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Neural Networks Online Course

e Disclaimer: Much of the material and slides for this lecture were
borrowed from Hugo Larochelle’s class on Neural Networks:
https://sites.google.com/site/deeplearningsummerschool2016/

http://info.usherbrooke.ca/hlarochelle/neural _networks

e Hugo’s class covers

many other topics: x o
convolutional networks, RESTRICTED BOLTZMANN MACHINE

neural language model,
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Feedforward Neural Networks

» How neural networks predict f(x) given an input x:
- Forward propagation
- Types of units
- Capacity of neural networks

» How to train neural nets:
- Loss function

- Backpropagation with gradient descent

» More recent techniques:
- Dropout

- Batch normalization

- Unsupervised Pre-training



Learning Distributed Representations

e Deep learning is research on learning models with multilayer
representations

> multilayer (feed-forward) neural networks
> multilayer graphical model (deep belief network, deep Boltzmann

machine)
e Each layer learns “distributed representation™

> Units in a layer are not mutually exclusive
each unit is a separate feature of the input
two units can be “active” at the same time
>  Units do not correspond to a partitioning (clustering) of the inputs

in clustering, an input can only belong to a single cluster



Local vs. Distributed Representations

* Clustering, Nearest * RBMs, Factor models,
Neighbors, RBF SVM, local PCA, Sparse Coding,
density estimators Deep models

4 N

* Parameters for each region.
 # of regions is linear with
# of parameters.

Cl1 C2 C3 1

Learned
prototypes

Bengio, 2009, Foundations and Trends in Machine Legrning
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Local vs. Distributed Representations

* Clustering, Nearest * RBMs, Factor models,
Neighbors, RBF SVM, local PCA, Sparse Coding,
density estimators Deep models | C1=1
4 ) [ i \
* Parameters for each region. * Each parameter affects many
* # of regions is linear with regions, not just local.
# of parameters. * # of regions grows (roughly)
- s kexponentially in # of parameters. y
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Inspiration from Visual Cortex

Categorical judgments, i
decision making Simple visual forms
! edges, cormners

To spinal cord
———=160-220 ms

er muscle
260 ms

[picture from Simon Thorpe]




Success Story: Speech Recognition

Word error rate on Switchboard

100%a

10%

4%

2%

1%

According to Microsoft’s
speech group:

Using DL
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Success Story: Image Recognition

* Deep Convolutional Nets for Vision (Supervised)
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P24 of |7
- o7
s\ L
s
X

— mite container ship motor scooter pard

. ’ 192 192 black widow lifeboat go-kart jaguar

\sirigd cockroach amphibian moped cheetah

of 4 | i tick fireboat bumper car snow leopard

3 [ starfish drilling platform golfcart Egyptian cat
1.2 million training images .

grille mushroom cherry adagascar cat

vertible agaric dalmatian squirrel monkey

1 OOO C | a S S e S grille oom grape spider monkey

pickup jelly fungus elderberry titi

beach wagon gill fungus |ffordshire bullterrier indri

fire engine || dead-man's-fingers currant howler monkey

10



Why Training is Hard

 First hypothesis: Hard optimization
problem (underfitting)

> vanishing gradient problem
>  saturated units block gradient

propagation

*This is a well known problem in
recurrent neural networks




Why Training is Hard

e Second hypothesis: Overfitting

> we are exploring a space of complex functions

> deep nets usually have lots of parameters

e Might be in a high variance / low bias situation

~n
*
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low variance/
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Why Training is Hard

 First hypothesis (underfitting): better optimize

> Use better optimization tools (e.g. batch-normalization, second
order methods, such as KFAC)
> Use GPUs, distributed computing.

« Second hypothesis (overfitting): use better regularization

> Unsupervised pre-training ‘

>  Stochastic drop-out training

e For many large-scale practical problems, you will need to use both:
better optimization and better regularization!

