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Graphical Models II	



Conditional Independence 
•  We now look at the concept of conditional independence. 
•  a is independent of b given c: 

•  Equivalently: 

•  We will use the notation: 

•  An important feature of graphical models is that conditional independence 
properties of the joint distribution can be read directly from the graph 
without performing any analytical manipulations 

•  The general framework for achieving this is called d-separation, where d 
stands for  ‘directed’ (Pearl 1988).  2 



Markov Blanket in Directed Models 
•   The Markov blanket of a node is the minimal set of nodes that must be 
observed to make this node independent of all other nodes 

Factors independent of xi cancel 
between numerator and	denominator.	

•  In a directed model, the Markov blanket includes parents, children and 
co-parents (i.e. all the parents of the node’s children) due to explaining 
away.  

3 



Directed Graphs as Distribution Filters 
•   We can view the graphical model as a filter.  

•  The joint probability distribution p(x) is allowed through the filter if and 
only if it satisfies the factorization property.  

•  Note: The fully connected graph exhibits no conditional 
independence properties at all. 

•  The fully disconnected graph (no links) corresponds to a joint 
distribution that factorizes into the product of marginal distributions. 4 
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• 	One	of	the	popular	models	for	
modeling	word	count	vectors.		
We	will	see	this	model	later.		

Latent	Dirichlet	Allocation	

• 	One	of	the	popular	models	for	
collaborative	filtering	applications.	

Bayesian	Probabilistic	Matrix	Factorization	
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Undirected Graphical Models  
Directed graphs are useful for expressing causal relationships between 
random variables, whereas undirected graphs are useful for expressing 
soft constraints between random variables 

•  The joint distribution defined by the graph is given by 
the product of non-negative potential functions over 
the maximal cliques (connected subset of nodes). 

•  For example, the joint distribution factorizes: 

where the normalizing constant      is called a partition 
function. 

•  Let us look at the definition of cliques.  6 



Cliques 
•  The subsets that are used to define the potential functions are 
represented by maximal cliques in the undirected graph. 

•  Clique: a subset of nodes such that 
there exists a link between all pairs of 
nodes in a subset. 

•  Maximal Clique: a clique such that it is 
not possible to include any other nodes in 
the set without it ceasing to be a clique.  

•  This graph has 5 cliques: 

•  Two maximal cliques: 
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Using Cliques to Represent Subsets 
•  If the potential functions only involve two nodes, an undirected graph 
has a nice representation. 

•  If the potential functions involve more 
than two nodes, using a different factor 
graph representation is much more 
useful.  

•  For now, let us consider only 
potential functions that are defined 
over two nodes.  
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Markov Random Fields (MRFs) 

•  Each potential function is a mapping from the 
joint configurations of random variables in a 
clique to non-negative real numbers. 

•  The choice of potential functions is not restricted 
to having specific probabilistic interpretations. 

where E(x) is called an energy function.  

Potential functions are often represented as exponentials: 

   
  

Boltzmann distribution 
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MRFs with Hidden Variables 
For many interesting real-world problems, we need to introduce 
hidden or latent variables.  

•  Our random variables will contain both 
visible and hidden variables x=(v,h).  

•  In general, computing both partition function 
and summation over hidden variables will be 
intractable, except for special cases.  

•  Parameter learning becomes a very 
challenging task. 
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Conditional Independence 
•  Conditional Independence is easier compared to directed models: 

•  Observation blocks a node. 
•  Two sets of nodes are conditionally independent if the observations 
block all paths between them.   11 



Markov Blanket 

Markov	Blanket	

•  The Markov blanket of a node is simply all of the directly connected 
nodes. 

•  This is simpler than in directed models, 
since there is no explaining away.  

•   The conditional distribution of xi conditioned 
on all the variables in the graph is dependent 
only on the variables in the Markov blanket.  
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Conditional Independence and 
Factorization 

•  Consider two sets of distributions: 
–  The set of distributions consistent with the conditional 

independence relationships defined by the undirected graph. 
–  The set of distributions consistent with the factorization defined by 

potential functions on maximal cliques of the graph. 

•  The Hammersley-Clifford theorem states that these two sets of 
distributions are the same. 
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Interpreting Potentials 
•  In contrast to directed graphs, the potential functions do not have a 
specific probabilistic interpretation. 

•  This gives us greater flexibility in choosing 
the potential functions. 

•  We can view the potential function as expressing which configuration of the 
local variables are preferred to others.   

•  Global configurations with relatively high probabilities are those that find a 
good balance in satisfying the (possibly conflicting) influences of the clique 
potentials.  

•  So far we did not specify the nature of random variables, discrete or 
continuous. 
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Discrete MRFs 
•  MRFs with all discrete variables are widely used in many applications.  

•  MRFs with binary variables are sometimes called Ising models in 
statistical mechanics, and Boltzmann machines in machine learning 
literature.  

