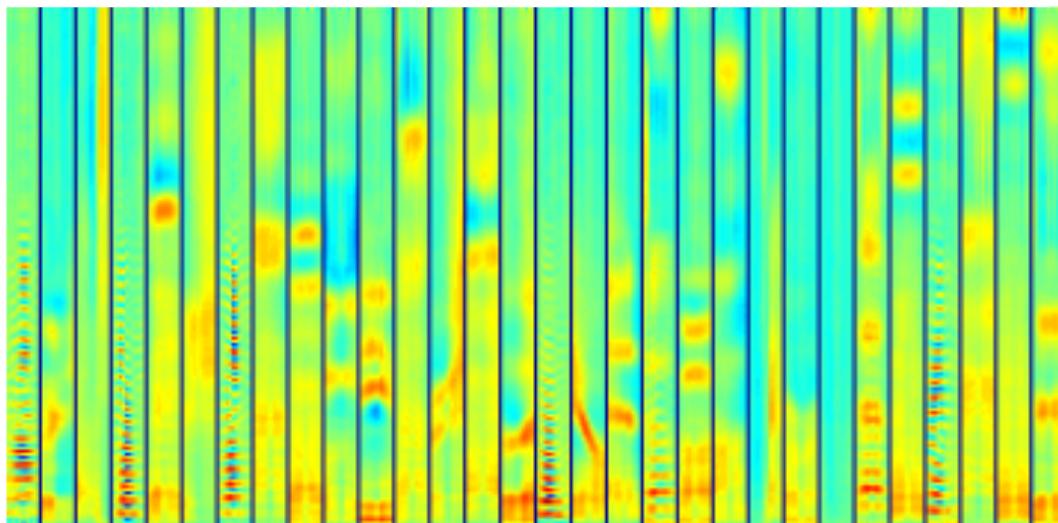
- Binary/Gaussian/Softmax RBMs: All have binary hidden variables but use them to model different kinds of data.



- It is easy to infer the states of the hidden variables:

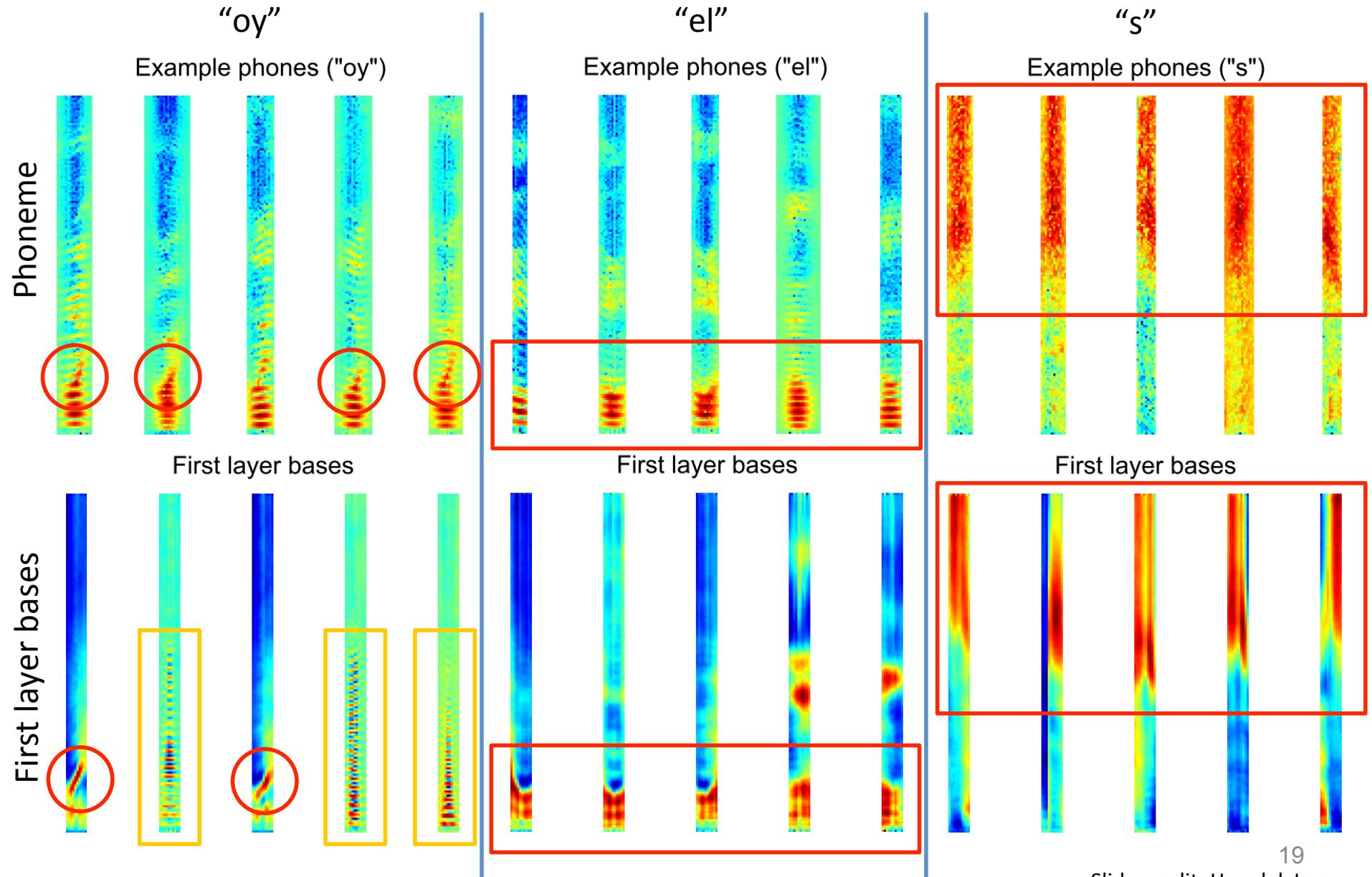
$$P_{\theta}(\mathbf{h}|\mathbf{v}) = \prod_{j=1}^F P_{\theta}(h_j|\mathbf{v}) = \prod_{j=1}^F \frac{1}{1 + \exp(-a_j - \sum_{i=1}^D W_{ij} v_i)}$$

