
10417/10617	
Intermediate	Deep	Learning:		

Fall2019	
Russ	Salakhutdinov	

Machine Learning Department
rsalakhu@cs.cmu.edu

 
https://deeplearning-cmu-10417.github.io/ 

Neural Networks I 



Neural Networks Online Course 

•  Hugo’s class covers 
many other topics: 
convolutional networks, 
neural language model, 
Boltzmann machines, 
autoencoders, sparse 
coding, etc. 

•  We will use his 
material for some of the 
other lectures.  

•  Disclaimer: Much of the material and slides for this lecture were 
borrowed from Hugo Larochelle’s class on Neural Networks: 
https://sites.google.com/site/deeplearningsummerschool2016/ 



Feedforward Neural Networks 
‣  How neural networks predict f(x) given an input x: 

-  Forward propagation 
-  Types of units 
-  Capacity of neural networks 

‣  How to train neural nets:  
-  Loss function 
-  Backpropagation with gradient descent 

‣  More recent techniques: 
-  Dropout 
-  Batch normalization 
-  Unsupervised Pre-training 



Feedforward Neural Networks 
‣  How neural networks predict f(x) given an input x: 

-  Forward propagation 
-  Types of units 
-  Capacity of neural networks 

‣  How to train neural nets:  
-  Loss function 
-  Backpropagation with gradient descent 

‣  More recent techniques: 
-  Dropout 
-  Batch normalization 
-  Unsupervised Pre-training 



Artificial Neuron 
•  Neuron pre-activation (or input activation): 
 

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

•  Neuron output activation: 
 

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

where 
      are the weights (parameters) 
      is the bias term 
      is called the activation function   
 

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1



Artificial Neuron 

Bias only changes 
the position of the 
riff 

Range is 
determined  
by  

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

•  Output activation of the neuron: 
 

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

(from Pascal Vincent’s slides) 



Activation Function  
•  Linear activation function:  
 

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(a) = a

• sigm(a) = 1
1+exp(�a)

• tanh(a) = exp(a)�exp(�a)
exp(a)+exp(�a) = exp(2a)�1

exp(2a)+1

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

Ø  No nonlinear transformation 

Ø  No input squashing  



Activation Function  
•  Sigmoid activation function:  
 

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(a) = a

• g(a) = sigm(a) = 1
1+exp(�a)

• g(a) = tanh(a) = exp(a)�exp(�a)
exp(a)+exp(�a) = exp(2a)�1

exp(2a)+1

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

Ø  Squashes the neuron’s 
output between 0 and 1  

Ø  Always positive 

Ø  Bounded 

Ø  Strictly Increasing  



Activation Function  
•  Hyperbolic tangent (‘‘tanh’’) activation function:  
 

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(a) = a

• g(a) = sigm(a) = 1
1+exp(�a)

• g(a) = tanh(a) = exp(a)�exp(�a)
exp(a)+exp(�a) = exp(2a)�1

exp(2a)+1

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(a) = a

• g(a) = sigm(a) = 1
1+exp(�a)

• g(a) = tanh(a) = exp(a)�exp(�a)
exp(a)+exp(�a) = exp(2a)�1

exp(2a)+1

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

Ø  Squashes the neuron’s 
activation between -1 
and 1  

Ø  Can be positive or 
negative  

Ø  Bounded 

Ø  Strictly increasing 

(wrong plot)  



Activation Function  
•  Rectified linear (ReLU) activation function:  
 

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(a) = a

• g(a) = sigm(a) = 1
1+exp(�a)

• g(a) = tanh(a) = exp(a)�exp(�a)
exp(a)+exp(�a) = exp(2a)�1

exp(2a)+1

• g(a) = max(0, a)

• g(a) = reclin(a) = max(0, a)

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

Ø  Bounded below by 0 
(always non-negative) 

Ø  Tends to produce units 
with sparse activities 

Ø  Not upper bounded 

Ø  Strictly increasing  



(from Pascal Vincent’s slides) 

Decision Boundary of a Neuron 
•  Binary classification: 

-  With sigmoid, one can interpret neuron as estimating  
-  Interpret as a logistic classifier 

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(a) = a

• g(a) = sigm(a) = 1
1+exp(�a)

• g(a) = tanh(a) = exp(a)�exp(�a)
exp(a)+exp(�a) = exp(2a)�1

exp(2a)+1

• g(a) = max(0, a)

• g(a) = reclin(a) = max(0, a)

• p(y = 1|x)

• g(·) b

• W (1)
i,j b(1)i xj h(x)i w(2)

i b(2)

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i +

P
j W

(1)
i,j xj

⌘

• f(x) = o
⇣
b(2) +w(2)>x

⌘

• p(y = c|x)

• o(a) = softmax(a) =
h

exp(a1)P
c exp(ac)

. . . exp(aC)P
c exp(ac)

i>

1

-  If activation is greater than 
0.5, predict 1 

-  Otherwise predict 0 

Decision boundary 

Same idea can be applied 
to a tanh activation 
 



Capacity of a Single Neuron 
•  Can solve linearly separable problems.  
 21

0 1

0 1 0 1 0 1

0

1

0

1

0

1

0

1

?

XOR (x1, x2)

OR (x1, x2) AND (x1, x2) AND (x1, x2)

(x1

(x1

,
x

2
)

0 1

0

1

XOR (x1, x2)

AND (x1, x2)

A
N

D
(x

1
,
x

2
)

,
x

2
)

,
x

2
)

(x1 (x1

,
x

2
)

Figure 1.8 – Exemple de modélisation de XOR par un réseau à une couche cachée. En
haut, de gauche à droite, illustration des fonctions booléennesOR(x1, x2),AND (x1, x2)
et AND (x1, x2). En bas, on présente l’illustration de la fonction XOR(x1, x2) en fonc-
tion des valeurs de x1 et x2 (à gauche), puis de AND (x1, x2) et AND (x1, x2) (à droite).
Les points représentés par un cercle ou par un triangle appartiennent à la classe 0 ou
1, respectivement. On observe que, bien qu’un classifieur linéaire soit en mesure de ré-
soudre le problème de classification associé aux fonctions OR et AND, il ne l’est pas
dans le cas du problème de XOR. Cependant, on utilisant les valeurs de AND (x1, x2)
et AND (x1, x2) comme nouvelle représentation de l’entrée (x1, x2), le problème de
classification XOR peut alors être résolu linéairement. À noter que dans ce dernier
cas, il n’existe que trois valeurs possibles de cette nouvelle représentation, puisque
AND (x1, x2) et AND (x1, x2) ne peuvent être toutes les deux vraies pour une même
entrée.

ont été entraînés dans le cadre des travaux de cette thèse contiennent quelques milliers

de neurones cachés. Ainsi, la tâche de l’algorithme d’apprentissage est de modifier les

paramètres du réseau afin de trouver la nature des caractéristiques de l’entrée que chaque

neurone doit extraire pour résoudre le problème de classification. Idéalement, ces carac-



Capacity of a Single Neuron 
•  Can not solve non-linearly separable problems.  
 

21

0 1

0 1 0 1 0 1

0

1

0

1

0

1

0

1

?

XOR (x1, x2)

OR (x1, x2) AND (x1, x2) AND (x1, x2)

(x1

(x1

,
x

2
)

0 1

0

1

XOR (x1, x2)

AND (x1, x2)
A

N
D

(x
1
,
x

2
)

,
x

2
)

,
x

2
)

(x1 (x1

,
x

2
)

Figure 1.8 – Exemple de modélisation de XOR par un réseau à une couche cachée. En
haut, de gauche à droite, illustration des fonctions booléennesOR(x1, x2),AND (x1, x2)
et AND (x1, x2). En bas, on présente l’illustration de la fonction XOR(x1, x2) en fonc-
tion des valeurs de x1 et x2 (à gauche), puis de AND (x1, x2) et AND (x1, x2) (à droite).
Les points représentés par un cercle ou par un triangle appartiennent à la classe 0 ou
1, respectivement. On observe que, bien qu’un classifieur linéaire soit en mesure de ré-
soudre le problème de classification associé aux fonctions OR et AND, il ne l’est pas
dans le cas du problème de XOR. Cependant, on utilisant les valeurs de AND (x1, x2)
et AND (x1, x2) comme nouvelle représentation de l’entrée (x1, x2), le problème de
classification XOR peut alors être résolu linéairement. À noter que dans ce dernier
cas, il n’existe que trois valeurs possibles de cette nouvelle représentation, puisque
AND (x1, x2) et AND (x1, x2) ne peuvent être toutes les deux vraies pour une même
entrée.

ont été entraînés dans le cadre des travaux de cette thèse contiennent quelques milliers

de neurones cachés. Ainsi, la tâche de l’algorithme d’apprentissage est de modifier les

paramètres du réseau afin de trouver la nature des caractéristiques de l’entrée que chaque

neurone doit extraire pour résoudre le problème de classification. Idéalement, ces carac-

•  Need to transform the input into a better representation.  
•  Remember basis functions! 
 



Single Hidden Layer Neural Net 
•  Hidden layer pre-activation: 
 

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(a) = a

• g(a) = sigm(a) = 1
1+exp(�a)

• g(a) = tanh(a) = exp(a)�exp(�a)
exp(a)+exp(�a) = exp(2a)�1

exp(2a)+1

• g(a) = max(0, a)

• g(a) = reclin(a) = max(0, a)

• g(·) b

• W (1)
i,j b(1)i xj h(x)i w(2)

i b(2)

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i +

P
j W

(1)
i,j xj

⌘

• f(x) = o(b(2) +w(2)>x)

1

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(a) = a

• g(a) = sigm(a) = 1
1+exp(�a)

• g(a) = tanh(a) = exp(a)�exp(�a)
exp(a)+exp(�a) = exp(2a)�1

exp(2a)+1

• g(a) = max(0, a)

• g(a) = reclin(a) = max(0, a)

• g(·) b

• W (1)
i,j b(1)i xj h(x)i w(2)

i b(2)

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i +

P
j W

(1)
i,j xj

⌘

• f(x) = o(b(2) +w(2)>x)

1

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(a) = a

• g(a) = sigm(a) = 1
1+exp(�a)

• g(a) = tanh(a) = exp(a)�exp(�a)
exp(a)+exp(�a) = exp(2a)�1

exp(2a)+1

• g(a) = max(0, a)

• g(a) = reclin(a) = max(0, a)

• p(y = 1|x)

• g(·) b

• W (1)
i,j b(1)i xj h(x)i w(2)

i b(2)

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i +

P
j W

(1)
i,j xj

⌘

• f(x) = o
⇣
b(2) +w(2)>x

⌘

1

•  Hidden layer activation: 
 

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 7, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(a) = a

• g(a) = sigm(a) = 1
1+exp(�a)

• g(a) = tanh(a) = exp(a)�exp(�a)
exp(a)+exp(�a) = exp(2a)�1

exp(2a)+1

• g(a) = max(0, a)

• g(a) = reclin(a) = max(0, a)

• p(y = 1|x)

• g(·) b

• W (1)
i,j b(1)i xj h(x)i w(2)

i b(2)

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i +

P
j W

(1)
i,j xj

⌘

• f(x) = o
⇣
b(2) +w(2)>h(1)x

⌘

1

•  Output layer activation: 
 

Output activation 
function 



Softmax Activation Function  
‣  Remember multi-way classification:  

-  We need multiple outputs (1 output per class)  
-  We need to estimate conditional probability: 
-  Discriminative Learning   

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(a) = a

• g(a) = sigm(a) = 1
1+exp(�a)

• g(a) = tanh(a) = exp(a)�exp(�a)
exp(a)+exp(�a) = exp(2a)�1

exp(2a)+1

• g(a) = max(0, a)

• g(a) = reclin(a) = max(0, a)

• g(·) b

• W (1)
i,j b(1)i xj h(x)i w(2)

i b(2)

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i +

P
j W

(1)
i,j xj

⌘

• f(x) = o
⇣
b(2) +w(2)>x

⌘

• p(y = c|x)

• o(a) = softmax(a) =
h

exp(a1)P
c exp(ac)

. . . exp(aC)P
c exp(ac)

i>

1

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(a) = a

• g(a) = sigm(a) = 1
1+exp(�a)

• g(a) = tanh(a) = exp(a)�exp(�a)
exp(a)+exp(�a) = exp(2a)�1

exp(2a)+1

• g(a) = max(0, a)

• g(a) = reclin(a) = max(0, a)

• g(·) b

• W (1)
i,j b(1)i xj h(x)i w(2)

i b(2)

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i +

P
j W

(1)
i,j xj

⌘

• f(x) = o
⇣
b(2) +w(2)>x

⌘

• p(y = c|x)

• o(a) = softmax(a) =
h

exp(a1)P
c exp(ac)

. . . exp(aC)P
c exp(ac)

i>

1

‣  Softmax activation function at the output 
 

 
-  strictly positive 
-  sums to one  

‣  Predict class with the highest estimated class conditional 
probability. 



Multilayer Neural Net 
•  Consider a network with L hidden layers.  
 

-  hidden layer activation  
   from 1 to L: 
 

-  layer pre-activation for k>0 
 

• p(y = c|x)

• o(a) = softmax(a) =
h

exp(a1)P
c exp(ac)

. . . exp(aC)P
c exp(ac)

i>

• f(x)

• h(1)(x) h(2)(x) W(1) W(2) W(3) b(1) b(2) b(3)

• a(k)(x) = b(k) +W(k)h(k�1)(x) (h(0)(x) = x)

• h(k)(x) = g(a(k)(x))

• h(L+1)(x) = o(a(L+1)(x)) = f(x)

2

• p(y = c|x)

• o(a) = softmax(a) =
h

exp(a1)P
c exp(ac)

. . . exp(aC)P
c exp(ac)

i>

• f(x)

• h(1)(x) h(2)(x) W(1) W(2) W(3) b(1) b(2) b(3)

• a(k)(x) = b(k) +W(k)h(k�1)x (h(0) = x)

• h(k)(x) = g(a(k)(x))

• h(L+1)(x) = o(a(L+1)(x)) = f(x)

2

• p(y = c|x)

• o(a) = softmax(a) =
h

exp(a1)P
c exp(ac)

. . . exp(aC)P
c exp(ac)

i>

• f(x)

• h(1)(x) h(2)(x) W(1) W(2) W(3) b(1) b(2) b(3)

• a(k)(x) = b(k) +W(k)h(k�1)x (h(0) = x)

• h(k)(x) = g(a(k)(x))

• h(L+1)(x) = o(a(L+1)(x)) = f(x)

2

-  output layer activation (k=L+1): 
 

• p(y = c|x)

• o(a) = softmax(a) =
h

exp(a1)P
c exp(ac)

. . . exp(aC)P
c exp(ac)

i>

• f(x)

• h(1)(x) h(2)(x) W(1) W(2) W(3) b(1) b(2) b(3)

• a(k)(x) = b(k) +W(k)h(k�1)x (h(0)(x) = x)

• h(k)(x) = g(a(k)(x))

• h(L+1)(x) = o(a(L+1)(x)) = f(x)

2



Capacity of Neural Nets 
•  Consider a single layer neural network 
 

2Réseaux de neurones

-1 1

-1

1

1
1

1 1

.5

-1.5

.7
-.4-1

x1 x2

x1

x2

z=+1

z=-1

z=-1

0

1
-1

0

1

-1

0

1

-1

0

1
-1

0

1

-1

0

1

-1

0

1
-1

0

1

-1

0

1

-1

R2

R2

R1

y1 y2

z

zk

wkj

wji

x1

x2

x1

x2

x1

x2

y1 y2

sortie k

entrée i

cachée j
biais

Input 

Hidden 

Output 

bias 

(from Pascal Vincent’s slides) 



Capacity of Neural Nets 
•  Consider a single layer neural network 
 

6Réseaux de neurones

• La puissance expressive des réseaux de neurones

y1

y2

y4

y3

y3 y4y2y1

x1 x2

z1

z1

x1

x2

(from Pascal Vincent’s slides) 



Capacity of Neural Nets 
•  Consider a single layer neural network 
 

(from Pascal Vincent’s slides) 



Universal Approximation 
•  Universal Approximation Theorem (Hornik, 1991): 
 

-  “a single hidden layer neural network with a linear output 
unit can approximate any continuous function arbitrarily well, 
given enough hidden units’’ 
 

•  This applies for sigmoid, tanh and many other activation 
functions. 

