10417/10617
Intermediate Deep Learning:
Fall2019
Russ Salakhutdinov

Machine Learning Department
rsalakhu@cs.cmu.edu

https://deeplearning-cmu-10417.github.io/

Neural Networks I

Neural Networks Online Course

e Disclaimer: Much of the material and slides for this lecture were
borrowed from Hugo Larochelle’s class on Neural Networks:
https://sites.google.com/site/deeplearningsummerschool2016/

http://info.usherbrooke.ca/hlarochelle/neural _networks

e Hugo’s class covers

many other topics: x o
convolutional networks, RESTRICTED BOLTZMANN MACHINE

neural language model,

_ Topics: RBM, visible layer; hidden layer, energy function
Boltzmann machines, OO0 h-
autoencoders, sparse —
. &
coding, etc.
(OO0 x+

~h"™Wx—-c¢c'x—b'h
=3 Wjkhjzi - Z ke — Y bjh;
J k k J

tion: p(x,h) = exp(—FE(x,h))/Z

RN

* We will use his don: E(x,)

material for some of the
other lectures.

~ £

Feedforward Neural Networks

» How neural networks predict f(x) given an input x:
- Forward propagation
- Types of units
- Capacity of neural networks

» How to train neural nets:
- Loss function

- Backpropagation with gradient descent

» More recent techniques:
- Dropout

- Batch normalization

- Unsupervised Pre-training

Learning Distributed Representations

e Deep learning is research on learning models with multilayer
representations

> multilayer (feed-forward) neural networks
> multilayer graphical model (deep belief network, deep Boltzmann

machine)
e Each layer learns “distributed representation™

> Units in a layer are not mutually exclusive
each unit is a separate feature of the input
two units can be “active” at the same time
> Units do not correspond to a partitioning (clustering) of the inputs

in clustering, an input can only belong to a single cluster

Local vs. Distributed Representations

* Clustering, Nearest * RBMs, Factor models,
Neighbors, RBF SVM, local PCA, Sparse Coding,
density estimators Deep models

4 N

* Parameters for each region.
 # of regions is linear with
of parameters.

Cl1 C2 C3 1

Learned
prototypes

Bengio, 2009, Foundations and Trends in Machine Legrning

Local vs. Distributed Representations

* Clustering, Nearest * RBMs, Factor models,

Neighbors, RBF SVM, local PCA, Sparse Coding,

density estimators Deep models | C1=1
4 N |

* Parameters for each region.
 # of regions is linear with
of parameters.

Cl1 C2 C3 \

Learned
prototypes

Bengio, 2009, Foundations and Trends in Machine Legrning

Local vs. Distributed Representations

* Clustering, Nearest * RBMs, Factor models,
Neighbors, RBF SVM, local PCA, Sparse Coding,
density estimators Deep models | C1=1
4) [i \
* Parameters for each region. * Each parameter affects many
* # of regions is linear with regions, not just local.
of parameters. * # of regions grows (roughly)
- s kexponentially in # of parameters. y

CT=1 ~ C2=1 \ CT=0
C2=0 S~ C3=0 \ C2=1
C3=0 C1=0 ~~o C3=1

C2=0 SN
: ~
C3=0 | TSo R
: ~
Cl C2 C3 | c1e0 s
\ C2=0

Learned C3=1
prototypes

Bengio, 2009, Foundations and Trends in Machine Legrning

Inspiration from Visual Cortex

Categorical judgments, i
decision making Simple visual forms
! edges, cormners

To spinal cord
———=160-220 ms

er muscle
260 ms

[picture from Simon Thorpe]

Success Story: Speech Recognition

Word error rate on Switchboard

100%a

10%

4%

2%

1%

According to Microsoft’s
speech group:

Using DL

1990

v

2000 2010

Success Story: Image Recognition

* Deep Convolutional Nets for Vision (Supervised)

Rk v
container ship _motor scooter

P24 of |7
- o7
s\ L
s
X

— mite container ship motor scooter pard

. ’ 192 192 black widow lifeboat go-kart jaguar

\sirigd cockroach amphibian moped cheetah

of 4 | i tick fireboat bumper car snow leopard

3 [starfish drilling platform golfcart Egyptian cat
1.2 million training images .

grille mushroom cherry adagascar cat

vertible agaric dalmatian squirrel monkey

1 OOO C | a S S e S grille oom grape spider monkey

pickup jelly fungus elderberry titi

beach wagon gill fungus |ffordshire bullterrier indri

fire engine || dead-man's-fingers currant howler monkey

10

Why Training is Hard

 First hypothesis: Hard optimization
problem (underfitting)