Speech



Learned first-layer bases

Comparison of bases to phonemes



Product of Experts

The joint distribution is given by:

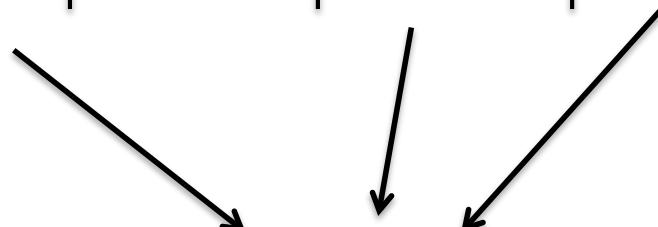
$$P_{\theta}(\mathbf{v}, \mathbf{h}) = \frac{1}{Z(\theta)} \exp \left(\sum_{ij} W_{ij} v_i h_j + \sum_i b_i v_i + \sum_j a_j h_j \right)$$

Marginalizing over hidden variables:

$$P_{\theta}(\mathbf{v}) = \sum_{\mathbf{h}} P_{\theta}(\mathbf{v}, \mathbf{h}) = \frac{1}{Z(\theta)} \prod_i \exp(b_i v_i) \prod_j \left(1 + \exp(a_j + \sum_i W_{ij} v_i) \right)$$

government	clinton	bribery	mafia	stock	...
authority	house	corruption	business	wall	
power	president	dishonesty	gang	street	
empire	bill	corrupt	mob	point	
federation	congress	fraud	insider	dow	

Product of Experts



Silvio Berlusconi

Topics “government”, “corruption” and “mafia” can combine to give very high probability to a word “Silvio Berlusconi”.

Product of Experts

The joint distribution is given by:

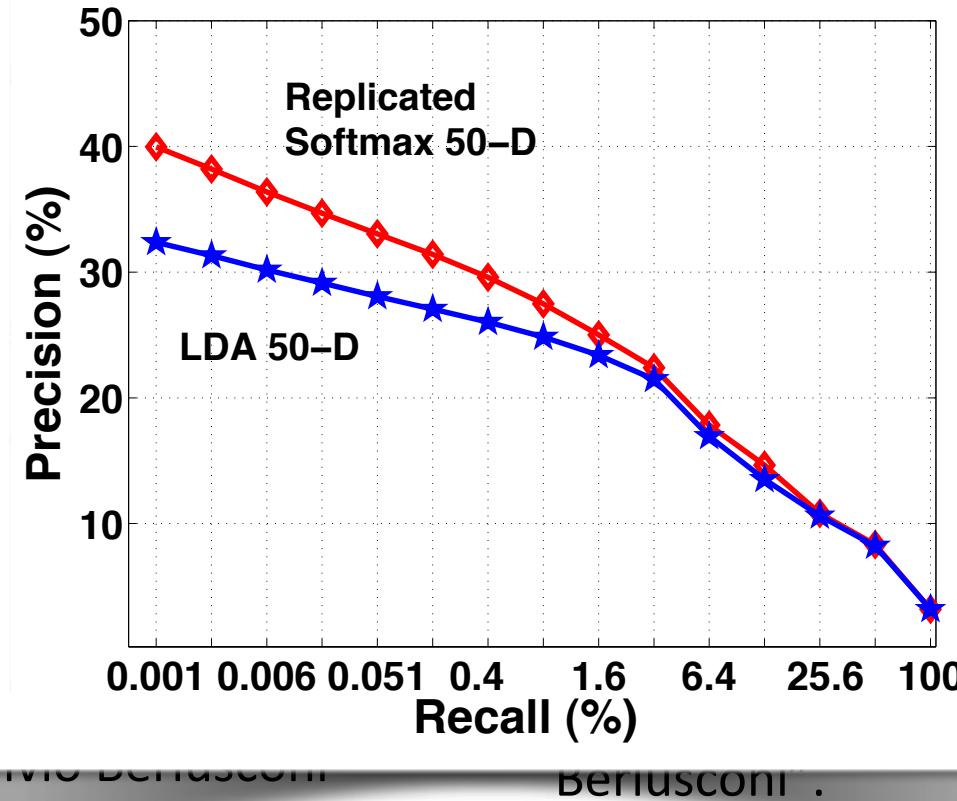
$$P_{\theta}(\mathbf{v}, \mathbf{h}) = \frac{1}{Z(\theta)} \exp \left(\sum_{ij} W_{ij} v_i h_j + \sum_i b_i v_i + \sum_j a_j h_j \right)$$

Marginalizing out \mathbf{h} :

$$P_{\theta}(\mathbf{v}) = \sum_{\mathbf{h}}$$

government
authority
power
empire
federation

clint
hou
pres
bill
cong



Product of Experts

$$W_{ij} v_i)$$

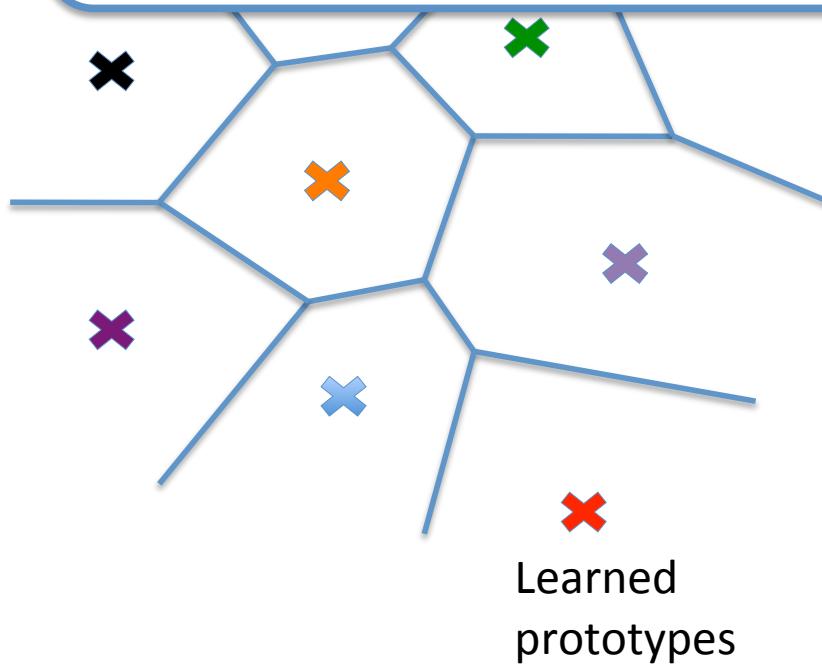
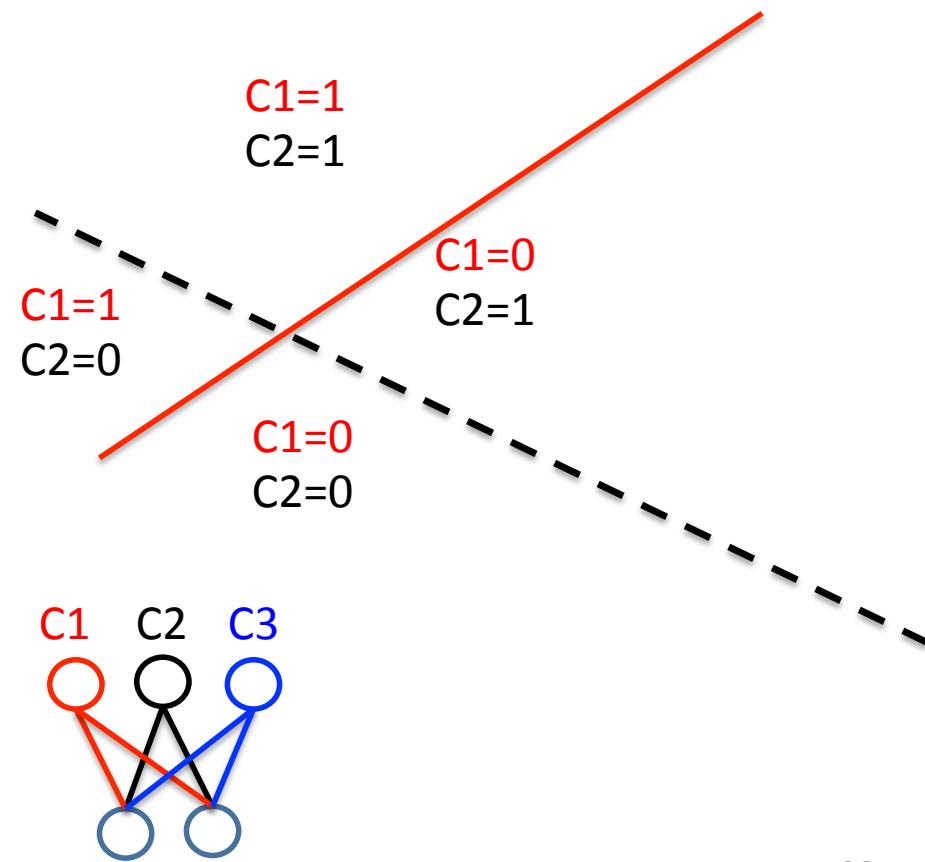
, "corruption"
bine to give very
word "Silvio