•  However, this does not mean that there is learning algorithm that 
can find the necessary parameter values.  



Feedforward Neural Networks 
‣  How neural networks predict f(x) given an input x: 

-  Forward propagation 
-  Types of units 
-  Capacity of neural networks 

‣  How to train neural nets:  
-  Loss function 
-  Backpropagation with gradient descent 

‣  More recent techniques: 
-  Dropout 
-  Batch normalization 
-  Unsupervised Pre-training 



Training  
•  Empirical Risk Minimization: 
 

• bµ = 1
T

P
t
x(t)

• b�2 = 1
T�1

P
t
(x(t) � bµ)2

• b⌃ = 1
T�1

P
t
(x(t) � bµ)(x(t) � bµ)>

• E[bµ] = µ E[b�2] = �
2 E

h
b⌃
i
= ⌃

• bµ�µp
b�2/T

• µ 2 bµ±�1.96
p

b�2/T

•
b✓ = argmax

✓

p(x(1)
, . . . ,x(T ))

•
p(x(1)

, . . . ,x(T )) =
Y

t

p(x(t))

• T�1
T

b⌃ = 1
T

P
t
(x(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain = {(x(t)
, y

(t))}

• f(x;✓)

• Dvalid Dtest

•
argmin

✓

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

5

Loss function  Regularizer 

•  Learning is cast as optimization.  
 

Ø  For classification problems, we would like to minimize 
classification error. 

Ø  Loss function can sometimes be viewed as a surrogate for 
what we want to optimize (e.g. upper bound)  
 



Stochastic Gradient Descend 
•  Perform updates after seeing each example:  
 -  Initialize:  

 

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• ✓ ⌘ {W(1),b(1), . . . ,W(L+1),b(L+1)}

• l(f(x(t);✓), y(t))

• r✓l(f(x(t);✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

rf(x) � log f(x)y =
�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=
�e(c)

f(x)y

1

-  For t=1:T 
 -  for each training example  

 

• bµ = 1
T

P
t
x(t)

• b�2 = 1
T�1

P
t
(x(t) � bµ)2

• b⌃ = 1
T�1

P
t
(x(t) � bµ)(x(t) � bµ)>

• E[bµ] = µ E[b�2] = �
2 E

h
b⌃
i
= ⌃

• bµ�µp
b�2/T

• µ 2 bµ±�1.96
p

b�2/T

•
b✓ = argmax

✓

p(x(1)
, . . . ,x(T ))

•
p(x(1)

, . . . ,x(T )) =
Y

t

p(x(t))

• T�1
T

b⌃ = 1
T

P
t
(x(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain = {(x(t)
, y

(t))}

• f(x;✓)

• Dvalid Dtest

•
argmin

✓

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1
T

P
t
r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

• ✓  ✓ +�

• {x 2 Rd | rxf(x) = 0}

• v>r2
xf(x)v > 0 8v

• v>r2
xf(x)v < 0 8v

• � = �r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

• (x(t)
, y

(t))

5

• bµ = 1
T

P
t
x(t)

• b�2 = 1
T�1

P
t
(x(t) � bµ)2

• b⌃ = 1
T�1

P
t
(x(t) � bµ)(x(t) � bµ)>

• E[bµ] = µ E[b�2] = �
2 E

h
b⌃
i
= ⌃

• bµ�µp
b�2/T

• µ 2 bµ±�1.96
p

b�2/T

•
b✓ = argmax

✓

p(x(1)
, . . . ,x(T ))

•
p(x(1)

, . . . ,x(T )) =
Y

t

p(x(t))

• T�1
T

b⌃ = 1
T

P
t
(x(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain = {(x(t)
, y

(t))}

• f(x;✓)

• Dvalid Dtest

•
argmin

✓

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1
T

P
t
r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

• ✓  ✓ +�

• {x 2 Rd | rxf(x) = 0}

• v>r2
xf(x)v > 0 8v

• v>r2
xf(x)v < 0 8v

• � = �r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

5

•
argmin

✓

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1
T

P
t
r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

• ✓  ✓ + ↵ �

• {x 2 Rd | rxf(x) = 0}

• v>r2
xf(x)v > 0 8v

• v>r2
xf(x)v < 0 8v

• � = �r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

• (x(t)
, y

(t))

• f
⇤

f

6

Training epoch 
= 

Iteration of all examples 

•  To train a neural net, we need: 
 
Ø   Loss function: 
Ø   A procedure to compute gradients: 
Ø   Regularizer and its gradient:          ,   

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• l(f(x(t);✓), y(t))

• r✓l(f(x(t);✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

rf(x) � log f(x)y =
�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=
�e(c)

f(x)y

1

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• l(f(x(t);✓), y(t))

• r✓l(f(x(t);✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

rf(x) � log f(x)y =
�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=
�e(c)

f(x)y

1

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• l(f(x(t);✓), y(t))

• r✓l(f(x(t);✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

rf(x) � log f(x)y =
�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=
�e(c)

f(x)y

1

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• l(f(x(t);✓), y(t))

• r✓l(f(x(t);✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

rf(x) � log f(x)y =
�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=
�e(c)

f(x)y

1



Loss Function 

•  We need to estimate: 
 

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• ✓ ⌘ {W(1),b(1), . . . ,W(L+1),b(L+1)}

• l(f(x(t);✓), y(t))

• r✓l(f(x(t);✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

rf(x) � log f(x)y =
�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=
�e(c)

f(x)y

1

•  Let us start by considering a classification problem with a 
softmax output layer.   
 

-  We can maximize the log-probability of the correct class given 
an input:   log p(y(t) = c|x(t))

•  Alternatively, we can minimize the negative log-likelihood: 
 

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• ✓ ⌘ {W(1),b(1), . . . ,W(L+1),b(L+1)}

• l(f(x(t);✓), y(t))

• r✓l(f(x(t);✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

rf(x) � log f(x)y =
�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=
�e(c)

f(x)y

1

•   As seen before, this is also known as a cross-entropy entropy 
function for multi-class classification problem. 



Stochastic Gradient Descend 
•  Perform updates after seeing each example:  
 -  Initialize:  

 

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• ✓ ⌘ {W(1),b(1), . . . ,W(L+1),b(L+1)}

• l(f(x(t);✓), y(t))

• r✓l(f(x(t);✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

rf(x) � log f(x)y =
�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=
�e(c)

f(x)y

1

-  For t=1:T 
 -  for each training example  

 

• bµ = 1
T

P
t
x(t)

• b�2 = 1
T�1

P
t
(x(t) � bµ)2

• b⌃ = 1
T�1

P
t
(x(t) � bµ)(x(t) � bµ)>

• E[bµ] = µ E[b�2] = �
2 E

h
b⌃
i
= ⌃

• bµ�µp
b�2/T

• µ 2 bµ±�1.96
p

b�2/T

•
b✓ = argmax

✓

p(x(1)
, . . . ,x(T ))

•
p(x(1)

, . . . ,x(T )) =
Y

t

p(x(t))

• T�1
T

b⌃ = 1
T

P
t
(x(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain = {(x(t)
, y

(t))}

• f(x;✓)

• Dvalid Dtest

•
argmin

✓

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1
T

P
t
r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

• ✓  ✓ +�

• {x 2 Rd | rxf(x) = 0}

• v>r2
xf(x)v > 0 8v

• v>r2
xf(x)v < 0 8v

• � = �r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

• (x(t)
, y

(t))

5

• bµ = 1
T

P
t
x(t)

• b�2 = 1
T�1

P
t
(x(t) � bµ)2

• b⌃ = 1
T�1

P
t
(x(t) � bµ)(x(t) � bµ)>

• E[bµ] = µ E[b�2] = �
2 E

h
b⌃
i
= ⌃

• bµ�µp
b�2/T

• µ 2 bµ±�1.96
p

b�2/T

•
b✓ = argmax

✓

p(x(1)
, . . . ,x(T ))

•
p(x(1)

, . . . ,x(T )) =
Y

t

p(x(t))

• T�1
T

b⌃ = 1
T

P
t
(x(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain = {(x(t)
, y

(t))}

• f(x;✓)

• Dvalid Dtest

•
argmin

✓

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1
T

P
t
r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

• ✓  ✓ +�

• {x 2 Rd | rxf(x) = 0}

• v>r2
xf(x)v > 0 8v

• v>r2
xf(x)v < 0 8v

• � = �r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

5

•
argmin

✓

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1
T

P
t
r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

• ✓  ✓ + ↵ �

• {x 2 Rd | rxf(x) = 0}

• v>r2
xf(x)v > 0 8v

• v>r2
xf(x)v < 0 8v

• � = �r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

• (x(t)
, y

(t))

• f
⇤

f

6

Training epoch 
= 

Iteration of all examples 

•  To train a neural net, we need: 
 
Ø   Loss function: 
Ø   A procedure to compute gradients: 
Ø   Regularizer and its gradient:          ,   

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• l(f(x(t);✓), y(t))

• r✓l(f(x(t);✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

rf(x) � log f(x)y =
�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=
�e(c)

f(x)y

1

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• l(f(x(t);✓), y(t))

• r✓l(f(x(t);✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

rf(x) � log f(x)y =
�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=
�e(c)

f(x)y

1

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• l(f(x(t);✓), y(t))

• r✓l(f(x(t);✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

rf(x) � log f(x)y =
�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=
�e(c)

f(x)y

1

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• l(f(x(t);✓), y(t))

• r✓l(f(x(t);✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

rf(x) � log f(x)y =
�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=
�e(c)

f(x)y

1



Multilayer Neural Net: Reminder 
•  Consider a network with L hidden layers.  
 

-  hidden layer activation  
   from 1 to L: 
 

-  layer pre-activation for k>0 
 

• p(y = c|x)

• o(a) = softmax(a) =
h

exp(a1)P
c exp(ac)

. . . exp(aC)P
c exp(ac)

i>

• f(x)

• h(1)(x) h(2)(x) W(1) W(2) W(3) b(1) b(2) b(3)

• a(k)(x) = b(k) +W(k)h(k�1)(x) (h(0)(x) = x)

• h(k)(x) = g(a(k)(x))

• h(L+1)(x) = o(a(L+1)(x)) = f(x)

2

• p(y = c|x)

• o(a) = softmax(a) =
h

exp(a1)P
c exp(ac)

. . . exp(aC)P
c exp(ac)

i>

• f(x)

• h(1)(x) h(2)(x) W(1) W(2) W(3) b(1) b(2) b(3)

• a(k)(x) = b(k) +W(k)h(k�1)x (h(0) = x)

• h(k)(x) = g(a(k)(x))

• h(L+1)(x) = o(a(L+1)(x)) = f(x)

2

• p(y = c|x)

• o(a) = softmax(a) =
h

exp(a1)P
c exp(ac)

. . . exp(aC)P
c exp(ac)

i>

• f(x)

• h(1)(x) h(2)(x) W(1) W(2) W(3) b(1) b(2) b(3)

• a(k)(x) = b(k) +W(k)h(k�1)x (h(0) = x)

• h(k)(x) = g(a(k)(x))

• h(L+1)(x) = o(a(L+1)(x)) = f(x)

2

-  output layer activation (k=L+1): 
 

• p(y = c|x)

• o(a) = softmax(a) =
h

exp(a1)P
c exp(ac)

. . . exp(aC)P
c exp(ac)

i>

• f(x)

• h(1)(x) h(2)(x) W(1) W(2) W(3) b(1) b(2) b(3)

• a(k)(x) = b(k) +W(k)h(k�1)x (h(0)(x) = x)

• h(k)(x) = g(a(k)(x))

• h(L+1)(x) = o(a(L+1)(x)) = f(x)

2

Softmax activation 
function 



Gradient Computation 
•  Loss gradient at output 
 -  Partial derivative: 

   
 

Training neural networks

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

November 19, 2012

Abstract

Math for my slides “Training neural networks”.

• f(x)

• ✓ ⌘ {W(1)
,b(1)

, . . . ,W(L+1)
,b(L+1)}

• l(f(x(t);✓), y(t))

• r✓l(f(x(t);✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x(t)
y
(t)

• l(f(x), y) = �
P

c
1(y=c) log f(x)c = � log f(x)y

•

@

@f(x)c
� log f(x)y =

�1(y=c)

f(x)y

rf(x) � log f(x)y

=
�1

f(x)y

2

64
1(y=0)

...
1(y=C�1)

3

75

=
�e(y)

f(x)y

1

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• ✓ ⌘ {W(1),b(1), . . . ,W(L+1),b(L+1)}

• l(f(x(t);✓), y(t))

• r✓l(f(x(t);✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

rf(x) � log f(x)y

=
�1

f(x)y

2

64
1(y=0)

...
1(y=C�1)

3

75

=
�e(y)

f(x)y

1

-  Gradient: 
   
 

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• ✓ ⌘ {W(1),b(1), . . . ,W(L+1),b(L+1)}

• l(f(x(t);✓), y(t))

• r✓l(f(x(t);✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

rf(x) � log f(x)y =
�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=
�e(c)

f(x)y

1

Remember: 

Indicator 
function  



Gradient Computation 
•  Loss gradient at output pre-activation 
 -  Partial derivative: 

   
 

-  Gradient: 
   
 

•

@

@a(L+1)(x)c
� log f(x)y

=
�1

f(x)y

@

a(L+1)(x)c
f(x)y

=
�1

f(x)y

@

a(L+1)(x)c
softmax(a(L+1)(x))y

=
�1

f(x)y

@

a(L+1)(x)c

exp(a(L+1)(x)y)P
c0 exp(a

(L+1)(x)c0)

=
�1

f(x)y

0

@
@

a(L+1)(x)c
exp(a(L+1)(x)y)

P
c0 exp(a

(L+1)(x)c0)
�

exp(a(L+1)(x)y)
⇣

@

a(L+1)(x)c

P
c0 exp(a

(L+1)(x)c0)
⌘

�P
c0 exp(a

(L+1)(x)c0)
�2

1

A

=
�1

f(x)y

 
1(y=c) exp(a

(L+1)(x)y)P
c0 exp(a

(L+1)(x)c0)
� exp(a(L+1)(x)y)P

c0 exp(a
(L+1)(x)c0)

exp(a(L+1)(x)c)P
c0 exp(a

(L+1)(x)c0)

!