13



Unsupervised Pre-training

* |nitialize hidden layers using unsupervised learning

> Force network to represent latent structure of input distribution

Why is one
a character
and the other

IS not ?
1 /

character image random image

> Encourage hidden layers to encode that structure

14



Unsupervised Pre-training

* |nitialize hidden layers using unsupervised learning

> This is a harder task than supervised learning (classification)

Why is one
a character
and the other

IS not ?
1 /

character image random image

> Hence we expect less overfitting

15



Autoencoders: Preview

e Feed-forward neural network trained to reproduce its input at the
output layer

Decoder
2 (OeOO00) X = o(a(x))
W WT = \81gm(cj+ W*h(x))
(tied weights) ForIinary units
h(x) (OGOOO0)
W Encoder

h(x) = gla(x))

x (OOO0000) —  sigm(b + Wx)

16



Autoencoders: Preview

e Loss function for binary inputs
[(f(x)) = = >y (@k log(Zk) + (1 — @) log(1 — Zk))

>  Cross-entropy error function f(x)=x

 Loss function for real-valued inputs
I(f(x)) = 5 2k (@k — 1)

> sum of squared differences

> we use a linear activation function at the output

17



Pre-training

* We will use a greedy, layer-wise procedure

> Train one layer at a time with unsupervised criterion

>  Fix the parameters of previous hidden layers

> Previous layers can be viewed as feature extraction




Pre-training

» Unsupervsed Pre-training

»  first layer: find hidden unit features that are more common in
training inputs than in random inputs
> second layer: find combinations of hidden unit features that are

more common than random hidden unit features

»  third layer: find combinations of combinations of ...

e Pre-training initializes the parameters in a region such that the
near local optima overfit less the data

19



Fine-tuning

e Once all layers are pre-trained

> add output layer
> train the whole network using

supervised learning

e Supervised learning is performed as
In a regular network

>  forward propagation,
backpropagation and update

* We call this last phase fine-tuning

> all parameters are “tuned” for the
supervised task at hand

> representation is adjusted to be more
discriminative



Why Training is Hard

 First hypothesis (underfitting): better optimize

> Use better optimization tools (e.g. batch-normalization, second
order methods, such as KFAC)
> Use GPUs, distributed computing.

e Second hypothesis (overfitting): use better regularization

> Unsupervised pre-training

>  Stochastic drop-out training ‘

e For many large-scale practical problems, you will need to use both:
better optimization and better regularization!

21



Dropout

» Key idea: Cripple neural network by removing hidden units
stochastically

> each hidden unit is set to 0 with
probability 0.5

> hidden units cannot co-adapt to .
other units

> hidden units must be more
generally useful h®)(x)

e Could use a different dropout
probability, but 0.5 usually works well




Dropout

e Use random binary masks m®

> layer pre-activation for k>0

a®) (x) = b + WERE=1) (x)
> hidden layer activation (k=1 to L):

h®) (x) = g(a® (x)) om(®

>  Output activation (k=L+1) () (x)

h(E+D) (x) = o(alt+1) (x)) = £(x)




Backpropagation Algorithm

e Perform forward propagation
e Compute output gradient (before activation):
Varin(x) —log f(x)y <= —(e(y) —£(x)) Includes the

mask m-7)
e For k=L+1 to 1

- Compute gradients w.r.t. the hidden layer parameters: /
Vi —10g f(x)y = (Vaw —log f(x),) [ RED(x)T |

Vipw —log f(x)y <= Vam (x) —1og f(x)y

— Compute gradients w.r.t. the hidden layer below:
|
V-1 (x) = log f(x)y = W (V) — log f(x)y)

- Compute gradients w.r.t. the hidden layer below (before activation):
Vat-n() —10g f(X)y = (Vhu-npg —log f(x)y) O [, g (a® (=), ..]



Dropout at Test Time

o At test time, we replace the masks by their expectation

> This is simply the constant vector 0.5 if dropout probability is 0.5
>  For single hidden layer: equivalent to taking the geometric average

of all neural networks, with all possible binary masks

e Can be combined with unsupervised pre-training

e Beats regular backpropagation on many datasets

e Ensemble: Can be viewed as a geometric average of exponential
number of networks.