Local vs. Distributed Representations

- Clustering, Nearest Neighbors, RBF SVM, local density estimators

- RBMs, Factor models, PCA, Sparse Coding, Deep models

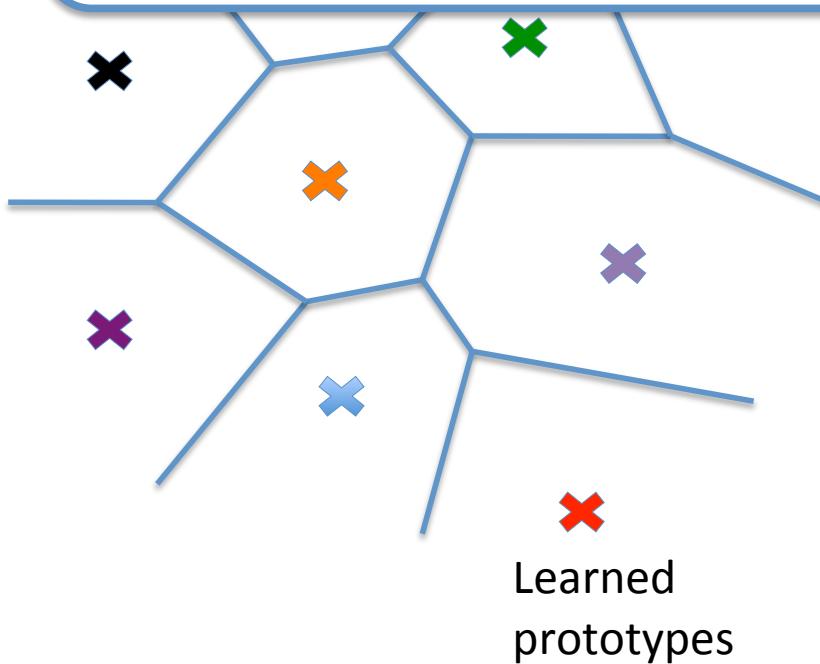
- Parameters for each region.
- # of regions is linear with # of parameters.