=
�1

f(x)y

⇣
1(y=c)softmax(a(L+1)(x))y � softmax(a(L+1)(x))y softmax(a(L+1)(x))c

⌘

=
�1

f(x)y

�
1(y=c)f(x)y � f(x)y f(x)c

�

= �
�
1(y=c) � f(x)c

�

ra(L+1)(x) � log f(x)y

= � (e(y)� f(x))

• p(a) qi(a) a k

•
@p(a)

@a
=
X

i

@p(a)

@qi(a)

@qi(a)

@a

• a
(k)(x)i = b

(k)
i

+
P

j
W

(k)
i,j

h
(k�1)(x)j

@

h(k)(x)j
� log f(x)y

=
X

i

@ � log f(x)y
@a(k+1)(x)i

@a
(k+1)(x)i

@h(k)(x)j

=
X

i

@ � log f(x)y
@a(k+1)(x)i

W
(k+1)
i,j

rh(k)(x) � log f(x)y

= W(k+1)> �ra(k+1)(x) � log f(x)y
�

2

•

@

a(L+1)(x)c
� log f(x)y

=
�1

f(x)y

@

a(L+1)(x)c
f(x)y

=
�1

f(x)y

@

a(L+1)(x)c
softmax(a(L+1)(x))y

=
�1

f(x)y

@

a(L+1)(x)c

exp(a(L+1)(x)y)P
c0 exp(a

(L+1)(x)c0)

=
�1

f(x)y

0

@
@

a(L+1)(x)c
exp(a(L+1)(x)y)

P
c0 exp(a

(L+1)(x)c0)
�

exp(a(L+1)(x)y)
⇣

@
a(L+1)(x)c

P
c0 exp(a

(L+1)(x)c0)
⌘

�P
c0 exp(a

(L+1)(x)c0)
�2

1

A

=
�1

f(x)y

 
1(y=c) exp(a

(L+1)(x)y)P
c0 exp(a

(L+1)(x)c0)
� exp(a(L+1)(x)y)P

c0 exp(a
(L+1)(x)c0)

exp(a(L+1)(x)c)P
c0 exp(a

(L+1)(x)c0)

!

=
�1

f(x)y

⇣
1(y=c)softmax(a(L+1)(x))y � softmax(a(L+1)(x))y softmax(a(L+1)(x))c

⌘

=
�1

f(x)y

�
1(y=c)f(x)y � f(x)y f(x)c

�

= �
�
1(y=c) � f(x)c

�

2

•

@

a(L+1)(x)c
� log f(x)y

=
�1

f(x)y

@

a(L+1)(x)c
f(x)y

=
�1

f(x)y

@

a(L+1)(x)c
softmax(a(L+1)(x))y

=
�1

f(x)y

@

a(L+1)(x)c

exp(a(L+1)(x)y)P
c0 exp(a

(L+1)(x)c0)

=
�1

f(x)y

0

@
@

a(L+1)(x)c
exp(a(L+1)(x)y)

P
c0 exp(a

(L+1)(x)c0)
�

exp(a(L+1)(x)y)
⇣

@
a(L+1)(x)c

P
c0 exp(a

(L+1)(x)c0)
⌘

�P
c0 exp(a

(L+1)(x)c0)
�2

1

A

=
�1

f(x)y

 
1(y=c) exp(a

(L+1)(x)y)P
c0 exp(a

(L+1)(x)c0)
� exp(a(L+1)(x)y)P

c0 exp(a
(L+1)(x)c0)

exp(a(L+1)(x)c)P
c0 exp(a

(L+1)(x)c0)

!

=
�1

f(x)y

⇣
1(y=c)softmax(a(L+1)(x))y � softmax(a(L+1)(x))y softmax(a(L+1)(x))c

⌘

=
�1

f(x)y

�
1(y=c)f(x)y � f(x)y f(x)c

�

= �
�
1(y=c) � f(x)c

�

ra(L+1)(x) � log f(x)y

= � (e(y)� f(x))

• p(a) qi(a) a k

•
@p(a)

@a
=
X

i

@p(a)

@qi(a)

@qi(a)

@a

•

@

h(k)(x)j
� log f(x)y

=
X

i

@ � log f(x)y
@a(k+1)(x)i

@a(k+1)(x)i
@h(k)(x)j

=
X

i

@ � log f(x)y
@a(k+1)(x)i

W (k)
i,j

rh(k)(x)j

= W(k)>ra(k+1)(x) � log f(x)y

2

Indicator function  



Derivation •

@

@a(L+1)(x)c
� log f(x)y

=
�1

f(x)y

@

@a(L+1)(x)c
f(x)y

=
�1

f(x)y

@

@a(L+1)(x)c
softmax(a(L+1)(x))y

=
�1

f(x)y

@

@a(L+1)(x)c

exp(a(L+1)(x)y)P
c0 exp(a

(L+1)(x)c0)

=
�1

f(x)y

0

@
@

@a(L+1)(x)c
exp(a(L+1)(x)y)

P
c0 exp(a

(L+1)(x)c0)
�

exp(a(L+1)(x)y)
⇣

@

@a(L+1)(x)c

P
c0 exp(a

(L+1)(x)c0)
⌘

�P
c0 exp(a

(L+1)(x)c0)
�2

1

A

=
�1

f(x)y

 
1(y=c) exp(a

(L+1)(x)y)P
c0 exp(a

(L+1)(x)c0)
� exp(a(L+1)(x)y)P

c0 exp(a
(L+1)(x)c0)

exp(a(L+1)(x)c)P
c0 exp(a

(L+1)(x)c0)

!

=
�1

f(x)y

⇣
1(y=c)softmax(a(L+1)(x))y � softmax(a(L+1)(x))y softmax(a(L+1)(x))c

⌘

=
�1

f(x)y

�
1(y=c)f(x)y � f(x)y f(x)c

�

= �
�
1(y=c) � f(x)c

�

ra(L+1)(x) � log f(x)y

= � (e(y)� f(x))

• p(a) qi(a) a k

•
@p(a)

@a
=
X

i

@p(a)

@qi(a)

@qi(a)

@a

• a
(k)(x)i = b

(k)
i

+
P

j
W

(k)
i,j

h
(k�1)(x)j

@

@h(k)(x)j
� log f(x)y

=
X

i

@ � log f(x)y
@a(k+1)(x)i

@a
(k+1)(x)i

@h(k)(x)j

=
X

i

@ � log f(x)y
@a(k+1)(x)i

W
(k+1)
i,j

rh(k)(x) � log f(x)y

= W(k+1)> �ra(k+1)(x) � log f(x)y
�

2

Dérivées 

●  Pour%des%combinaisons%plus%complexes:/

IFT615% Hugo%Larochelle% 33%

�g(x) + h(x)
�x

=
�g(x)
�x

+
�h(x)

�x

�g(x)h(x)
�x

=
�g(x)
�x

h(x) + g(x)
�h(x)

�x

� g(x)
h(x)

�x
=

�g(x)
�x

1
h(x)

� g(x)
h(x)2

�h(x)
�x



Gradient Computation 
•  Loss gradient for hidden layers 
 

-  This is getting complicated! 
   
 



Gradient Computation 
•  Chain Rule: Assume that a function           
        can be written as a function of 
intermediate results          , then: 
 

•

@

a(L+1)(x)c
� log f(x)y

=
�1

f(x)y

@

a(L+1)(x)c
f(x)y

=
�1

f(x)y

@

a(L+1)(x)c
softmax(a(L+1)(x))y

=
�1

f(x)y

@

a(L+1)(x)c

exp(a(L+1)(x)y)P
c0 exp(a

(L+1)(x)c0)

=
�1

f(x)y

0

@
@

a(L+1)(x)c
exp(a(L+1)(x)y)

P
c0 exp(a

(L+1)(x)c0)
�

exp(a(L+1)(x)y)
⇣

@
a(L+1)(x)c

P
c0 exp(a

(L+1)(x)c0)
⌘

�P
c0 exp(a

(L+1)(x)c0)
�2

1

A

=
�1

f(x)y

 
1(y=c) exp(a

(L+1)(x)y)P
c0 exp(a

(L+1)(x)c0)
� exp(a(L+1)(x)y)P

c0 exp(a
(L+1)(x)c0)

exp(a(L+1)(x)c)P
c0 exp(a

(L+1)(x)c0)

!

=
�1

f(x)y

⇣
1(y=c)softmax(a(L+1)(x))y � softmax(a(L+1)(x))y softmax(a(L+1)(x))c

⌘

=
�1

f(x)y

�
1(y=c)f(x)y � f(x)y f(x)c

�

= �
�
1(y=c) � f(x)c

�

ra(L+1)(x)c � log f(x)y

= � (e(y)� f(x))

• p(a) qi(a)

•
@p(a)

@a
=
X

i

@p(a)

@qi(a)

@qi(a)

@a

•

2

•

@

a(L+1)(x)c
� log f(x)y

=
�1

f(x)y

@

a(L+1)(x)c
f(x)y

=
�1

f(x)y

@

a(L+1)(x)c
softmax(a(L+1)(x))y

=
�1

f(x)y

@

a(L+1)(x)c

exp(a(L+1)(x)y)P
c0 exp(a

(L+1)(x)c0)

=
�1

f(x)y

0

@
@

a(L+1)(x)c
exp(a(L+1)(x)y)

P
c0 exp(a

(L+1)(x)c0)
�

exp(a(L+1)(x)y)
⇣

@
a(L+1)(x)c

P
c0 exp(a

(L+1)(x)c0)
⌘

�P
c0 exp(a

(L+1)(x)c0)
�2

1

A

=
�1

f(x)y

 
1(y=c) exp(a

(L+1)(x)y)P
c0 exp(a

(L+1)(x)c0)
� exp(a(L+1)(x)y)P

c0 exp(a
(L+1)(x)c0)

exp(a(L+1)(x)c)P
c0 exp(a

(L+1)(x)c0)

!

=
�1

f(x)y

⇣
1(y=c)softmax(a(L+1)(x))y � softmax(a(L+1)(x))y softmax(a(L+1)(x))c

⌘

=
�1

f(x)y

�
1(y=c)f(x)y � f(x)y f(x)c

�

= �
�
1(y=c) � f(x)c

�

ra(L+1)(x)c � log f(x)y

= � (e(y)� f(x))

• p(a) qi(a)

•
@p(a)

@a
=
X

i

@p(a)

@qi(a)

@qi(a)

@a

•

2

•

@

a(L+1)(x)c
� log f(x)y

=
�1

f(x)y

@

a(L+1)(x)c
f(x)y

=
�1

f(x)y

@

a(L+1)(x)c
softmax(a(L+1)(x))y

=
�1

f(x)y

@

a(L+1)(x)c

exp(a(L+1)(x)y)P
c0 exp(a

(L+1)(x)c0)

=
�1

f(x)y

0

@
@

a(L+1)(x)c
exp(a(L+1)(x)y)

P
c0 exp(a

(L+1)(x)c0)
�

exp(a(L+1)(x)y)
⇣

@
a(L+1)(x)c

P
c0 exp(a

(L+1)(x)c0)
⌘

�P
c0 exp(a

(L+1)(x)c0)
�2

1

A

=
�1

f(x)y

 
1(y=c) exp(a

(L+1)(x)y)P
c0 exp(a

(L+1)(x)c0)
� exp(a(L+1)(x)y)P

c0 exp(a
(L+1)(x)c0)

exp(a(L+1)(x)c)P
c0 exp(a

(L+1)(x)c0)

!

=
�1

f(x)y

⇣
1(y=c)softmax(a(L+1)(x))y � softmax(a(L+1)(x))y softmax(a(L+1)(x))c

⌘

=
�1

f(x)y

�
1(y=c)f(x)y � f(x)y f(x)c

�

= �
�
1(y=c) � f(x)c

�

ra(L+1)(x)c � log f(x)y

= � (e(y)� f(x))

• p(a) qi(a)

•
@p(a)

@a
=
X

i

@p(a)

@qi(a)

@qi(a)

@a

•

2

•  We can invoke it by setting: 
 
-       be a hidden unit 
-             be a pre-activation in 
the layer above 
-           be the loss function  
   
 

•

@

a(L+1)(x)c
� log f(x)y

=
�1

f(x)y

@

a(L+1)(x)c
f(x)y

=
�1

f(x)y

@

a(L+1)(x)c
softmax(a(L+1)(x))y

=
�1

f(x)y

@

a(L+1)(x)c

exp(a(L+1)(x)y)P
c0 exp(a

(L+1)(x)c0)

=
�1

f(x)y

0

@
@

a(L+1)(x)c
exp(a(L+1)(x)y)

P
c0 exp(a

(L+1)(x)c0)
�

exp(a(L+1)(x)y)
⇣

@
a(L+1)(x)c

P
c0 exp(a

(L+1)(x)c0)
⌘

�P
c0 exp(a

(L+1)(x)c0)
�2

1

A

=
�1

f(x)y

 
1(y=c) exp(a

(L+1)(x)y)P
c0 exp(a

(L+1)(x)c0)
� exp(a(L+1)(x)y)P

c0 exp(a
(L+1)(x)c0)

exp(a(L+1)(x)c)P
c0 exp(a

(L+1)(x)c0)

!

=
�1

f(x)y

⇣
1(y=c)softmax(a(L+1)(x))y � softmax(a(L+1)(x))y softmax(a(L+1)(x))c

⌘

=
�1

f(x)y

�
1(y=c)f(x)y � f(x)y f(x)c

�

= �
�
1(y=c) � f(x)c

�

ra(L+1)(x)c � log f(x)y

= � (e(y)� f(x))

• p(a) qi(a)

•
@p(a)

@a
=
X

i

@p(a)

@qi(a)

@qi(a)

@a

•

2

•

@

a(L+1)(x)c
� log f(x)y

=
�1

f(x)y

@

a(L+1)(x)c
f(x)y

=
�1

f(x)y

@

a(L+1)(x)c
softmax(a(L+1)(x))y

=
�1

f(x)y

@

a(L+1)(x)c

exp(a(L+1)(x)y)P
c0 exp(a

(L+1)(x)c0)

=
�1

f(x)y

0

@
@

a(L+1)(x)c
exp(a(L+1)(x)y)

P
c0 exp(a

(L+1)(x)c0)
�

exp(a(L+1)(x)y)
⇣

@
a(L+1)(x)c

P
c0 exp(a

(L+1)(x)c0)
⌘

�P
c0 exp(a

(L+1)(x)c0)
�2

1

A

=
�1

f(x)y

 
1(y=c) exp(a

(L+1)(x)y)P
c0 exp(a

(L+1)(x)c0)
� exp(a(L+1)(x)y)P

c0 exp(a
(L+1)(x)c0)

exp(a(L+1)(x)c)P
c0 exp(a

(L+1)(x)c0)

!