25



Why Training is Hard

 First hypothesis (underfitting): better optimize

> Use better optimization tools (e.g. batch-normalization, second
order methods, such as KFAC)
> Use GPUs, distributed computing.

« Second hypothesis (overfitting): use better regularization

> Unsupervised pre-training

>  Stochastic drop-out training

e For many large-scale practical problems, you will need to use both:
better optimization and better regularization!

26



Batch Normalization

 Normalizing the inputs will speed up training (Lecun et al. 1998)

> could normalization be useful at the level of the hidden layers?

e Batch normalization is an attempt to do that (loffe and Szegedy, 2014)
> each unit’s pre-activation is normalized
(mean subtraction, stddev division) a®) (x) = b L WEh(F=1)(x)
> during training, mean and stddev is
computed for each minibatch

> backpropagation takes into account the

normalization
> at test time, the global mean / stddev is

used 27



Batch Normalization

Input: Values of x over a mini-batch: B = {z1. ,};
Parameters to be learned: v,
Output: {y; = BN, g(z;)}

1 « .
UB — ; T; // mini-batch mean
1 m
0% — (x; — ;1,3)2 // mini-batch variance
1=1
T; Ti 1B // normalize
_____ oBTE o __
: Y; < YZ; + B = BN, g(x;) : // scale and shift

Learned linear transformation to adapt to non-linear
activation function (y and 3 are trained) 28



Batch Normalization

 Why normalize the pre-activation?

> can help keep the pre-activation in a non-saturating regime
(though the linear transform y; < vx; + 8 could cancel this
effect)

* Why use minibatches?

> since hidden units depend on parameters, can’t compute mean/
stddev once and for all

> adds stochasticity to training, which might regularize

29



Batch Normalization

* How to take into account the normalization in backdrop?

> derivative w.r.t. x; depends on the partial derivative of both: the
mean and stddev
> must also update y and f3

 Why use the global mean and stddev at test time?
> removes the stochasticity of the mean and stddev

» requires a final phase where, from the first to the last hidden layer
propagate all training data to that layer
compute and store the global mean and stddev of each unit

» for early stopping, could use a running average

30



Optimization Tricks

e SGD with momentum, batch-normalization, and dropout usually
works very well

* Pick learning rate by running on a subset of the data

>  Start with large learning rate & divide by 2 until loss does not diverge

> Decay learning rate by a factor of ~100 or more by the end of training
e Use RelLU nonlinearity
 |nitialize parameters so that each feature across layers has

similar variance. Avoid units in saturation.

31
[From Marc'Aurelio Ranzato, CVPR 2014 tutorial]



Improving Generalization

e Weight sharing (greatly reduce the number of parameters)
e Dropout
* Weight decay (L2, L1)

e Sparsity in the hidden units

[From Marc'Aurelio Ranzato, CVPR 2014 tutorial]
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Visualization

e Check gradients numerically by finite differences

* Visualize features (features need to be uncorrelated) and have
high variance

e Good training: hidden units
are sparse across samples

samples

hidden unit

33
[From Marc'Aurelio Ranzato, CVPR 2014 tutorial]



Visualization

e Check gradients numerically by finite differences

 Visualize features (features need to be uncorrelated) and have
high variance

e Visualize parameters: learned features should exhibit structure
and should be uncorrelated and are uncorrelated

GOOD BAD BAD BAD

too noisy too correlated
[From Marc'Aurelio Ranzato, CVPR 2014 tutorial]

ack stgﬁcture



Visualization

e Check gradients numerically by finite differences

* Visualize features (features need to be uncorrelated) and have
high variance

e Bad training: many hidden
units ignore the input and/or
exhibit strong correlations

i a4
m |
L

I o

-r'

hidden unit
[From Marc'Aurelio Ranzato, CVPR 2014 tutorial]
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Visualization

e Check gradients numerically by finite differences

* Visualize features (features need to be uncorrelated) and have
high variance

e Visualize parameters: learned features should exhibit structure
and should be uncorrelated and are uncorrelated

e Measure error on both training and validation set

 Test on a small subset of the data and check the error — 0.