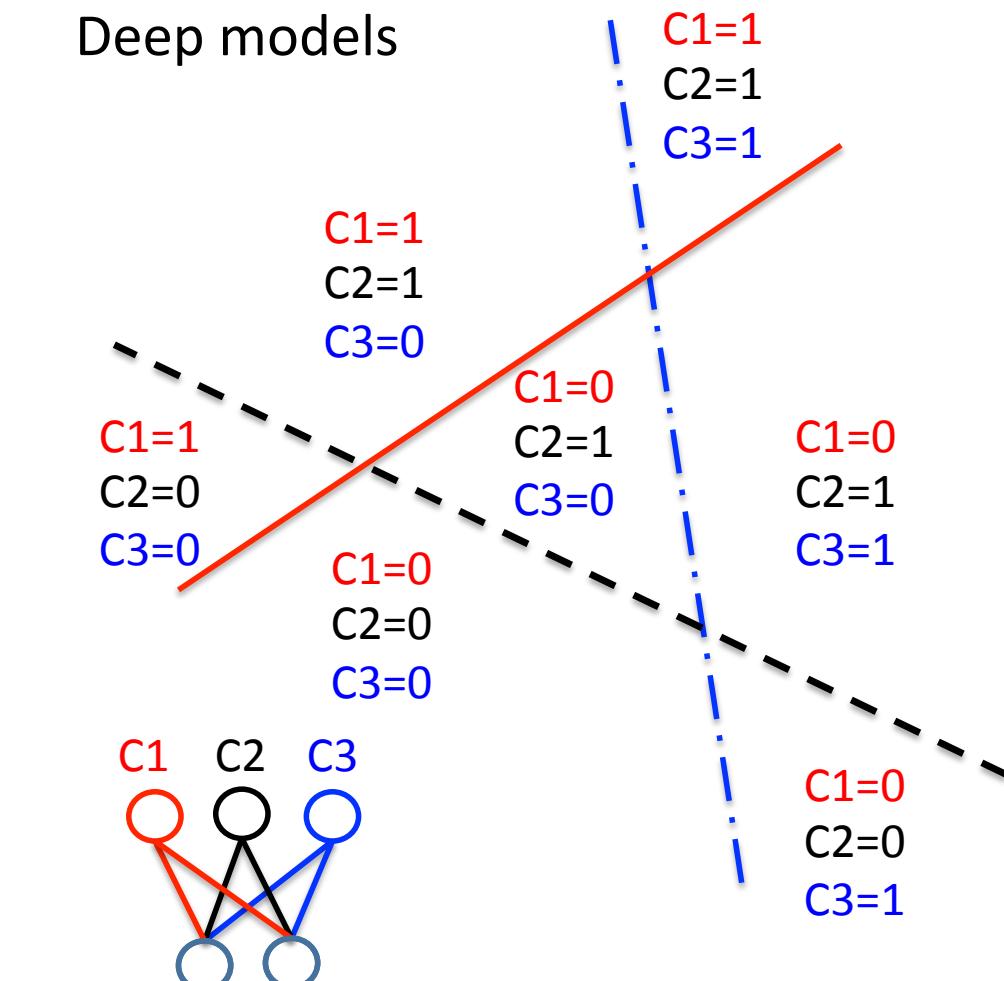
Local vs. Distributed Representations

- Clustering, Nearest Neighbors, RBF SVM, local density estimators

- Parameters for each region.
- # of regions is linear with # of parameters.



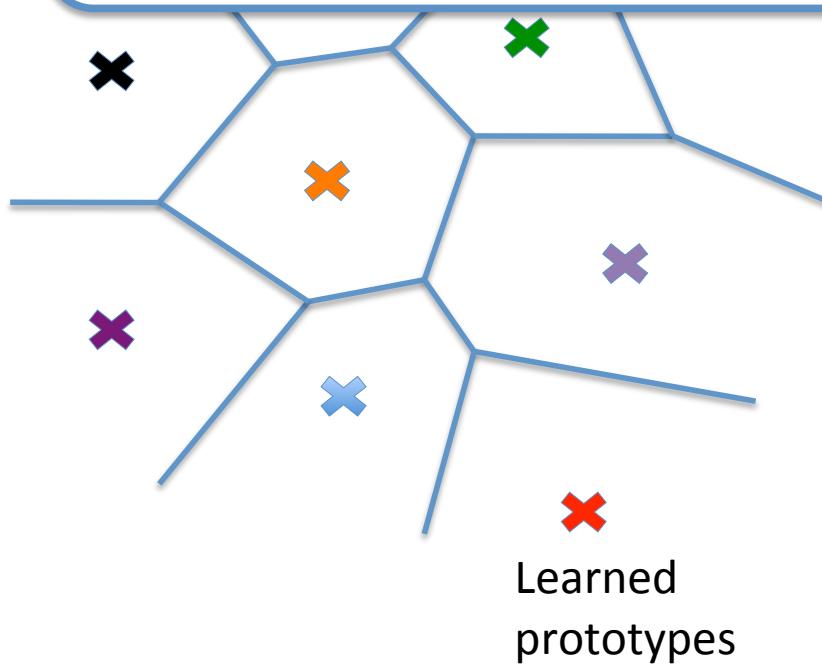
- RBMs, Factor models, PCA, Sparse Coding, Deep models