=
�1

f(x)y

⇣
1(y=c)softmax(a(L+1)(x))y � softmax(a(L+1)(x))y softmax(a(L+1)(x))c

⌘

=
�1

f(x)y

�
1(y=c)f(x)y � f(x)y f(x)c

�

= �
�
1(y=c) � f(x)c

�

ra(L+1)(x)c � log f(x)y

= � (e(y)� f(x))

• p(a) qi(a)

•
@p(a)

@a
=
X

i

@p(a)

@qi(a)

@qi(a)

@a

•

2

•

@

a(L+1)(x)c
� log f(x)y

=
�1

f(x)y

@

a(L+1)(x)c
f(x)y

=
�1

f(x)y

@

a(L+1)(x)c
softmax(a(L+1)(x))y

=
�1

f(x)y

@

a(L+1)(x)c

exp(a(L+1)(x)y)P
c0 exp(a

(L+1)(x)c0)

=
�1

f(x)y

0

@
@

a(L+1)(x)c
exp(a(L+1)(x)y)

P
c0 exp(a

(L+1)(x)c0)
�

exp(a(L+1)(x)y)
⇣

@
a(L+1)(x)c

P
c0 exp(a

(L+1)(x)c0)
⌘

�P
c0 exp(a

(L+1)(x)c0)
�2

1

A

=
�1

f(x)y

 
1(y=c) exp(a

(L+1)(x)y)P
c0 exp(a

(L+1)(x)c0)
� exp(a(L+1)(x)y)P

c0 exp(a
(L+1)(x)c0)

exp(a(L+1)(x)c)P
c0 exp(a

(L+1)(x)c0)

!

=
�1

f(x)y

⇣
1(y=c)softmax(a(L+1)(x))y � softmax(a(L+1)(x))y softmax(a(L+1)(x))c

⌘

=
�1

f(x)y

�
1(y=c)f(x)y � f(x)y f(x)c

�

= �
�
1(y=c) � f(x)c

�

ra(L+1)(x)c � log f(x)y

= � (e(y)� f(x))

• p(a) qi(a) a

•
@p(a)

@a
=
X

i

@p(a)

@qi(a)

@qi(a)

@a

•

2



Gradient Computation 
•  Loss gradient at hidden layers 
 -  Partial derivative: 

•

@

@a(L+1)(x)c
� log f(x)y

=
�1

f(x)y

@

a(L+1)(x)c
f(x)y

=
�1

f(x)y

@

a(L+1)(x)c
softmax(a(L+1)(x))y

=
�1

f(x)y

@

a(L+1)(x)c

exp(a(L+1)(x)y)P
c0 exp(a

(L+1)(x)c0)

=
�1

f(x)y

0

@
@

a(L+1)(x)c
exp(a(L+1)(x)y)

P
c0 exp(a

(L+1)(x)c0)
�

exp(a(L+1)(x)y)
⇣

@

a(L+1)(x)c

P
c0 exp(a

(L+1)(x)c0)
⌘

�P
c0 exp(a

(L+1)(x)c0)
�2

1

A

=
�1

f(x)y

 
1(y=c) exp(a

(L+1)(x)y)P
c0 exp(a

(L+1)(x)c0)
� exp(a(L+1)(x)y)P

c0 exp(a
(L+1)(x)c0)

exp(a(L+1)(x)c)P
c0 exp(a

(L+1)(x)c0)

!

=
�1

f(x)y

⇣
1(y=c)softmax(a(L+1)(x))y � softmax(a(L+1)(x))y softmax(a(L+1)(x))c

⌘

=
�1

f(x)y

�
1(y=c)f(x)y � f(x)y f(x)c

�

= �
�
1(y=c) � f(x)c

�

ra(L+1)(x) � log f(x)y

= � (e(y)� f(x))

• p(a) qi(a) a k

•
@p(a)

@a
=
X

i

@p(a)

@qi(a)

@qi(a)

@a

• a
(k)(x)i = b

(k)
i

+
P

j
W

(k)
i,j

h
(k�1)(x)j

@

@h(k)(x)j
� log f(x)y

=
X

i

@ � log f(x)y
@a(k+1)(x)i

@a
(k+1)(x)i

@h(k)(x)j

=
X

i

@ � log f(x)y
@a(k+1)(x)i

W
(k+1)
i,j

rh(k)(x) � log f(x)y

= W(k+1)> �ra(k+1)(x) � log f(x)y
�

2

•

@

a(L+1)(x)c
� log f(x)y

=
�1

f(x)y

@

a(L+1)(x)c
f(x)y

=
�1

f(x)y

@

a(L+1)(x)c
softmax(a(L+1)(x))y

=
�1

f(x)y

@

a(L+1)(x)c

exp(a(L+1)(x)y)P
c0 exp(a

(L+1)(x)c0)

=
�1

f(x)y

0

@
@

a(L+1)(x)c
exp(a(L+1)(x)y)

P
c0 exp(a

(L+1)(x)c0)
�

exp(a(L+1)(x)y)
⇣

@
a(L+1)(x)c

P
c0 exp(a

(L+1)(x)c0)
⌘

�P
c0 exp(a

(L+1)(x)c0)
�2

1

A

=
�1

f(x)y

 
1(y=c) exp(a

(L+1)(x)y)P
c0 exp(a

(L+1)(x)c0)
� exp(a(L+1)(x)y)P

c0 exp(a
(L+1)(x)c0)

exp(a(L+1)(x)c)P
c0 exp(a

(L+1)(x)c0)

!

=
�1

f(x)y

⇣
1(y=c)softmax(a(L+1)(x))y � softmax(a(L+1)(x))y softmax(a(L+1)(x))c

⌘

=
�1

f(x)y

�
1(y=c)f(x)y � f(x)y f(x)c

�

= �
�
1(y=c) � f(x)c

�

ra(L+1)(x) � log f(x)y

= � (e(y)� f(x))

• p(a) qi(a) a k

•
@p(a)

@a
=
X

i

@p(a)

@qi(a)

@qi(a)

@a

• a(k)(x)i = b(k)i +
P

j W
(k)
i,j h(k�1)(x)j

@

h(k)(x)j
� log f(x)y

=
X

i

@ � log f(x)y
@a(k+1)(x)i

@a(k+1)(x)i
@h(k)(x)j

=
X

i

@ � log f(x)y
@a(k+1)(x)i

W (k+1)
i,j

rh(k)(x) � log f(x)y

= W(k+1)>ra(k+1)(x) � log f(x)y

2

Remember: 



Gradient Computation 
•  Loss gradient at hidden layers 
 -  Gradient 

•

@

a(L+1)(x)c
� log f(x)y

=
�1

f(x)y

@

a(L+1)(x)c
f(x)y

=
�1

f(x)y

@

a(L+1)(x)c
softmax(a(L+1)(x))y

=
�1

f(x)y

@

a(L+1)(x)c

exp(a(L+1)(x)y)P
c0 exp(a

(L+1)(x)c0)

=
�1

f(x)y

0

@
@

a(L+1)(x)c
exp(a(L+1)(x)y)

P
c0 exp(a

(L+1)(x)c0)
�

exp(a(L+1)(x)y)
⇣

@
a(L+1)(x)c

P
c0 exp(a

(L+1)(x)c0)
⌘

�P
c0 exp(a

(L+1)(x)c0)
�2

1

A

=
�1

f(x)y

 
1(y=c) exp(a

(L+1)(x)y)P
c0 exp(a

(L+1)(x)c0)
� exp(a(L+1)(x)y)P

c0 exp(a
(L+1)(x)c0)

exp(a(L+1)(x)c)P
c0 exp(a

(L+1)(x)c0)

!

=
�1

f(x)y

⇣
1(y=c)softmax(a(L+1)(x))y � softmax(a(L+1)(x))y softmax(a(L+1)(x))c

⌘

=
�1

f(x)y

�
1(y=c)f(x)y � f(x)y f(x)c

�

= �
�
1(y=c) � f(x)c

�

ra(L+1)(x) � log f(x)y

= � (e(y)� f(x))

• p(a) qi(a) a k

•
@p(a)

@a
=
X

i

@p(a)

@qi(a)

@qi(a)

@a

• a(k)(x)i = b(k)i +
P

j W
(k)
i,j h(k�1)(x)j

@

h(k)(x)j
� log f(x)y

=
X

i

@ � log f(x)y
@a(k+1)(x)i

@a(k+1)(x)i
@h(k)(x)j

=
X

i

@ � log f(x)y
@a(k+1)(x)i

W (k+1)
i,j

rh(k)(x) � log f(x)y

= W(k+1)> �ra(k+1)(x) � log f(x)y
�

2

•

@

a(L+1)(x)c
� log f(x)y

=
�1

f(x)y

@

a(L+1)(x)c
f(x)y

=
�1

f(x)y

@

a(L+1)(x)c
softmax(a(L+1)(x))y

=
�1

f(x)y

@

a(L+1)(x)c

exp(a(L+1)(x)y)P
c0 exp(a

(L+1)(x)c0)

=
�1

f(x)y

0

@
@

a(L+1)(x)c
exp(a(L+1)(x)y)

P
c0 exp(a

(L+1)(x)c0)
�

exp(a(L+1)(x)y)
⇣

@
a(L+1)(x)c

P
c0 exp(a

(L+1)(x)c0)
⌘

�P
c0 exp(a

(L+1)(x)c0)
�2

1

A

=
�1

f(x)y

 
1(y=c) exp(a

(L+1)(x)y)P
c0 exp(a

(L+1)(x)c0)
� exp(a(L+1)(x)y)P

c0 exp(a
(L+1)(x)c0)

exp(a(L+1)(x)c)P
c0 exp(a

(L+1)(x)c0)

!

=
�1

f(x)y

⇣
1(y=c)softmax(a(L+1)(x))y � softmax(a(L+1)(x))y softmax(a(L+1)(x))c

⌘

=
�1

f(x)y

�
1(y=c)f(x)y � f(x)y f(x)c

�

= �
�
1(y=c) � f(x)c

�

ra(L+1)(x) � log f(x)y

= � (e(y)� f(x))

• p(a) qi(a) a k

•
@p(a)

@a
=
X

i

@p(a)

@qi(a)

@qi(a)

@a

• a(k)(x)i = b(k)i +
P

j W
(k)
i,j h(k�1)(x)j

@

h(k)(x)j
� log f(x)y

=
X

i

@ � log f(x)y
@a(k+1)(x)i

@a(k+1)(x)i
@h(k)(x)j

=
X

i

@ � log f(x)y
@a(k+1)(x)i

W (k+1)
i,j

rh(k)(x) � log f(x)y

= W(k+1)>ra(k+1)(x) � log f(x)y

2

Remember: 

We already know 
how to  compute 
that 



Gradient Computation 
•  Loss gradient at hidden layers 
   (pre-activation) 
 -  Partial derivative: • h

(k)(x)j = g(a(k)(x)j)

@

@a(k)(x)j
� log f(x)y

=
@ � log f(x)y
@h(k)(x)j

@h
(k)(x)j

@a(k)(x)j

=
@ � log f(x)y
@h(k)(x)j

g
0(a(k)(x)j)

ra(k)(x) � log f(x)y

=
�
rh(k)(x) � log f(x)y

�> ra(k)(x)h
(k)(x)

=
�
rh(k)(x) � log f(x)y

�
� [. . . , g0(a(k)(x)j), . . . ]

•

@

W
(k)
i,j

� log f(x)y

=
@ � log f(x)y
@a(k)(x)i

@a
(k)(x)i

@W
(k)
i,j

=
@ � log f(x)y
@a(k)(x)i

h
(k�1)
j

(x)

rW(k) � log f(x)y

=
�
ra(k)(x) � log f(x)y

�
h(k�1)(x)>

•

@

b
(k)
i

� log f(x)y

=
@ � log f(x)y
@a(k)(x)i

@a
(k)(x)i

@b
(k)
i

=
@ � log f(x)y
@a(k)(x)i

rb(k) � log f(x)y

= ra(k)(x) � log f(x)y

• ra(L+1)(x) � log f(x)y (= � (e(y)� f(x))

• rW(k) � log f(x)y (=
�
ra(k)(x) � log f(x)y

�
h(k�1)(x)>

• rb(k) � log f(x)y (= ra(k)(x) � log f(x)y

• rh(k�1)(x) � log f(x)y (= W(k)> �
ra(k)(x) � log f(x)y

�

• ra(k�1)(x) � log f(x)y (=
�
rh(k�1)(x) � log f(x)y

�
� [. . . , g0(a(k�1)(x)j), . . . ]

3

• h(k)(x)j = g(a(k)(x)j)

@

a(k)(x)j
� log f(x)y

=
@ � log f(x)y
@h(k)(x)j

@h(k)(x)j
@a(k)(x)j

=
@ � log f(x)y
@h(k)(x)j

g0(a(k)(x)j)

ra(k)(x) � log f(x)y

= rh(k)(x) � log f(x)y �ra(k)(x)h
(k)(x)

•

@

W (k)
i,j

� log f(x)y

=
@ � log f(x)y
@a(k)(x)i

@a(k)(x)i

@W (k)
i,j

=
@ � log f(x)y
@a(k)(x)i

h(k�1)
j (x)

rW(k) � log f(x)y

= ra(k)(x) � log f(x)y h(k�1)(x)>

3

Remember: 



Gradient Computation 
•  Loss gradient at hidden layers 
   (pre-activation) 
 -  Gradient: 

• h
(k)(x)j = g(a(k)(x)j)

@

a(k)(x)j
� log f(x)y

=
@ � log f(x)y
@h(k)(x)j

@h
(k)(x)j

@a(k)(x)j

=
@ � log f(x)y
@h(k)(x)j

g
0(a(k)(x)j)

ra(k)(x) � log f(x)y

=
�
rh(k)(x) � log f(x)y

�> ra(k)(x)h
(k)(x)

=
�
rh(k)(x) � log f(x)y

�
� [. . . , g0(a(k)(x)j), . . . ]

•

@

W
(k)
i,j

� log f(x)y

=
@ � log f(x)y
@a(k)(x)i

@a
(k)(x)i

@W
(k)
i,j

=
@ � log f(x)y
@a(k)(x)i

h
(k�1)
j

(x)

rW(k) � log f(x)y

=
�
ra(k)(x) � log f(x)y

�
h(k�1)(x)>

•

@

b
(k)
i

� log f(x)y

=
@ � log f(x)y
@a(k)(x)i

@a
(k)(x)i

@b
(k)
i

=
@ � log f(x)y
@a(k)(x)i

rb(k) � log f(x)y

= ra(k)(x) � log f(x)y

• ra(L+1)(x) � log f(x)y (= � (e(y)� f(x))

• rW(k) � log f(x)y (=
�
ra(k)(x) � log f(x)y

�
h(k�1)(x)>

• rb(k) � log f(x)y (= ra(k)(x) � log f(x)y

• rh(k�1)(x) � log f(x)y (= W(k)> �
ra(k)(x) � log f(x)y

�

• ra(k�1)(x) � log f(x)y (=
�
rh(k�1)(x) � log f(x)y

�
� [. . . , g0(a(k�1)(x)j), . . . ]

3

Gradient of the 
activation function 

Let’s look at the gradients 
of activation functions.  
 