> vanishing gradient problem
> saturated units block gradient

propagation

*This is a well known problem in
recurrent neural networks

Why Training is Hard

e Second hypothesis: Overfitting

> we are exploring a space of complex functions

> deep nets usually have lots of parameters

e Might be in a high variance / low bias situation

~n
*

Q

possible f

possible f

low variance/

high bias good trade-off

Why Training is Hard

 First hypothesis (underfitting): better optimize

> Use better optimization tools (e.g. batch-normalization, second
order methods, such as KFAC)
> Use GPUs, distributed computing.

« Second hypothesis (overfitting): use better regularization

> Unsupervised pre-training ‘

> Stochastic drop-out training

e For many large-scale practical problems, you will need to use both:
better optimization and better regularization!

13

Unsupervised Pre-training

* |nitialize hidden layers using unsupervised learning

> Force network to represent latent structure of input distribution

Why is one
a character
and the other

IS not ?
1 /

character image random image

> Encourage hidden layers to encode that structure

14

Unsupervised Pre-training

* |nitialize hidden layers using unsupervised learning

> This is a harder task than supervised learning (classification)

Why is one
a character
and the other

IS not ?
1 /

character image random image

> Hence we expect less overfitting

15

Autoencoders: Preview

e Feed-forward neural network trained to reproduce its input at the
output layer

Decoder
2 (OeOO00) X = o(a(x))
W WT = \81gm(cj+ W*h(x))
(tied weights) ForIinary units
h(x) (OGOOO0)
W Encoder

h(x) = gla(x))

x (OOO0000) — sigm(b + Wx)

16

Autoencoders: Preview

e Loss function for binary inputs
[(f(x)) = = >y (@k log(Zk) + (1 — @) log(1 — Zk))

> Cross-entropy error function f(x)=x

 Loss function for real-valued inputs
I(f(x)) = 5 2k (@k — 1)

> sum of squared differences

> we use a linear activation function at the output

17

Pre-training

* We will use a greedy, layer-wise procedure

> Train one layer at a time with unsupervised criterion

> Fix the parameters of previous hidden layers

> Previous layers can be viewed as feature extraction

Pre-training

» Unsupervsed Pre-training

» first layer: find hidden unit features that are more common in
training inputs than in random inputs
> second layer: find combinations of hidden unit features that are

more common than random hidden unit features

» third layer: find combinations of combinations of ...

e Pre-training initializes the parameters in a region such that the
near local optima overfit less the data

19

Fine-tuning

e Once all layers are pre-trained

> add output layer
> train the whole network using

supervised learning

e Supervised learning is performed as
In a regular network

> forward propagation,
backpropagation and update

* We call this last phase fine-tuning

> all parameters are “tuned” for the
supervised task at hand

> representation is adjusted to be more
discriminative

Why Training is Hard

 First hypothesis (underfitting): better optimize

> Use better optimization tools (e.g. batch-normalization, second
order methods, such as KFAC)
> Use GPUs, distributed computing.

e Second hypothesis (overfitting): use better regularization

> Unsupervised pre-training

> Stochastic drop-out training ‘

e For many large-scale practical problems, you will need to use both:
better optimization and better regularization!

21

Dropout

» Key idea: Cripple neural network by removing hidden units
stochastically

> each hidden unit is set to 0 with
probability 0.5

> hidden units cannot co-adapt to .
other units

> hidden units must be more
generally useful h®)(x)

e Could use a different dropout
probability, but 0.5 usually works well

Dropout

e Use random binary masks m®

> layer pre-activation for k>0

a®) (x) = b + WERE=1) (x)
> hidden layer activation (k=1 to L):

h®) (x) = g(a® (x)) om(®

> Output activation (k=L+1) () (x)

h(E+D) (x) = o(alt+1) (x)) = £(x)

Backpropagation Algorithm

e Perform forward propagation
e Compute output gradient (before activation):
Varin(x) —log f(x)y <= —(e(y) —£(x)) Includes the

mask m-7)
e For k=L+1 to 1

- Compute gradients w.r.t. the hidden layer parameters: /
Vi —10g f(x)y = (Vaw —log f(x),) [RED(x)T |

Vipw —log f(x)y <= Vam (x) —1og f(x)y

— Compute gradients w.r.t. the hidden layer below:
|
V-1 (x) = log f(x)y = W (V) — log f(x)y)

- Compute gradients w.r.t. the hidden layer below (before activation):
Vat-n() —10g f(X)y = (Vhu-npg —log f(x)y) O [, g (a® (=), ..]