Local vs. Distributed Representations

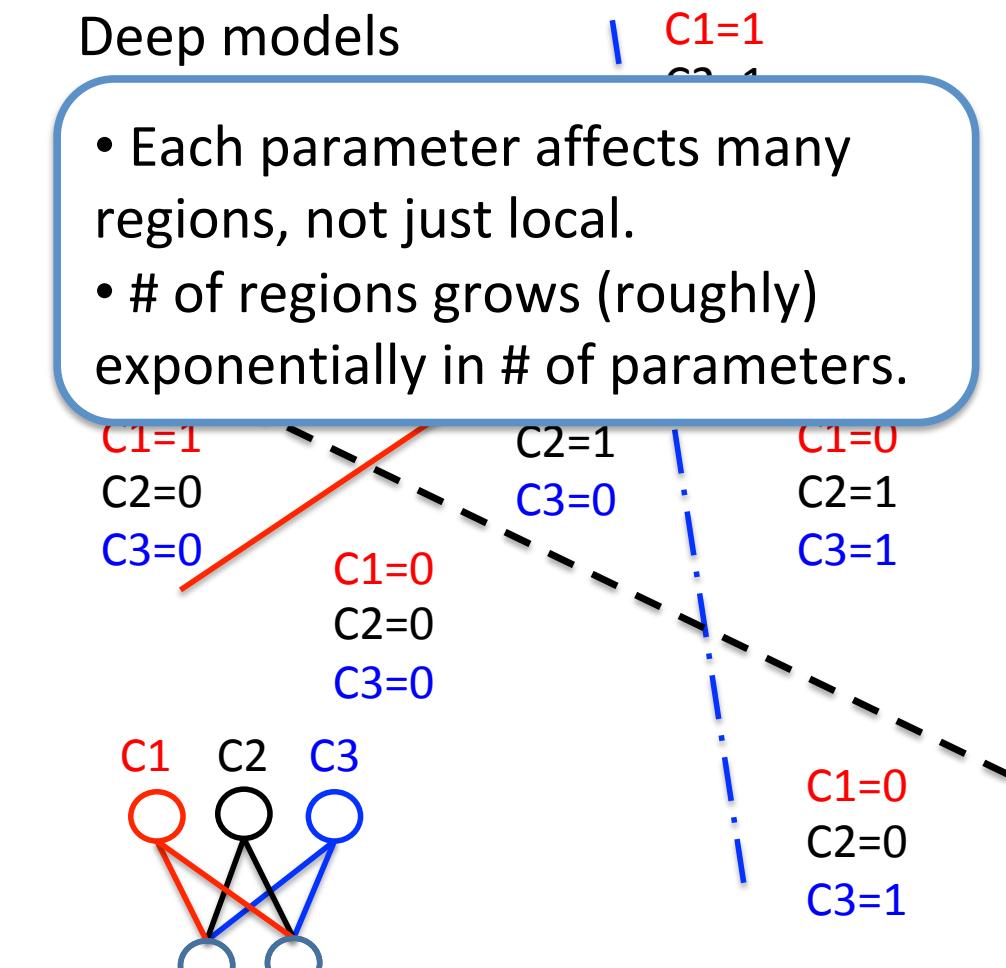
- Clustering, Nearest Neighbors, RBF SVM, local density estimators

- Parameters for each region.
- # of regions is linear with # of parameters.



- RBMs, Factor models, PCA, Sparse Coding, Deep models

- Each parameter affects many regions, not just local.
- # of regions grows (roughly) exponentially in # of parameters.



Multiple Application Domains

- Natural Images
- Text/Documents
- Collaborative Filtering / Matrix Factorization
- Video (Langford, et al. ICML 2009)
- Motion Capture (Taylor et.al. NIPS 2007)
- Speech Perception (Dahl et. al. NIPS 2010, Lee et.al. NIPS 2010)

Same learning algorithm --
multiple input domains.

Limitations on the types of structure that can be
represented by a single layer of low-level features!