• h(k)(x)j = g(a(k)(x)j)

@

a(k)(x)j
� log f(x)y

=
@ � log f(x)y
@h(k)(x)j

@h(k)(x)j
@a(k)(x)j

=
@ � log f(x)y
@h(k)(x)j

g0(a(k)(x)j)

ra(k)(x) � log f(x)y

= rh(k)(x) � log f(x)y �ra(k)(x)h
(k)(x)

•

@

W (k)
i,j

� log f(x)y

=
@ � log f(x)y
@a(k)(x)i

@a(k)(x)i

@W (k)
i,j

=
@ � log f(x)y
@a(k)(x)i

h(k�1)
j (x)

rW(k) � log f(x)y

= ra(k)(x) � log f(x)y h(k�1)(x)>

3

Remember: 



•  Linear activation function:  
 

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(a) = a

• sigm(a) = 1
1+exp(�a)

• tanh(a) = exp(a)�exp(�a)
exp(a)+exp(�a) = exp(2a)�1

exp(2a)+1

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

-  Partial derivative 

Linear Activation Function Gradient 

• h
(k)(x)j = g(a(k)(x)j)

@

a(k)(x)j
� log f(x)y

=
@ � log f(x)y
@h(k)(x)j

@h
(k)(x)j

@a(k)(x)j

=
@ � log f(x)y
@h(k)(x)j

g
0(a(k)(x)j)

ra(k)(x) � log f(x)y

=
�
rh(k)(x) � log f(x)y

�
�ra(k)(x)h

(k)(x)

•

@

W
(k)
i,j

� log f(x)y

=
@ � log f(x)y
@a(k)(x)i

@a
(k)(x)i

@W
(k)
i,j

=
@ � log f(x)y
@a(k)(x)i

h
(k�1)
j

(x)

rW(k) � log f(x)y

=
�
ra(k)(x) � log f(x)y

�
h(k�1)(x)>

•

@

b
(k)
i

� log f(x)y

=
@ � log f(x)y
@a(k)(x)i

@a
(k)(x)i

@b
(k)
i

=
@ � log f(x)y
@a(k)(x)i

rb(k) � log f(x)y

= ra(k)(x) � log f(x)y

• ra(L+1)(x) � log f(x)y (= � (e(y)� f(x))

• rW(k) � log f(x)y (=
�
ra(k)(x) � log f(x)y

�
h(k�1)(x)>

• rb(k) � log f(x)y (= ra(k)(x) � log f(x)y

• rh(k�1)(x) � log f(x)y (= W(k)> �
ra(k)(x) � log f(x)y

�

• ra(k�1)(x) � log f(x)y (=
�
rh(k�1)(x) � log f(x)y

�
�ra(k�1)(x)h

(k�1)(x)

• g
0(a) = 1

3



•  Sigmoid activation function:  
 

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(a) = a

• g(a) = sigm(a) = 1
1+exp(�a)

• g(a) = tanh(a) = exp(a)�exp(�a)
exp(a)+exp(�a) = exp(2a)�1

exp(2a)+1

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

• h(k)(x)j = g(a(k)(x)j)

@

a(k)(x)j
� log f(x)y

=
@ � log f(x)y
@h(k)(x)j

@h(k)(x)j
@a(k)(x)j

=
@ � log f(x)y
@h(k)(x)j

g0(a(k)(x)j)

ra(k)(x) � log f(x)y

=
�
rh(k)(x) � log f(x)y

�
�ra(k)(x)h

(k)(x)

•
@

W (k)
i,j

� log f(x)y

=
@ � log f(x)y
@a(k)(x)i

@a(k)(x)i

@W (k)
i,j

=
@ � log f(x)y
@a(k)(x)i

h(k�1)
j (x)

rW(k) � log f(x)y

=
�
ra(k)(x) � log f(x)y

�
h(k�1)(x)>

•
@

b(k)i

� log f(x)y

=
@ � log f(x)y
@a(k)(x)i

@a(k)(x)i

@b(k)i

=
@ � log f(x)y
@a(k)(x)i

rb(k) � log f(x)y

= ra(k)(x) � log f(x)y

• ra(L+1)(x) � log f(x)y (= � (e(y)� f(x))

• rW(k) � log f(x)y (=
�
ra(k)(x) � log f(x)y

�
h(k)(x)>

• rb(k) � log f(x)y (= ra(k)(x) � log f(x)y

• rh(k�1)(x) � log f(x)y (= W(k)> �
ra(k)(x) � log f(x)y

�

• ra(k�1)(x) � log f(x)y (=
�
rh(k�1)(x) � log f(x)y

�
�ra(k�1)(x)h

(k)(x)

• g0(a) = a

• g0(a) = g(a)(1� g(a))

• g0(a) = 1� g(a)2

3

Sigmoid Activation Function Gradient 

-  Partial derivative 



•  Hyperbolic tangent (‘‘tanh’’) activation function:  
 

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(a) = a

• g(a) = sigm(a) = 1
1+exp(�a)

• g(a) = tanh(a) = exp(a)�exp(�a)
exp(a)+exp(�a) = exp(2a)�1

exp(2a)+1

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(a) = a

• g(a) = sigm(a) = 1
1+exp(�a)

• g(a) = tanh(a) = exp(a)�exp(�a)
exp(a)+exp(�a) = exp(2a)�1

exp(2a)+1

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

Tanh Activation Function Gradient 

• h(k)(x)j = g(a(k)(x)j)

@

a(k)(x)j
� log f(x)y

=
@ � log f(x)y
@h(k)(x)j

@h(k)(x)j
@a(k)(x)j

=
@ � log f(x)y
@h(k)(x)j

g0(a(k)(x)j)

ra(k)(x) � log f(x)y

=
�
rh(k)(x) � log f(x)y

�
�ra(k)(x)h

(k)(x)

•
@

W (k)
i,j

� log f(x)y

=
@ � log f(x)y
@a(k)(x)i

@a(k)(x)i

@W (k)
i,j

=
@ � log f(x)y
@a(k)(x)i

h(k�1)
j (x)

rW(k) � log f(x)y

=
�
ra(k)(x) � log f(x)y

�
h(k�1)(x)>

•
@

b(k)i

� log f(x)y

=
@ � log f(x)y
@a(k)(x)i

@a(k)(x)i

@b(k)i

=
@ � log f(x)y
@a(k)(x)i

rb(k) � log f(x)y

= ra(k)(x) � log f(x)y

• ra(L+1)(x) � log f(x)y (= � (e(y)� f(x))

• rW(k) � log f(x)y (=
�
ra(k)(x) � log f(x)y

�
h(k)(x)>

• rb(k) � log f(x)y (= ra(k)(x) � log f(x)y

• rh(k�1)(x) � log f(x)y (= W(k)> �
ra(k)(x) � log f(x)y

�

• ra(k�1)(x) � log f(x)y (=
�
rh(k�1)(x) � log f(x)y

�
�ra(k�1)(x)h

(k)(x)

• g0(a) = a

• g0(a) = g(a)(1� g(a))

• g0(a) = 1� g(a)2

3

-  Partial derivative 



•  Rectified linear (ReLU) activation function:  
 

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(a) = a

• g(a) = sigm(a) = 1
1+exp(�a)

• g(a) = tanh(a) = exp(a)�exp(�a)
exp(a)+exp(�a) = exp(2a)�1

exp(2a)+1

• g(a) = max(0, a)

• g(a) = reclin(a) = max(0, a)

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

Tanh Activation Function Gradient 

-  Partial derivative 

g0(a) = 1a>0



Stochastic Gradient Descend 
•  Perform updates after seeing each example:  
 -  Initialize:  

 

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• ✓ ⌘ {W(1),b(1), . . . ,W(L+1),b(L+1)}

• l(f(x(t);✓), y(t))

• r✓l(f(x(t);✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

rf(x) � log f(x)y =
�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=
�e(c)

f(x)y

1

-  For t=1:T 
 -  for each training example  

 

• bµ = 1
T

P
t
x(t)

• b�2 = 1
T�1

P
t
(x(t) � bµ)2

• b⌃ = 1
T�1

P
t
(x(t) � bµ)(x(t) � bµ)>

• E[bµ] = µ E[b�2] = �
2 E

h
b⌃
i
= ⌃

• bµ�µp
b�2/T

• µ 2 bµ±�1.96
p

b�2/T

•
b✓ = argmax

✓

p(x(1)
, . . . ,x(T ))

•
p(x(1)

, . . . ,x(T )) =
Y

t

p(x(t))

• T�1
T

b⌃ = 1
T

P
t
(x(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain = {(x(t)
, y

(t))}

• f(x;✓)

• Dvalid Dtest

•
argmin

✓

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1
T

P
t
r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

• ✓  ✓ +�

• {x 2 Rd | rxf(x) = 0}

• v>r2
xf(x)v > 0 8v

• v>r2
xf(x)v < 0 8v

• � = �r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

• (x(t)
, y

(t))

5

• bµ = 1
T

P
t
x(t)

• b�2 = 1
T�1

P
t
(x(t) � bµ)2

• b⌃ = 1
T�1

P
t
(x(t) � bµ)(x(t) � bµ)>

• E[bµ] = µ E[b�2] = �
2 E

h
b⌃
i
= ⌃

• bµ�µp
b�2/T

• µ 2 bµ±�1.96
p

b�2/T

•
b✓ = argmax

✓

p(x(1)
, . . . ,x(T ))

•
p(x(1)

, . . . ,x(T )) =
Y

t

p(x(t))

• T�1
T

b⌃ = 1
T

P
t
(x(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain = {(x(t)
, y

(t))}

• f(x;✓)

• Dvalid Dtest

•
argmin

✓

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1
T

P
t
r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

• ✓  ✓ +�

• {x 2 Rd | rxf(x) = 0}

• v>r2
xf(x)v > 0 8v

• v>r2
xf(x)v < 0 8v

• � = �r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

5

•
argmin

✓

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1
T

P
t
r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

• ✓  ✓ + ↵ �

• {x 2 Rd | rxf(x) = 0}

• v>r2
xf(x)v > 0 8v

• v>r2
xf(x)v < 0 8v

• � = �r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

• (x(t)
, y

(t))

• f
⇤

f

6

Training epoch 
= 

Iteration of all examples 

•  To train a neural net, we need: 
 
Ø   Loss function: 
Ø   A procedure to compute gradients: 
Ø   Regularizer and its gradient:          ,   

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• l(f(x(t);✓), y(t))

• r✓l(f(x(t);✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

rf(x) � log f(x)y =
�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=
�e(c)

f(x)y

1

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• l(f(x(t);✓), y(t))

• r✓l(f(x(t);✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

rf(x) � log f(x)y =
�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=
�e(c)

f(x)y

1

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• l(f(x(t);✓), y(t))

• r✓l(f(x(t);✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

rf(x) � log f(x)y =
�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=
�e(c)

f(x)y

1

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• l(f(x(t);✓), y(t))

• r✓l(f(x(t);✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

rf(x) � log f(x)y =
�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=
�e(c)

f(x)y

1



Gradient Computation 
•  Loss gradient of parameters 
 
-  Partial derivative (weights): 

• h
(k)(x)j = g(a(k)(x)j)

@

@a(k)(x)j
� log f(x)y

=
@ � log f(x)y
@h(k)(x)j

@h
(k)(x)j

@a(k)(x)j

=
@ � log f(x)y
@h(k)(x)j

g
0(a(k)(x)j)

ra(k)(x) � log f(x)y

=
�
rh(k)(x) � log f(x)y

�> ra(k)(x)h
(k)(x)

=
�
rh(k)(x) � log f(x)y

�
� [. . . , g0(a(k)(x)j), . . . ]

•

@

@W
(k)
i,j

� log f(x)y

=
@ � log f(x)y
@a(k)(x)i

@a
(k)(x)i

@W
(k)
i,j

=
@ � log f(x)y
@a(k)(x)i

h
(k�1)
j

(x)

rW(k) � log f(x)y

=
�
ra(k)(x) � log f(x)y

�
h(k�1)(x)>

•

@

@b
(k)
i

� log f(x)y

=
@ � log f(x)y
@a(k)(x)i

@a
(k)(x)i

@b
(k)
i

=
@ � log f(x)y
@a(k)(x)i

rb(k) � log f(x)y

= ra(k)(x) � log f(x)y

• ra(L+1)(x) � log f(x)y (= � (e(y)� f(x))

• rW(k) � log f(x)y (=
�
ra(k)(x) � log f(x)y

�
h(k�1)(x)>

• rb(k) � log f(x)y (= ra(k)(x) � log f(x)y

• rh(k�1)(x) � log f(x)y (= W(k)> �
ra(k)(x) � log f(x)y

�

• ra(k�1)(x) � log f(x)y (=
�
rh(k�1)(x) � log f(x)y

�
� [. . . , g0(a(k�1)(x)j), . . . ]

3

•

@

a(L+1)(x)c
� log f(x)y

=
�1

f(x)y

@

a(L+1)(x)c
f(x)y

=
�1

f(x)y

@

a(L+1)(x)c
softmax(a(L+1)(x))y

=
�1

f(x)y

@

a(L+1)(x)c

exp(a(L+1)(x)y)P
c0 exp(a

(L+1)(x)c0)

=
�1

f(x)y

0

@
@

a(L+1)(x)c
exp(a(L+1)(x)y)

P
c0 exp(a

(L+1)(x)c0)
�

exp(a(L+1)(x)y)
⇣

@
a(L+1)(x)c

P
c0 exp(a

(L+1)(x)c0)
⌘

�P
c0 exp(a

(L+1)(x)c0)
�2

1

A

=
�1

f(x)y

 
1(y=c) exp(a

(L+1)(x)y)P
c0 exp(a

(L+1)(x)c0)
� exp(a(L+1)(x)y)P

c0 exp(a
(L+1)(x)c0)

exp(a(L+1)(x)c)P
c0 exp(a

(L+1)(x)c0)

!