•  Denoting the binary valued variable at node j  
by                    the Ising model for the joint 
probabilities is given by: 

•  The conditional distribution is given by logistic:  

where x-i denotes all 
nodes except for i.  

Hence the parameter θij measures the dependence of xi  on xj, conditional 
on the other nodes.  15 



Example: Image Denoising 
•  Let us look at the example of noise removal from a binary image.  

•  Let the observed noisy image be described by an array of binary 
pixel values:                           i=1,…,D.  

•  We take a noise-free image                    
and randomly flip the sign of pixels with 
some small probability. 

Neighboring pixels 
are likely to have  the 
same sign 

Noisy and clean 
pixels are likely to 
have the same sign 

Bias term 
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Iterated Conditional Modes 
•  Iterated conditional modes: coordinate-wise gradient descent. 

Original	Image	 Noisy	Image	 ICM	

•  Visit the unobserved nodes sequentially and set each x to whichever of 
its two values has the lowest energy.  

–  This only requires us to look at the Markov blanket, i.e. the 
connected nodes. 

–  Markov blanket of a node is simply all of the directly connected 
nodes. 
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Gaussian MRFs 
•  We assume that the observations have a multivariate Gaussian 
distribution with mean µ and covariance matrix §.  

•  Since the Gaussian distribution represents at most second-order 
relationships, it automatically encodes a pairwise MRF. We rewrite: 

where 

•  The positive definite matrix J is known as the 
information matrix and is sparse with respect to the 
given graph:  

•  The information matrix is sparse, but the covariance matrix is not sparse.  18 



Restricted Boltzmann Machines 
•  For many real-world problems, we need to introduce hidden variables.  

•  Our random variables will contain visible and hidden variables x=(v,h).  

The energy of the joint configuration:  

model parameters. 

Probability of the joint configuration is given by the Boltzmann distribution: 

are connected to stochastic binary 
hidden variables          .  

Stochastic binary visible variables 

Image  visible variables 

  hidden variables 

Bipartite  
Structure 

partition	function	 potential	functions	
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Restricted Boltzmann Machines 

Restricted:			No	interaction	between	
	 	 		hidden	variables	

Inferring	the	distribution	over	the	
hidden	variables	is	easy:	

Factorizes:	Easy	to	compute	

Image						visible	variables	

		hidden	variables	

Bipartite		
Structure	

Similarly:	

Markov	random	fields,	Boltzmann	machines,	log-linear	models.	
20 



Restricted Boltzmann Machines 
Learned	W:		“edges”	
Subset	of	1000	features	

=	 ….	

New	Image:	

Logistic	Function:	Suitable	for	
modeling	binary	images	

Most	hidden		
variables	are	off	

Observed		Data		
Subset	of	25,000	characters	

Represent:	 as	 21 



Gaussian-Bernoulli RBMs 
Gaussian-Bernoulli	RBM:		

Gaussian	

Bernoulli	

Image						visible	variables	

Define	energy	functions	for		
														various	data	modalities:	
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Gaussian-Bernoulli RBMs 

Learned	features	(out	of	10,000)	
4	million	unlabelled	images	

Images:	Gaussian-Bernoulli	RBM	

Learned	features:	``topics’’	

russian	
russia	
moscow	
yeltsin	
soviet	

clinton	
house	
president	
bill	
congress	

computer	
system	
product	
software	
develop	

trade	
country	
import	
world	
economy	

stock	
wall	
street	
point	
dow	

Reuters	dataset:	
804,414	unlabeled	
newswire	stories	
Bag-of-Words		

Text:	Multinomial-Bernoulli	RBM	
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Relation to Directed Graphs 
•  Let us try to convert directed graph into an undirected graph:  
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Directed vs. Undirected 
•  Directed Graphs can be more precise about independencies than 
undirected graphs. 

•  All the parents of x4 can interact to 
determine the distribution over x4.  
•  The directed graph represents 
independencies that the undirected 
graph cannot model. 

•  To represent the high-order interaction 
in the directed graph, the undirected 
graph needs a fourth-order clique. 
•  This fully connected graph exhibits no 
conditional  independence properties 

Moralize: Marry the parents 

need 4th 
order clique 
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Undirected vs. Directed 
•  Undirected Graphs can be more precise about independencies than 
directed graphs 

•  There is no directed graph over four 
variables that represents the same set of 
conditional independence properties.  
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Directed vs. Undirected 
•  If every conditional independence property of the distribution is reflected 
in the graph and vice versa, then the graph is a perfect map for that 
distribution.  

•  Venn diagram: 

-  The set of all distributions P over a 
given set of random variables. 
-  The set of distributions D that can be 
represented as a perfect map using 
directed graph. 

-  The set of distributions U that can be 
represented as a perfect map using 
undirected graph. 

•  We can extend the framework to graphs that include both directed and 
undirected graphs.  27 