Dropout at Test Time

o At test time, we replace the masks by their expectation

> This is simply the constant vector 0.5 if dropout probability is 0.5
> For single hidden layer: equivalent to taking the geometric average

of all neural networks, with all possible binary masks

e Can be combined with unsupervised pre-training

e Beats regular backpropagation on many datasets

e Ensemble: Can be viewed as a geometric average of exponential
number of networks.

25

Why Training is Hard

 First hypothesis (underfitting): better optimize

> Use better optimization tools (e.g. batch-normalization, second
order methods, such as KFAC)
> Use GPUs, distributed computing.

« Second hypothesis (overfitting): use better regularization

> Unsupervised pre-training

> Stochastic drop-out training

e For many large-scale practical problems, you will need to use both:
better optimization and better regularization!

26

Batch Normalization

 Normalizing the inputs will speed up training (Lecun et al. 1998)

> could normalization be useful at the level of the hidden layers?

e Batch normalization is an attempt to do that (loffe and Szegedy, 2014)
> each unit’s pre-activation is normalized
(mean subtraction, stddev division) a®) (x) = b L WEh(F=1)(x)
> during training, mean and stddev is
computed for each minibatch

> backpropagation takes into account the

normalization
> at test time, the global mean / stddev is

used 27

Batch Normalization

Input: Values of x over a mini-batch: B = {z1. ,};
Parameters to be learned: v,
Output: {y; = BN, g(z;)}

1 « .
UB — ; T; // mini-batch mean
1 m
0% — (x; — ;1,3)2 // mini-batch variance
1=1
T; Ti 1B // normalize
_____ oBTE o __
: Y; < YZ; + B = BN, g(x;) : // scale and shift

Learned linear transformation to adapt to non-linear
activation function (y and 3 are trained) 28

Batch Normalization

 Why normalize the pre-activation?

> can help keep the pre-activation in a non-saturating regime
(though the linear transform y; < vx; + 8 could cancel this
effect)

* Why use minibatches?

> since hidden units depend on parameters, can’t compute mean/
stddev once and for all

> adds stochasticity to training, which might regularize

29

Batch Normalization

* How to take into account the normalization in backdrop?

> derivative w.r.t. x; depends on the partial derivative of both: the
mean and stddev
> must also update y and f3

 Why use the global mean and stddev at test time?
> removes the stochasticity of the mean and stddev

» requires a final phase where, from the first to the last hidden layer
propagate all training data to that layer
compute and store the global mean and stddev of each unit

» for early stopping, could use a running average

30

Optimization Tricks

e SGD with momentum, batch-normalization, and dropout usually
works very well

* Pick learning rate by running on a subset of the data

> Start with large learning rate & divide by 2 until loss does not diverge

> Decay learning rate by a factor of ~100 or more by the end of training
e Use RelLU nonlinearity
 |nitialize parameters so that each feature across layers has

similar variance. Avoid units in saturation.

31
[From Marc'Aurelio Ranzato, CVPR 2014 tutorial]

Improving Generalization

e Weight sharing (greatly reduce the number of parameters)
e Dropout
* Weight decay (L2, L1)

e Sparsity in the hidden units

[From Marc'Aurelio Ranzato, CVPR 2014 tutorial]

32

Visualization

e Check gradients numerically by finite differences

* Visualize features (features need to be uncorrelated) and have
high variance

e Good training: hidden units
are sparse across samples

samples

hidden unit

33
[From Marc'Aurelio Ranzato, CVPR 2014 tutorial]

Visualization

e Check gradients numerically by finite differences

 Visualize features (features need to be uncorrelated) and have
high variance

e Visualize parameters: learned features should exhibit structure
and should be uncorrelated and are uncorrelated

GOOD BAD BAD BAD

too noisy too correlated
[From Marc'Aurelio Ranzato, CVPR 2014 tutorial]

ack stgﬁcture

Visualization

e Check gradients numerically by finite differences

* Visualize features (features need to be uncorrelated) and have
high variance

e Bad training: many hidden
units ignore the input and/or
exhibit strong correlations

i a4
m |
L

I o

-r'

hidden unit
[From Marc'Aurelio Ranzato, CVPR 2014 tutorial]

35

Visualization

e Check gradients numerically by finite differences

* Visualize features (features need to be uncorrelated) and have
high variance

e Visualize parameters: learned features should exhibit structure
and should be uncorrelated and are uncorrelated

e Measure error on both training and validation set

 Test on a small subset of the data and check the error — 0.