=
�1

f(x)y

⇣
1(y=c)softmax(a(L+1)(x))y � softmax(a(L+1)(x))y softmax(a(L+1)(x))c

⌘

=
�1

f(x)y

�
1(y=c)f(x)y � f(x)y f(x)c

�

= �
�
1(y=c) � f(x)c

�

ra(L+1)(x) � log f(x)y

= � (e(y)� f(x))

• p(a) qi(a) a k

•
@p(a)

@a
=
X

i

@p(a)

@qi(a)

@qi(a)

@a

• a(k)(x)i = b(k)i +
P

j W
(k)
i,j h(k�1)(x)j

@

h(k)(x)j
� log f(x)y

=
X

i

@ � log f(x)y
@a(k+1)(x)i

@a(k+1)(x)i
@h(k)(x)j

=
X

i

@ � log f(x)y
@a(k+1)(x)i

W (k+1)
i,j

rh(k)(x) � log f(x)y

= W(k+1)>ra(k+1)(x) � log f(x)y

2

Remember: 



Gradient Computation 
•  Loss gradient of parameters 
 

•

@

a(L+1)(x)c
� log f(x)y

=
�1

f(x)y

@

a(L+1)(x)c
f(x)y

=
�1

f(x)y

@

a(L+1)(x)c
softmax(a(L+1)(x))y

=
�1

f(x)y

@

a(L+1)(x)c

exp(a(L+1)(x)y)P
c0 exp(a

(L+1)(x)c0)

=
�1

f(x)y

0

@
@

a(L+1)(x)c
exp(a(L+1)(x)y)

P
c0 exp(a

(L+1)(x)c0)
�

exp(a(L+1)(x)y)
⇣

@
a(L+1)(x)c

P
c0 exp(a

(L+1)(x)c0)
⌘

�P
c0 exp(a

(L+1)(x)c0)
�2

1

A

=
�1

f(x)y

 
1(y=c) exp(a

(L+1)(x)y)P
c0 exp(a

(L+1)(x)c0)
� exp(a(L+1)(x)y)P

c0 exp(a
(L+1)(x)c0)

exp(a(L+1)(x)c)P
c0 exp(a

(L+1)(x)c0)

!

=
�1

f(x)y

⇣
1(y=c)softmax(a(L+1)(x))y � softmax(a(L+1)(x))y softmax(a(L+1)(x))c

⌘

=
�1

f(x)y

�
1(y=c)f(x)y � f(x)y f(x)c

�

= �
�
1(y=c) � f(x)c

�

ra(L+1)(x) � log f(x)y

= � (e(y)� f(x))

• p(a) qi(a) a k

•
@p(a)

@a
=
X

i

@p(a)

@qi(a)

@qi(a)

@a

• a(k)(x)i = b(k)i +
P

j W
(k)
i,j h(k�1)(x)j

@

h(k)(x)j
� log f(x)y

=
X

i

@ � log f(x)y
@a(k+1)(x)i

@a(k+1)(x)i
@h(k)(x)j

=
X

i

@ � log f(x)y
@a(k+1)(x)i

W (k+1)
i,j

rh(k)(x) � log f(x)y

= W(k+1)>ra(k+1)(x) � log f(x)y

2

Remember: 

-  Gradient (weights): 

• h(k)(x)j = g(a(k)(x)j)

@

a(k)(x)j
� log f(x)y

=
@ � log f(x)y
@h(k)(x)j

@h(k)(x)j
@a(k)(x)j

=
@ � log f(x)y
@h(k)(x)j

g0(a(k)(x)j)

ra(k)(x) � log f(x)y

=
�
rh(k)(x) � log f(x)y

�
�ra(k)(x)h

(k)(x)

•

@

W (k)
i,j

� log f(x)y

=
@ � log f(x)y
@a(k)(x)i

@a(k)(x)i

@W (k)
i,j

=
@ � log f(x)y
@a(k)(x)i

h(k�1)
j (x)

rW(k) � log f(x)y

=
�
ra(k)(x) � log f(x)y

�
h(k�1)(x)>

•

@

b(k)i

� log f(x)y

=
@ � log f(x)y
@a(k)(x)i

@a(k)(x)i

@b(k)i

=
@ � log f(x)y
@a(k)(x)i

rb(k) � log f(x)y

= ra(k)(x) � log f(x)y

• ra(L+1)(x) � log f(x)y ( � (e(y)� f(x))

• rW(k) � log f(x)y (
�
ra(k)(x) � log f(x)y

�
h(k)(x)>

• rb(k) � log f(x)y ( ra(k)(x) � log f(x)y

• rh(k�1)(x) � log f(x)y ( W(k)> �
ra(k)(x) � log f(x)y

�

• ra(k�1)(x) � log f(x)y (
�
rh(k�1)(x) � log f(x)y

�
�ra(k�1)(x)h

(k)(x)

3



Gradient Computation 
•  Loss gradient of parameters 
 

•

@

a(L+1)(x)c
� log f(x)y

=
�1

f(x)y

@

a(L+1)(x)c
f(x)y

=
�1

f(x)y

@

a(L+1)(x)c
softmax(a(L+1)(x))y

=
�1

f(x)y

@

a(L+1)(x)c

exp(a(L+1)(x)y)P
c0 exp(a

(L+1)(x)c0)

=
�1

f(x)y

0

@
@

a(L+1)(x)c
exp(a(L+1)(x)y)

P
c0 exp(a

(L+1)(x)c0)
�

exp(a(L+1)(x)y)
⇣

@
a(L+1)(x)c

P
c0 exp(a

(L+1)(x)c0)
⌘

�P
c0 exp(a

(L+1)(x)c0)
�2

1

A

=
�1

f(x)y

 
1(y=c) exp(a

(L+1)(x)y)P
c0 exp(a

(L+1)(x)c0)
� exp(a(L+1)(x)y)P

c0 exp(a
(L+1)(x)c0)

exp(a(L+1)(x)c)P
c0 exp(a

(L+1)(x)c0)

!

=
�1

f(x)y

⇣
1(y=c)softmax(a(L+1)(x))y � softmax(a(L+1)(x))y softmax(a(L+1)(x))c

⌘

=
�1

f(x)y

�
1(y=c)f(x)y � f(x)y f(x)c

�

= �
�
1(y=c) � f(x)c

�

ra(L+1)(x) � log f(x)y

= � (e(y)� f(x))

• p(a) qi(a) a k

•
@p(a)

@a
=
X

i

@p(a)

@qi(a)

@qi(a)

@a

• a(k)(x)i = b(k)i +
P

j W
(k)
i,j h(k�1)(x)j

@

h(k)(x)j
� log f(x)y

=
X

i

@ � log f(x)y
@a(k+1)(x)i

@a(k+1)(x)i
@h(k)(x)j

=
X

i

@ � log f(x)y
@a(k+1)(x)i

W (k+1)
i,j

rh(k)(x) � log f(x)y

= W(k+1)>ra(k+1)(x) � log f(x)y

2

Remember: 

-  Partial derivative (biases): 

• h
(k)(x)j = g(a(k)(x)j)

@

@a(k)(x)j
� log f(x)y

=
@ � log f(x)y
@h(k)(x)j

@h
(k)(x)j

@a(k)(x)j

=
@ � log f(x)y
@h(k)(x)j

g
0(a(k)(x)j)

ra(k)(x) � log f(x)y

=
�
rh(k)(x) � log f(x)y

�> ra(k)(x)h
(k)(x)

=
�
rh(k)(x) � log f(x)y

�
� [. . . , g0(a(k)(x)j), . . . ]

•

@

@W
(k)
i,j

� log f(x)y

=
@ � log f(x)y
@a(k)(x)i

@a
(k)(x)i

@W
(k)
i,j

=
@ � log f(x)y
@a(k)(x)i

h
(k�1)
j

(x)

rW(k) � log f(x)y

=
�
ra(k)(x) � log f(x)y

�
h(k�1)(x)>

•

@

@b
(k)
i

� log f(x)y

=
@ � log f(x)y
@a(k)(x)i

@a
(k)(x)i

@b
(k)
i

=
@ � log f(x)y
@a(k)(x)i

rb(k) � log f(x)y

= ra(k)(x) � log f(x)y

• ra(L+1)(x) � log f(x)y (= � (e(y)� f(x))

• rW(k) � log f(x)y (=
�
ra(k)(x) � log f(x)y

�
h(k�1)(x)>

• rb(k) � log f(x)y (= ra(k)(x) � log f(x)y

• rh(k�1)(x) � log f(x)y (= W(k)> �
ra(k)(x) � log f(x)y

�

• ra(k�1)(x) � log f(x)y (=
�
rh(k�1)(x) � log f(x)y

�
� [. . . , g0(a(k�1)(x)j), . . . ]

3



Gradient Computation 
•  Loss gradient of parameters 
 

•

@

a(L+1)(x)c
� log f(x)y

=
�1

f(x)y

@

a(L+1)(x)c
f(x)y

=
�1

f(x)y

@

a(L+1)(x)c
softmax(a(L+1)(x))y

=
�1

f(x)y

@

a(L+1)(x)c

exp(a(L+1)(x)y)P
c0 exp(a

(L+1)(x)c0)

=
�1

f(x)y

0

@
@

a(L+1)(x)c
exp(a(L+1)(x)y)

P
c0 exp(a

(L+1)(x)c0)
�

exp(a(L+1)(x)y)
⇣

@
a(L+1)(x)c

P
c0 exp(a

(L+1)(x)c0)
⌘

�P
c0 exp(a

(L+1)(x)c0)
�2

1

A

=
�1

f(x)y

 
1(y=c) exp(a

(L+1)(x)y)P
c0 exp(a

(L+1)(x)c0)
� exp(a(L+1)(x)y)P

c0 exp(a
(L+1)(x)c0)

exp(a(L+1)(x)c)P
c0 exp(a

(L+1)(x)c0)

!

=
�1

f(x)y

⇣
1(y=c)softmax(a(L+1)(x))y � softmax(a(L+1)(x))y softmax(a(L+1)(x))c

⌘

=
�1

f(x)y

�
1(y=c)f(x)y � f(x)y f(x)c

�

= �
�
1(y=c) � f(x)c

�

ra(L+1)(x) � log f(x)y

= � (e(y)� f(x))

• p(a) qi(a) a k

•
@p(a)

@a
=
X

i

@p(a)

@qi(a)

@qi(a)

@a

• a(k)(x)i = b(k)i +
P

j W
(k)
i,j h(k�1)(x)j

@

h(k)(x)j
� log f(x)y

=
X

i

@ � log f(x)y
@a(k+1)(x)i

@a(k+1)(x)i
@h(k)(x)j

=
X

i

@ � log f(x)y
@a(k+1)(x)i

W (k+1)
i,j

rh(k)(x) � log f(x)y

= W(k+1)>ra(k+1)(x) � log f(x)y

2

Remember: 

-  Gradient (biases): 

• h(k)(x)j = g(a(k)(x)j)

@

a(k)(x)j
� log f(x)y

=
@ � log f(x)y
@h(k)(x)j

@h(k)(x)j
@a(k)(x)j

=
@ � log f(x)y
@h(k)(x)j

g0(a(k)(x)j)

ra(k)(x) � log f(x)y

= rh(k)(x) � log f(x)y �ra(k)(x)h
(k)(x)

•

@

W (k)
i,j

� log f(x)y

=
@ � log f(x)y
@a(k)(x)i

@a(k)(x)i

@W (k)
i,j

=
@ � log f(x)y
@a(k)(x)i

h(k�1)
j (x)

rW(k) � log f(x)y

= ra(k)(x) � log f(x)y h(k�1)(x)>

•

@

b(k)i

� log f(x)y

=
@ � log f(x)y
@a(k)(x)i

@a(k)(x)i

@b(k)i

=
@ � log f(x)y
@a(k)(x)i

rb(k) � log f(x)y

= ra(k)(x) � log f(x)y

3



Backpropagation Algorithm  
•  Perform forward propagation 
 •  Compute output gradient (before activation): 
 

• h(k)(x)j = g(a(k)(x)j)

@

a(k)(x)j
� log f(x)y

=
@ � log f(x)y
@h(k)(x)j

@h(k)(x)j
@a(k)(x)j

=
@ � log f(x)y
@h(k)(x)j

g0(a(k)(x)j)

ra(k)(x) � log f(x)y

=
�
rh(k)(x) � log f(x)y

�
�ra(k)(x)h

(k)(x)

•

@

W (k)
i,j

� log f(x)y

=
@ � log f(x)y
@a(k)(x)i

@a(k)(x)i

@W (k)
i,j

=
@ � log f(x)y
@a(k)(x)i

h(k�1)
j (x)

rW(k) � log f(x)y

=
�
ra(k)(x) � log f(x)y

�
h(k�1)(x)>

•

@

b(k)i

� log f(x)y

=
@ � log f(x)y
@a(k)(x)i

@a(k)(x)i

@b(k)i

=
@ � log f(x)y
@a(k)(x)i

rb(k) � log f(x)y

= ra(k)(x) � log f(x)y

• ra(L+1)(x) � log f(x)y (= � (e(y)� f(x))

• rW(k) � log f(x)y (=
�
ra(k)(x) � log f(x)y

�
h(k)(x)>

• rb(k) � log f(x)y (= ra(k)(x) � log f(x)y

• rh(k�1)(x) � log f(x)y (= W(k)> �
ra(k)(x) � log f(x)y

�

• ra(k�1)(x) � log f(x)y (=
�
rh(k�1)(x) � log f(x)y

�
�ra(k�1)(x)h

(k)(x)

3

•  For k=L+1 to 1 
 -  Compute gradients w.r.t. the hidden layer parameters:  

• h
(k)(x)j = g(a(k)(x)j)

@

a(k)(x)j
� log f(x)y

=
@ � log f(x)y
@h(k)(x)j

@h
(k)(x)j

@a(k)(x)j

=
@ � log f(x)y
@h(k)(x)j

g
0(a(k)(x)j)

ra(k)(x) � log f(x)y

=
�
rh(k)(x) � log f(x)y

�> ra(k)(x)h
(k)(x)

=
�
rh(k)(x) � log f(x)y

�
� [. . . , g0(a(k)(x)j), . . . ]

•

@

W
(k)
i,j

� log f(x)y

=
@ � log f(x)y
@a(k)(x)i

@a
(k)(x)i

@W
(k)
i,j

=
@ � log f(x)y
@a(k)(x)i

h
(k�1)
j

(x)

rW(k) � log f(x)y

=
�
ra(k)(x) � log f(x)y

�
h(k�1)(x)>

•

@

b
(k)
i

� log f(x)y

=
@ � log f(x)y
@a(k)(x)i

@a
(k)(x)i

@b
(k)
i

=
@ � log f(x)y
@a(k)(x)i

rb(k) � log f(x)y

= ra(k)(x) � log f(x)y

• ra(L+1)(x) � log f(x)y (= � (e(y)� f(x))

• rW(k) � log f(x)y (=
�
ra(k)(x) � log f(x)y

�
h(k�1)(x)>

• rb(k) � log f(x)y (= ra(k)(x) � log f(x)y

• rh(k�1)(x) � log f(x)y (= W(k)> �
ra(k)(x) � log f(x)y

�

• ra(k�1)(x) � log f(x)y (=
�
rh(k�1)(x) � log f(x)y

�
� [. . . , g0(a(k�1)(x)j), . . . ]

3

• h(k)(x)j = g(a(k)(x)j)

@

a(k)(x)j
� log f(x)y

=
@ � log f(x)y
@h(k)(x)j

@h(k)(x)j
@a(k)(x)j

=
@ � log f(x)y
@h(k)(x)j

g0(a(k)(x)j)

ra(k)(x) � log f(x)y

=
�
rh(k)(x) � log f(x)y

�
�ra(k)(x)h

(k)(x)