36
[From Marc'Aurelio Ranzato, CVPR 2014 tutorial]



When it does not work

 Training diverges:
> Learning rate may be too large — decrease learning rate

> BPROP is buggy — numerical gradient checking

e Parameters collapse / loss is minimized but accuracy is low
> Check loss function: Is it appropriate for the task you want to solve?

> Does it have degenerate solutions?

e Network is underperforming
> Compute flops and nr. params. — if too small, make net larger

> Visualize hidden units/params — fix optimization

* Network is too slow

>  GPU, distrib. framework, make net smaller

37
[From Marc'Aurelio Ranzato, CVPR 2014 tutorial]



Supervised Learning

(I'raining time \

> Data:
{x"),y}

>  Setting:

/-Test time \

> Data:
(x40}

>  Setting:

K X(lﬁ)’y(t) ~ p(va)j

K X(t)) y(t) ~ p(x, y)/

 Example: Classification, Regression

38



Unsupervised Learning

>

>

N\

(I'raining time \

Data:

{x"}

Setting:

/-Test time \

> Data:
{x\"}
>  Setting:

x) ~ p(x) )

_ x*) ~ p(x) Y

e Example: Distribution Estimation, Dimensionality Reduction

39



Semi-Supervised Learning

(Training time

> Data:
(x4}

{x"}

>  Setting:
x, y) ~ p(x,y)

~

Kl'est time

> Data:
(x4}

{(x}

>  Setting:
x, y) ~ p(x,y)

~

x®) ~ p(x
K p(x) j

x® ~ p(x
k p(x) j

40



Multi- Task Learning

(Training time \ Kl'est time \

> Data: » Data:
{X(t)ayl 77y](\t4)} {X(t)vyl 7"°7yM}
>  Setting: >  Setting:
()7y](_)77y§\t4) ()7y§t)7"‘7

yM
K p(Xayla'“ayW k Xyla---vy]\d

e Example: object recognition in images with multiple objects

41



Multi- Task Learning

42



Structured Output Prediction

Kl'raining time \

> Data:
{x"),y}
N

Data of arbitrary structure
(vector, sequence, graph).

>  Setting:

Kl'est time

> Data:
(x40}
N

Data of arbitrary structure
(vector, sequence, graph).

~

>  Setting:

\ x® 4 ® p(vay

\ x4 p(X’W

 Example: Image caption generation, machine translation

43



One-Shot Learning

Kl'raining time \ Kl'est time \

» Data: » Data:
{X(t), y(t)} {X(t), y(t)}
> Setting: >  Setting:
x4 p(x,y) x® 4O ~ p(x, )

\ y(t)E{l,--.,C}j ye{C+1,...,C+ M}

Additional data: A single
labeled example from each

e Example: recognizing a person of the M new classes
based on a single picture of him/her \ //




Transfer Learning

6 o

\:ﬂ
“ 0 o
Lm —

How can we learn a novel concept — a high dimensional
statistical object — from few examples.

segway”

N
o
=
o

N1 £] Nk 3

a &
e
X =
H 7 ¢
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Supervised Learning

Motorcycle

Test:

46



Learning to Learn

Background Knowledge

Learn to Transfer
/I\/Iillions of unlabeled images
- o Knowledge

=

Key problem in computer vision,
speech perception, natural language
. processing, and many other domains.

Some labeled Images

Learn novel concept
from one example

e T Sl Test: /
II _.' Ll I '_-".. - - - i \
Elephant Tractor 47




One-Shot Learning:
Humans vs. Machines
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(Lake, Salakhutdinov, Tenenbaum, Science, 2015)
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Zero-Shot Learning

(Training time

> Data:
{x"),y}

\

>  Setting:

x4 ~ p(x,y)
ye{l,...,C}

Additional data: Description

Kl'est time

» Data:
{X(t) , y(t) }

~

>  Setting:

x4~ p(x,y)

yB e {C+1,...,C+ M}

Additional data: description

vector z, of each of the C
Kclasses j

vector z_ of each of the j

new M classes
49