36
[From Marc'Aurelio Ranzato, CVPR 2014 tutorial]

When it does not work

 Training diverges:
> Learning rate may be too large — decrease learning rate

> BPROP is buggy — numerical gradient checking

e Parameters collapse / loss is minimized but accuracy is low
> Check loss function: Is it appropriate for the task you want to solve?

> Does it have degenerate solutions?

e Network is underperforming
> Compute flops and nr. params. — if too small, make net larger

> Visualize hidden units/params — fix optimization

* Network is too slow

> GPU, distrib. framework, make net smaller

37
[From Marc'Aurelio Ranzato, CVPR 2014 tutorial]

Supervised Learning

(I'raining time \

> Data:
{x"),y}

> Setting:

/-Test time \

> Data:
(x40}

> Setting:

K X(lﬁ)’y(t) ~ p(va)j

K X(t)) y(t) ~ p(x, y)/

 Example: Classification, Regression

38

Unsupervised Learning

>

>

N\

(I'raining time \

Data:

{x"}

Setting:

/-Test time \

> Data:
{x\"}
> Setting:

x) ~ p(x))

_ x*) ~ p(x) Y

e Example: Distribution Estimation, Dimensionality Reduction

39

Semi-Supervised Learning

(Training time

> Data:
(x4}

{x"}

> Setting:
x, y) ~ p(x,y)

~

Kl'est time

> Data:
(x4}

{(x}

> Setting:
x, y) ~ p(x,y)

~

x®) ~ p(x
K p(x) j

x® ~ p(x
k p(x) j

40

Multi- Task Learning

(Training time \ Kl'est time \

> Data: » Data:
{X(t)ayl 77y](\t4)} {X(t)vyl 7"°7yM}
> Setting: > Setting:
()7y](_)77y§\t4) ()7y§t)7"‘7

yM
K p(Xayla'“ayW k Xyla---vy]\d

e Example: object recognition in images with multiple objects

41

Multi- Task Learning

42

Structured Output Prediction

Kl'raining time \

> Data:
{x"),y}
N

Data of arbitrary structure
(vector, sequence, graph).

> Setting:

Kl'est time

> Data:
(x40}
N

Data of arbitrary structure
(vector, sequence, graph).

~

> Setting:

\ x® 4 ® p(vay

\ x4 p(X’W

 Example: Image caption generation, machine translation

43

One-Shot Learning

Kl'raining time \ Kl'est time \

» Data: » Data:
{X(t), y(t)} {X(t), y(t)}
> Setting: > Setting:
x4 p(x,y) x® 4O ~ p(x,)

\ y(t)E{l,--.,C}j ye{C+1,...,C+ M}

Additional data: A single
labeled example from each

e Example: recognizing a person of the M new classes
based on a single picture of him/her \ //

Transfer Learning

6 o

\:ﬂ
“ 0 o
Lm —

How can we learn a novel concept — a high dimensional
statistical object — from few examples.

segway”

N
o
=
o

N1 £] Nk 3

a &
e
X =
H 7 ¢

45

Supervised Learning

Motorcycle

Test:

46

Learning to Learn

Background Knowledge

Learn to Transfer
/I\/Iillions of unlabeled images
- o Knowledge

=

Key problem in computer vision,
speech perception, natural language
. processing, and many other domains.

Some labeled Images

Learn novel concept
from one example

e T Sl Test: /
II _.' Ll I '_-".. - - - i \
Elephant Tractor 47

One-Shot Learning:
Humans vs. Machines

]

]

2

V1 W VT
MWFW(

M TR
1 7T A

~7) ™

1

JTTL

2

arACALRNL

ST ST

JTTC arr I76

STTUSTT Ut

STILITL 5717

(% (f\(fgm

£ &
€€t £
€ & L

48
(Lake, Salakhutdinov, Tenenbaum, Science, 2015)

2

(S AR
v = T

T 1 %,

Zero-Shot Learning

(Training time

> Data:
{x"),y}

\

> Setting:

x4 ~ p(x,y)
ye{l,...,C}

Additional data: Description

Kl'est time

» Data:
{X(t) , y(t) }

~

> Setting:

x4~ p(x,y)

yB e {C+1,...,C+ M}

Additional data: description

vector z, of each of the C
Kclasses j

vector z_ of each of the j

new M classes
49