•

@

W (k)
i,j

� log f(x)y

=
@ � log f(x)y
@a(k)(x)i

@a(k)(x)i

@W (k)
i,j

=
@ � log f(x)y
@a(k)(x)i

h(k�1)
j (x)

rW(k) � log f(x)y

=
�
ra(k)(x) � log f(x)y

�
h(k�1)(x)>

•

@

b(k)i

� log f(x)y

=
@ � log f(x)y
@a(k)(x)i

@a(k)(x)i

@b(k)i

=
@ � log f(x)y
@a(k)(x)i

rb(k) � log f(x)y

= ra(k)(x) � log f(x)y

• ra(L+1)(x) � log f(x)y (= � (e(y)� f(x))

• rW(k) � log f(x)y (=
�
ra(k)(x) � log f(x)y

�
h(k)(x)>

• rb(k) � log f(x)y (= ra(k)(x) � log f(x)y

• rh(k�1)(x) � log f(x)y (= W(k)> �
ra(k)(x) � log f(x)y

�

• ra(k�1)(x) � log f(x)y (=
�
rh(k�1)(x) � log f(x)y

�
�ra(k�1)(x)h

(k)(x)

3

-  Compute gradients w.r.t. the hidden layer below: 

• h(k)(x)j = g(a(k)(x)j)

@

a(k)(x)j
� log f(x)y

=
@ � log f(x)y
@h(k)(x)j

@h(k)(x)j
@a(k)(x)j

=
@ � log f(x)y
@h(k)(x)j

g0(a(k)(x)j)

ra(k)(x) � log f(x)y

=
�
rh(k)(x) � log f(x)y

�
�ra(k)(x)h

(k)(x)

•

@

W (k)
i,j

� log f(x)y

=
@ � log f(x)y
@a(k)(x)i

@a(k)(x)i

@W (k)
i,j

=
@ � log f(x)y
@a(k)(x)i

h(k�1)
j (x)

rW(k) � log f(x)y

=
�
ra(k)(x) � log f(x)y

�
h(k�1)(x)>

•

@

b(k)i

� log f(x)y

=
@ � log f(x)y
@a(k)(x)i

@a(k)(x)i

@b(k)i

=
@ � log f(x)y
@a(k)(x)i

rb(k) � log f(x)y

= ra(k)(x) � log f(x)y

• ra(L+1)(x) � log f(x)y (= � (e(y)� f(x))

• rW(k) � log f(x)y (=
�
ra(k)(x) � log f(x)y

�
h(k)(x)>

• rb(k) � log f(x)y (= ra(k)(x) � log f(x)y

• rh(k�1)(x) � log f(x)y (= W(k)> �
ra(k)(x) � log f(x)y

�

• ra(k�1)(x) � log f(x)y (=
�
rh(k�1)(x) � log f(x)y

�
�ra(k�1)(x)h

(k)(x)

3

-  Compute gradients w.r.t. the hidden layer below (before activation): 

• h
(k)(x)j = g(a(k)(x)j)

@

a(k)(x)j
� log f(x)y

=
@ � log f(x)y
@h(k)(x)j

@h
(k)(x)j

@a(k)(x)j

=
@ � log f(x)y
@h(k)(x)j

g
0(a(k)(x)j)

ra(k)(x) � log f(x)y

=
�
rh(k)(x) � log f(x)y

�> ra(k)(x)h
(k)(x)

=
�
rh(k)(x) � log f(x)y

�
� [. . . , g0(a(k)(x)j), . . . ]

•

@

W
(k)
i,j

� log f(x)y

=
@ � log f(x)y
@a(k)(x)i

@a
(k)(x)i

@W
(k)
i,j

=
@ � log f(x)y
@a(k)(x)i

h
(k�1)
j

(x)

rW(k) � log f(x)y

=
�
ra(k)(x) � log f(x)y

�
h(k�1)(x)>

•

@

b
(k)
i

� log f(x)y

=
@ � log f(x)y
@a(k)(x)i

@a
(k)(x)i

@b
(k)
i

=
@ � log f(x)y
@a(k)(x)i

rb(k) � log f(x)y

= ra(k)(x) � log f(x)y

• ra(L+1)(x) � log f(x)y (= � (e(y)� f(x))

• rW(k) � log f(x)y (=
�
ra(k)(x) � log f(x)y

�
h(k�1)(x)>

• rb(k) � log f(x)y (= ra(k)(x) � log f(x)y

• rh(k�1)(x) � log f(x)y (= W(k)> �
ra(k)(x) � log f(x)y

�

• ra(k�1)(x) � log f(x)y (=
�
rh(k�1)(x) � log f(x)y

�
� [. . . , g0(a(k�1)(x)j), . . . ]

3



Computational Flow Graph  
•  Forward propagation can be represented 
as an acyclic flow graph 

•  Forward propagation can be implemented 
in a modular way: 

Ø  Each box can be an object with an fprop 
method, that computes the value of the 
box given its children 

Ø  Calling the fprop method of each box in 
the right order yields forward propagation 



•  Each object also has a bprop method 

•  By calling bprop in the reverse order, we 
obtain backpropagation 

-  it computes the gradient of the loss with 
respect to each child box.  

-  fprop depends on the fprop output of 
box’s children, while bprop depends on the 
bprop of box’s parents 

Computational Flow Graph  



Stochastic Gradient Descend 
•  Perform updates after seeing each example:  
 -  Initialize:  

 

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• ✓ ⌘ {W(1),b(1), . . . ,W(L+1),b(L+1)}

• l(f(x(t);✓), y(t))

• r✓l(f(x(t);✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

rf(x) � log f(x)y =
�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=
�e(c)

f(x)y

1

-  For t=1:T 
 -  for each training example  

 

• bµ = 1
T

P
t
x(t)

• b�2 = 1
T�1

P
t
(x(t) � bµ)2

• b⌃ = 1
T�1

P
t
(x(t) � bµ)(x(t) � bµ)>

• E[bµ] = µ E[b�2] = �
2 E

h
b⌃
i
= ⌃

• bµ�µp
b�2/T

• µ 2 bµ±�1.96
p

b�2/T

•
b✓ = argmax

✓

p(x(1)
, . . . ,x(T ))

•
p(x(1)

, . . . ,x(T )) =
Y

t

p(x(t))

• T�1
T

b⌃ = 1
T

P
t
(x(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain = {(x(t)
, y

(t))}

• f(x;✓)

• Dvalid Dtest

•
argmin

✓

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1
T

P
t
r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

• ✓  ✓ +�

• {x 2 Rd | rxf(x) = 0}

• v>r2
xf(x)v > 0 8v

• v>r2
xf(x)v < 0 8v

• � = �r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

• (x(t)
, y

(t))

5

• bµ = 1
T

P
t
x(t)

• b�2 = 1
T�1

P
t
(x(t) � bµ)2

• b⌃ = 1
T�1

P
t
(x(t) � bµ)(x(t) � bµ)>

• E[bµ] = µ E[b�2] = �
2 E

h
b⌃
i
= ⌃

• bµ�µp
b�2/T

• µ 2 bµ±�1.96
p

b�2/T

•
b✓ = argmax

✓

p(x(1)
, . . . ,x(T ))

•
p(x(1)

, . . . ,x(T )) =
Y

t

p(x(t))

• T�1
T

b⌃ = 1
T

P
t
(x(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain = {(x(t)
, y

(t))}

• f(x;✓)

• Dvalid Dtest

•
argmin

✓

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1
T

P
t
r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

• ✓  ✓ +�

• {x 2 Rd | rxf(x) = 0}

• v>r2
xf(x)v > 0 8v

• v>r2
xf(x)v < 0 8v

• � = �r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

5

•
argmin

✓

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1
T

P
t
r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

• ✓  ✓ + ↵ �

• {x 2 Rd | rxf(x) = 0}

• v>r2
xf(x)v > 0 8v

• v>r2
xf(x)v < 0 8v

• � = �r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

• (x(t)
, y

(t))

• f
⇤

f

6

Training epoch 
= 

Iteration of all examples 

•  To train a neural net, we need: 
 
Ø   Loss function: 
Ø   A procedure to compute gradients: 
Ø   Regularizer and its gradient:          ,   

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• l(f(x(t);✓), y(t))

• r✓l(f(x(t);✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

rf(x) � log f(x)y =
�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=
�e(c)

f(x)y

1

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• l(f(x(t);✓), y(t))

• r✓l(f(x(t);✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

rf(x) � log f(x)y =
�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=
�e(c)

f(x)y

1

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• l(f(x(t);✓), y(t))

• r✓l(f(x(t);✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

rf(x) � log f(x)y =
�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=
�e(c)

f(x)y

1

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• l(f(x(t);✓), y(t))

• r✓l(f(x(t);✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

rf(x) � log f(x)y =
�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=
�e(c)

f(x)y

1



Weight Decay 
•  L2 regularization: 
 

• g0(a) = g(a)(1� g(a))

• g0(a) = 1� g(a)2

• ⌦(✓) =
P

k

P
i

P
j

⇣
W (k)

i,j

⌘2
=

P
k ||W(k)||2F

• rW(k)⌦(✓) = 2W(k)

• ⌦(✓) =
P

k

P
i

P
j |W

(k)
i,j |

• rW(k)⌦(✓) = sign(W(k))

• sign(W(k))i,j = 1 0

4

•  Gradient:  
 

• g0(a) = g(a)(1� g(a))

• g0(a) = 1� g(a)2

• ⌦(✓) =
P

k

P
i

P
j

⇣
W (k)

i,j

⌘2
=

P
k ||W(k)||2F

• rW(k)⌦(✓) = 2W(k)

• ⌦(✓) =
P

k

P
i

P
j |W

(k)
i,j |

• rW(k)⌦(✓) = sign(W(k))

• sign(W(k))i,j = 1 0

4

-  Only applies to weights, not biases (weigh decay) 

-  Can be interpreted as having a Gaussian prior over the weights, 
while performing MAP estimation. 

-  We will later look at Bayesian methods.   



Other Regularizers 

•  Using a more general regularizer, we get: 

Lasso	 Quadratic	



L1 Regularization 
•  L1 regularization: 
 

-  Only applies to weights, not biases (weigh decay) 

-  Can be interpreted as having a Laplace prior over the weights, while 
performing MAP estimation. 

-  Unlike L2, L1 will push some weights to be exactly 0.  

• g0(a) = g(a)(1� g(a))

• g0(a) = 1� g(a)2

• ⌦(✓) =
P

k

P
i

P
j

⇣
W (k)

i,j

⌘2
=

P
k ||W(k)||2F

• rW(k)⌦(✓) = 2W(k)

• ⌦(✓) =
P

k

P
i

P
j |W

(k)
i,j |

• rW(k)⌦(✓) = sign(W(k))

• sign(W(k))i,j = 1 0

4

•  Gradient:  

• g0(a) = g(a)(1� g(a))

• g0(a) = 1� g(a)2

• ⌦(✓) =
P

k

P
i

P
j

⇣
W (k)

i,j

⌘2
=

P
k ||W(k)||2F

• rW(k)⌦(✓) = 2W(k)

• ⌦(✓) =
P

k

P
i

P
j |W

(k)
i,j |

• rW(k)⌦(✓) = sign(W(k))

• sign(W(k))i,j = 1 0

4

• g0(a) = g(a)(1� g(a))

• g0(a) = 1� g(a)2

• ⌦(✓) =
P

k

P
i

P
j

⇣
W (k)

i,j

⌘2
=

P
k ||W(k)||2F

• rW(k)⌦(✓) = 2W(k)

• ⌦(✓) =
P

k

P
i

P
j |W

(k)
i,j |

• rW(k)⌦(✓) = sign(W(k))

• sign(W(k))i,j = 1
W(k)

i,j >0
� 1

W(k)
i,j <0

4



Bias-Variance	Trade-off	

• 	Trade-off	between	bias	and	variance:	With	very	flexible	models	(high	
complexity)	we	have	low	bias	and	high	variance;	With	relatively	rigid	models	
(low	complexity)	we	have	high	bias	and	low	variance.			
• 	The	model	with	the	optimal	predictive	capabilities	has	to	balance	between	bias	
and	variance.		

Average	predictions	over	all	
datasets	differ	from	the	
optimal	regression	function.	

Solutions	for	individual	datasets	
vary	around	their	averages	--	how	
sensitive	is	the	function	to	the	
particular	choice	of	the	dataset.		

Intrinsic	variability	
of	the	target	
values.	



Bias-Variance	Trade-off	
• 	Consider	the	sinusoidal	dataset.	We	generate	100	datasets,	each	containing	
N=25	points,	drawn	independently	from	

Low	bias	 High	bias	

High	variance	 Low	variance	



•  Generalization error can be seen as the sum of the 
(squared) bias and the variance 
 

Bias-Variance Trade-off 



Initialization  
•  Initialize biases to 0  
 •  For weights 
 -  Can not initialize weights to 0 with tanh activation 

Ø  All gradients would be zero (saddle point) 

-  Can not initialize all weights to the same value 
Ø  All hidden units in a layer will always behave the same 
Ø  Need to break symmetry 

• g
0(a) = g(a)(1� g(a))

• g
0(a) = 1� g(a)2

• ⌦(✓) =
P

k

P
i

P
j

⇣
W

(k)
i,j

⌘2
=

P
k
||W(k)||2

F

• rW(k)⌦(✓) = 2W(k)

• ⌦(✓) =
P

k

P
i

P
j
|W (k)

i,j
|

• rW(k)⌦(✓) = sign(W(k))

• sign(W(k))i,j = 1
W(k)

i,j >0
� 1

W(k)
i,j <0

• W(k)
i,j

U [�b, b] b =
p
6p

Hk+Hk�1
Hk

4

-  Sample           from                  , where 

• g
0(a) = g(a)(1� g(a))

• g
0(a) = 1� g(a)2

• ⌦(✓) =
P

k

P
i

P
j

⇣
W

(k)
i,j

⌘2
=

P
k
||W(k)||2

F

• rW(k)⌦(✓) = 2W(k)

• ⌦(✓) =
P

k

P
i

P
j
|W (k)

i,j
|

• rW(k)⌦(✓) = sign(W(k))

• sign(W(k))i,j = 1
W(k)

i,j >0
� 1

W(k)
i,j <0

• W(k)
i,j

U [�b, b] b =
p
6p

Hk+Hk�1
Hk

4

• g
0(a) = g(a)(1� g(a))

• g
0(a) = 1� g(a)2

• ⌦(✓) =
P

k

P
i

P
j

⇣
W

(k)
i,j

⌘2
=

P
k
||W(k)||2

F

• rW(k)⌦(✓) = 2W(k)

• ⌦(✓) =
P

k

P
i

P
j
|W (k)

i,j
|

• rW(k)⌦(✓) = sign(W(k))

• sign(W(k))i,j = 1
W(k)

i,j >0
� 1

W(k)
i,j <0

• W(k)
i,j

U [�b, b] b =
p
6p

Hk+Hk�1
Hk

4

• g
0(a) = g(a)(1� g(a))

• g
0(a) = 1� g(a)2

• ⌦(✓) =
P

k

P
i

P
j

⇣
W

(k)
i,j

⌘2
=

P
k
||W(k)||2

F

• rW(k)⌦(✓) = 2W(k)

• ⌦(✓) =
P

k

P
i

P
j
|W (k)

i,j
|

• rW(k)⌦(✓) = sign(W(k))

• sign(W(k))i,j = 1
W(k)

i,j >0
� 1

W(k)
i,j <0

• W(k)
i,j

U [�b, b] b =
p
6p

Hk+Hk�1
Hk h(k)(x)

4

Size	of		

Sample around 0 and 
break symmetry 



Model Selection 
•  Training Protocol: 
 
-  Train your model on the Training Set  

• bµ = 1
T

P
t
x(t)

• b�2 = 1
T�1

P
t
(x(t) � bµ)2

• b⌃ = 1
T�1

P
t
(x(t) � bµ)(x(t) � bµ)>

• E[bµ] = µ E[b�2] = �
2 E

h
b⌃
i
= ⌃

• bµ�µp
b�2/T

• µ 2 bµ±�1.96
p

b�2/T

•
b✓ = argmax

✓

p(x(1)
, . . . ,x(T ))

•
p(x(1)

, . . . ,x(T )) =
Y

t

p(x(t))

• T�1
T

b⌃ = 1
T

P
t
(x(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain = {(x(t)
, y

(t))}

• f(x;✓)

5

-  For model selection, use Validation Set  

• bµ = 1
T

P
t
x(t)

• b�2 = 1
T�1

P
t
(x(t) � bµ)2

• b⌃ = 1
T�1

P
t
(x(t) � bµ)(x(t) � bµ)>

• E[bµ] = µ E[b�2] = �
2 E

h
b⌃
i
= ⌃

• bµ�µp
b�2/T

• µ 2 bµ±�1.96
p

b�2/T

•
b✓ = argmax

✓

p(x(1)
, . . . ,x(T ))

•
p(x(1)

, . . . ,x(T )) =
Y

t

p(x(t))

• T�1
T

b⌃ = 1
T

P
t
(x(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain = {(x(t)
, y

(t))}

• f(x;✓)

• Dvalid Dtest

5

Ø  Hyper-parameter search: hidden layer size, learning rate, 
number of iterations/epochs, etc. 

-  Estimate generalization performance using the Test Set 

• bµ = 1
T

P
t
x(t)

• b�2 = 1
T�1

P
t
(x(t) � bµ)2

• b⌃ = 1
T�1

P
t
(x(t) � bµ)(x(t) � bµ)>

• E[bµ] = µ E[b�2] = �
2 E

h
b⌃
i
= ⌃

• bµ�µp
b�2/T

• µ 2 bµ±�1.96
p

b�2/T

•
b✓ = argmax

✓

p(x(1)
, . . . ,x(T ))

•
p(x(1)

, . . . ,x(T )) =
Y

t

p(x(t))

• T�1
T

b⌃ = 1
T

P
t
(x(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain = {(x(t)
, y

(t))}

• f(x;✓)

• Dvalid Dtest

5

•  Remember: Generalization is the behavior of the model on 
unseen examples.  
 



Early Stopping 
•  To select the number of epochs, stop training when validation set 
error increases (with some look ahead). 



Tricks of the Trade: 
•  Normalizing your (real-valued) data: 

•  Decreasing the learning rate: As we get closer to the optimum, 
take smaller update steps: 

i.  start with large learning rate (e.g. 0.1) 

ii.  maintain until validation error stops improving 

iii.  divide learning rate by 2 and go back to (ii) 

Ø  for each dimension xi subtract its training set mean 

Ø  divide each dimension xi by its training set standard deviation 

Ø  this can speed up training 



Mini-batch, Momentum 
•  Make updates based on a mini-batch of examples (instead of a 
single example): 
 Ø  the gradient is the average regularized loss for that mini-batch 

Ø  can give a more accurate estimate of the gradient 

Ø  can leverage matrix/matrix operations, which are more efficient 

•  Momentum: Can use an exponential average of previous 
gradients: 

• g
0(a) = g(a)(1� g(a))

• g
0(a) = 1� g(a)2

• ⌦(✓) =
P

k

P
i

P
j

⇣
W

(k)
i,j

⌘2
=

P
k
||W(k)||2

F

• rW(k)⌦(✓) = 2W(k)

• ⌦(✓) =
P

k

P
i

P
j
|W (k)

i,j
|

• rW(k)⌦(✓) = sign(W(k))

• sign(W(k))i,j = 1
W(k)

i,j >0
� 1

W(k)
i,j <0

• W(k)
i,j

U [�b, b] b =
p
6p

Hk+Hk�1
Hk h(k)(x)

• a(3)(x) = b(3) +W(3)h(2)

• a(2)(x) = b(2) +W(2)h(1)

• a(1)(x) = b(1) +W(1)x

• h(3)(x) = o(a(3)(x))

• h(2)(x) = g(a(2)(x))

• h(1)(x) = g(a(1)(x))

• b(3) b(2) b(1)

• W(3) W(2) W(1) x f(x)

• @f(x)
@x

⇡ f(x+✏)�f(x�✏)
2✏

• f(x) x ✏

• f(x+ ✏) f(x� ✏)

•
P1

t=1 ↵t = 1

•
P1

t=1 ↵
2
t
< 1 ↵t

• ↵t =
↵

1+�t

• ↵t =
↵

t�
0.5 < �  1 �

• r(t)
✓ = r✓l(f(x(t)), y(t)) + �r(t�1)

✓

4

Ø  can get pass plateaus more quickly, by ‘‘gaining momentum’’ 



Adapting Learning Rates 
•  Updates with adaptive learning rates (“one learning rate per 
parameter”) 

Ø  Adagrad: learning rates are scaled by the square root of the 
cumulative sum of squared gradients 

�(t) = �(t�1) +
⇣
r✓l(f(x

(t)), y(t))
⌘2

r(t)
✓ =

r✓l(f(x(t)), y(t))p
�(t) + ✏

Ø  RMSProp: instead of cumulative sum, use exponential moving 
average 

�(t) = ��(t�1) + (1� �)
⇣
r✓l(f(x

(t)), y(t))
⌘2

r(t)
✓ =

r✓l(f(x(t)), y(t))p
�(t) + ✏Ø  Adam: essentially combines 

RMSProp with momentum 



Gradient Checking 
•  To debug your implementation of fprop/bprop, you can compare 
with a finite-difference approximation of the gradient: 

• g
0(a) = g(a)(1� g(a))

• g
0(a) = 1� g(a)2

• ⌦(✓) =
P

k

P
i

P
j

⇣
W

(k)
i,j

⌘2
=

P
k
||W(k)||2

F

• rW(k)⌦(✓) = 2W(k)

• ⌦(✓) =
P

k

P
i

P
j
|W (k)

i,j
|

• rW(k)⌦(✓) = sign(W(k))

• sign(W(k))i,j = 1
W(k)

i,j >0
� 1

W(k)
i,j <0

• W(k)
i,j

U [�b, b] b =
p
6p

Hk+Hk�1
Hk h(k)(x)

• a(3)(x) = b(3) +W(3)h(2)

• a(2)(x) = b(2) +W(2)h(1)

• a(1)(x) = b(1) +W(1)x

• h(3)(x) = o(a(3)(x))

• h(2)(x) = g(a(2)(x))

• h(1)(x) = g(a(1)(x))

• b(3) b(2) b(1)

• W(3) W(2) W(1) x f(x)

• @f(x)
@x

⇡ f(x+✏)�f(x�✏)
2✏

4

Ø       would be the loss 

Ø      would be a parameter 

Ø              would be the loss if you add    to the parameter 
Ø              would be the loss if you subtract    to the parameter 

• g
0(a) = g(a)(1� g(a))

• g
0(a) = 1� g(a)2

• ⌦(✓) =
P

k

P
i

P
j

⇣
W

(k)
i,j

⌘2
=

P
k
||W(k)||2

F

• rW(k)⌦(✓) = 2W(k)

• ⌦(✓) =
P

k

P
i

P
j
|W (k)

i,j
|

• rW(k)⌦(✓) = sign(W(k))

• sign(W(k))i,j = 1
W(k)

i,j >0
� 1

W(k)
i,j <0

• W(k)
i,j

U [�b, b] b =
p
6p

Hk+Hk�1
Hk h(k)(x)

• a(3)(x) = b(3) +W(3)h(2)

• a(2)(x) = b(2) +W(2)h(1)

• a(1)(x) = b(1) +W(1)x

• h(3)(x) = o(a(3)(x))

• h(2)(x) = g(a(2)(x))

• h(1)(x) = g(a(1)(x))

• b(3) b(2) b(1)

• W(3) W(2) W(1) x f(x)

• @f(x)
@x

⇡ f(x+✏)�f(x�✏)
2✏

• f(x) x ✏

4

• g
0(a) = g(a)(1� g(a))

• g
0(a) = 1� g(a)2

• ⌦(✓) =
P

k

P
i

P
j

⇣
W

(k)
i,j

⌘2
=

P
k
||W(k)||2

F

• rW(k)⌦(✓) = 2W(k)

• ⌦(✓) =
P

k

P
i

P
j
|W (k)

i,j
|

• rW(k)⌦(✓) = sign(W(k))

• sign(W(k))i,j = 1
W(k)

i,j >0
� 1

W(k)
i,j <0

• W(k)
i,j

U [�b, b] b =
p
6p

Hk+Hk�1
Hk h(k)(x)

• a(3)(x) = b(3) +W(3)h(2)

• a(2)(x) = b(2) +W(2)h(1)

• a(1)(x) = b(1) +W(1)x

• h(3)(x) = o(a(3)(x))

• h(2)(x) = g(a(2)(x))

• h(1)(x) = g(a(1)(x))

• b(3) b(2) b(1)

• W(3) W(2) W(1) x f(x)

• @f(x)
@x

⇡ f(x+✏)�f(x�✏)
2✏

• f(x) x ✏

4

• g
0(a) = g(a)(1� g(a))

• g
0(a) = 1� g(a)2

• ⌦(✓) =
P

k

P
i

P
j

⇣
W

(k)
i,j

⌘2
=

P
k
||W(k)||2

F

• rW(k)⌦(✓) = 2W(k)

• ⌦(✓) =
P

k

P
i

P
j
|W (k)

i,j
|

• rW(k)⌦(✓) = sign(W(k))

• sign(W(k))i,j = 1
W(k)

i,j >0
� 1

W(k)
i,j <0

• W(k)
i,j

U [�b, b] b =
p
6p

Hk+Hk�1
Hk h(k)(x)

• a(3)(x) = b(3) +W(3)h(2)

• a(2)(x) = b(2) +W(2)h(1)

• a(1)(x) = b(1) +W(1)x

• h(3)(x) = o(a(3)(x))

• h(2)(x) = g(a(2)(x))

• h(1)(x) = g(a(1)(x))

• b(3) b(2) b(1)

• W(3) W(2) W(1) x f(x)

• @f(x)
@x

⇡ f(x+✏)�f(x�✏)
2✏

• f(x) x ✏

• f(x+ ✏) f(x� ✏)

4

• g
0(a) = g(a)(1� g(a))

• g
0(a) = 1� g(a)2

• ⌦(✓) =
P

k

P
i

P
j

⇣
W

(k)
i,j

⌘2
=

P
k
||W(k)||2

F

• rW(k)⌦(✓) = 2W(k)

• ⌦(✓) =
P

k

P
i

P
j
|W (k)

i,j
|

• rW(k)⌦(✓) = sign(W(k))

• sign(W(k))i,j = 1
W(k)

i,j >0
� 1

W(k)
i,j <0

• W(k)
i,j

U [�b, b] b =
p
6p

Hk+Hk�1
Hk h(k)(x)

• a(3)(x) = b(3) +W(3)h(2)

• a(2)(x) = b(2) +W(2)h(1)

• a(1)(x) = b(1) +W(1)x

• h(3)(x) = o(a(3)(x))

• h(2)(x) = g(a(2)(x))

• h(1)(x) = g(a(1)(x))

• b(3) b(2) b(1)

• W(3) W(2) W(1) x f(x)

• @f(x)
@x

⇡ f(x+✏)�f(x�✏)
2✏

• f(x) x ✏

• f(x+ ✏) f(x� ✏)

4

• g
0(a) = g(a)(1� g(a))

• g
0(a) = 1� g(a)2

• ⌦(✓) =
P

k

P
i

P
j

⇣
W

(k)
i,j

⌘2
=

P
k
||W(k)||2

F

• rW(k)⌦(✓) = 2W(k)

• ⌦(✓) =
P

k

P
i

P
j
|W (k)

i,j
|

• rW(k)⌦(✓) = sign(W(k))

• sign(W(k))i,j = 1
W(k)

i,j >0
� 1

W(k)
i,j <0

• W(k)
i,j

U [�b, b] b =
p
6p

Hk+Hk�1
Hk h(k)(x)

• a(3)(x) = b(3) +W(3)h(2)

• a(2)(x) = b(2) +W(2)h(1)

• a(1)(x) = b(1) +W(1)x

• h(3)(x) = o(a(3)(x))

• h(2)(x) = g(a(2)(x))

• h(1)(x) = g(a(1)(x))

• b(3) b(2) b(1)

• W(3) W(2) W(1) x f(x)

• @f(x)
@x

⇡ f(x+✏)�f(x�✏)
2✏

• f(x) x ✏

4

• g
0(a) = g(a)(1� g(a))

• g
0(a) = 1� g(a)2

• ⌦(✓) =
P

k

P
i

P
j

⇣
W

(k)
i,j

⌘2
=

P
k
||W(k)||2

F

• rW(k)⌦(✓) = 2W(k)

• ⌦(✓) =
P

k

P
i

P
j
|W (k)

i,j
|

• rW(k)⌦(✓) = sign(W(k))

• sign(W(k))i,j = 1
W(k)

i,j >0
� 1

W(k)
i,j <0

• W(k)
i,j

U [�b, b] b =
p
6p

Hk+Hk�1
Hk h(k)(x)

• a(3)(x) = b(3) +W(3)h(2)

• a(2)(x) = b(2) +W(2)h(1)

• a(1)(x) = b(1) +W(1)x

• h(3)(x) = o(a(3)(x))

• h(2)(x) = g(a(2)(x))

• h(1)(x) = g(a(1)(x))

• b(3) b(2) b(1)

• W(3) W(2) W(1) x f(x)

• @f(x)
@x

⇡ f(x+✏)�f(x�✏)
2✏

• f(x) x ✏

4



Debugging on Small Dataset 
•  Next, make sure your model can overfit on a smaller dataset     
(~ 500-1000 examples) 
 

Ø  Are some of the units saturated, even before the first update?  

•  scale down the initialization of your parameters for these units 

•  properly normalize the inputs 
Ø  Is the training error bouncing up and down? 

•  decrease the learning rate 

•  If not, investigate the following situations: 

•  This does not mean that you have computed gradients correctly:  

Ø  You could still overfit with some of the gradients being wrong 


