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Graphical Models I	



Graphical Models 
•  Probabilistic graphical models provide a powerful framework for 
representing dependency structure between random variables.  

•  Graphical models offer several useful properties: 

-  They provide a simple way to visualize the structure of a probabilistic 
model and can be used to motivate new models. 

-  They provide various insights into the properties of the model, 
including conditional independence.  

-  Complex computations (e.g. inference and learning in sophisticated 
models) can be expressed in terms of graphical manipulations.  
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Graphical Models 
•  A graph contains a set of nodes (vertices) connected by links (edges or arcs) 

•  In a probabilistic graphical model, each node 
represents a random variable, and links represent 
probabilistic dependencies  between random variables.  

•  The graph specifies the way in which the joint 
distribution over all random variables decomposes 
into a product of factors, where each factor 
depends on a subset of the variables.    

•  Two types of graphical models: 
-  Bayesian networks, also known as Directed Graphical Models (the 
links have a particular directionality indicated by the arrows) 
-  Markov Random Fields, also known as Undirected Graphical Models 
(the links do not carry arrows and have no directional significance).  

•  Hybrid graphical models that combine directed and undirected graphical 
models, such as Deep Belief Networks.  
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Bayesian Networks  

•  Note that at this point, we do not need to specify anything else about 
these variables (e.g. whether they are discrete or continuous).  

•  Let us consider an arbitrary joint distribution                over three 
random variables a,b, and c.   

•  By application of the product rule of probability (twice), we get 

•  This decomposition holds for any choice of the joint distribution.  

•  Directed Graphs are useful for expressing causal relationships between 
random variables.  
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Bayesian Networks  
•  By application of the product rule of probability (twice), we get 

•  Represent the joint distribution in terms of a simple graphical model: 

-  Introduce a node for each of the random variables.  
-  Associate each node with the corresponding 
conditional distribution in above equation.  
-  For each conditional distribution we add directed 
links to the graph from the nodes corresponding 
to the variables on which the distribution is 
conditioned.  

•  Hence for the factor                 there will be links from nodes a and b to 
node c. 
•  For the factor           there will be no incoming links.  
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Bayesian Networks  
•  By application of the product rule of probability (twice), we get 

•  If there is a link going from node a to node b, then we say that:  
-  node a is a parent of node b.  
-  node b is a child of node a. 

•  The joint distribution over K variables factorizes:  

•  For the decomposition, we choose a specific 
ordering of the random variables: a,b,c.  

•  If we chose a different ordering, we would get a 
different graphical representation (we will come 
back to that point later).  

•  If each node has incoming links from all lower numbered nodes, then the 
graph is fully connected; there is a link between all pairs of nodes.  6 



Bayesian Networks  
•  Absence of links conveys certain information about the properties of the 
class of distributions that the graph conveys. 

•  Note that this graph is not fully connected 
(e.g. there is no link from x1 to x2).  

•  Note that according to the graph, x5 will be 
conditioned only on x1 and x3.  

•  The joint distribution over x1,…,x7 can be 
written as a product of a set of conditional 
distributions.  
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Factorization Property 
•  The joint distribution defined by the graph is given by the product of a 
conditional distribution for each node conditioned on its parents: 

•  Important restriction: There must be no 
directed cycles! 

where pak denotes a set of parents for the node xk.  

•  This equation expresses a key factorization 
property of the joint distribution for a directed 
graphical model. 

•  Such graphs are also called directed acyclic graphs (DAGs).   
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Ancestral Sampling  
•  Consider a joint distribution over K random variables                              
that factorizes as: 

•  Our goal is draw a sample from this distribution. 

•  Start at the top and sample in order. 

The parent 
variables are set to 
their sampled 
values 

•  To obtain a sample from the marginal distribution, e.g.                  we sample 
from the full joint distribution, retain             and discard the remaining values.  9 



Generative Models 
•  Higher-level nodes will typically represent latent (hidden) random variables.  
•  The primary role of the latent variables is to allow a complicated distribution 
over observed variables to be constructed from simpler (typically exponential 
family) conditional distributions.  

Generative Model of an Image •  Object identity, position, and orientation 
have independent prior probabilities.  

•   The image has a probability distribution 
that depends on the object identity, 
position, and orientation (likelihood 
function).  

•  The graphical model captures the causal process, by which the observed 
data was generated (hence the name generative models).  10 



Discrete Variables 
•  We now examine the discrete random variables.   
•  Assume that we have two discrete random variables x1 and x2, each of 
which has K states.  

•  Using 1-of-K encoding, we denote the probability of observing both x1k=1, 
x2l=1 by the parameter µkl, where x1k denotes the kth component of x1 
(similarly for x2).   

•  This distribution is governed by K2 - 1 parameters.  

•  The total number of parameters that must be specified for an arbitrary 
joint distribution over M random variables is KM-1 (corresponds to a fully 
connected graph). 

•  Grows exponentially in the number of variables M!  11 



Discrete Variables 
•  General joint distribution: K2-1 parameters. 

•  Independent joint distribution: 2(K-1) parameters. 

•  We dropped the link between the nodes, so each variables is described 
by a separate multinomial distribution.  

12 



Discrete Variables 
•  In general:  

-  Fully connected graphs have completely general distributions and 
have exponential KM-1 number of parameters (too complex).  

-  If there are no links, the joint distribution fully factorizes into the 
product of the marginals, and has M(K-1) parameters (too simple).  

-  Graphs that have an intermediate level of connectivity allow for 
more general distributions compared to the fully factorized one, 
while requiring fewer parameters than the general joint distribution.  

•  Let us look at the example of the chain graph. 
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Chain Graph 
•  Consider an M-node Markov chain: 

•  The marginal distribution           requires K-1 parameters. 

•  The remaining conditional distributions                                       
require K(K-1) parameters.   

•  Total number of parameters: K-1 + (M-1)(K-1)K, which is quadratic 
in K and linear in the length M of the chain.   

•  This graphical model forms the basis of a simple Hidden Markov 
Model.   
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Parameterized Models 
•  We can use parameterized models to control exponential growth in the 
number of parameters. 

If																										are	discrete,		K-state	
variables,		
in	general	has	O(K M) parameters.	

•  We can obtain a more parsimonious form of the 
conditional distribution by using a logistic function 
acting on a linear combination of the parent 
variables:  

•  This is a more restricted form of conditional distribution, but it requires 
only M+1 parameters (linear growth in the number of parameters).  
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Linear Gaussian Models 
•  So far we worked with joint probability distributions over a set of discrete 
random variables (expressed as nodes in directed acyclic graphs). 

•  We now show how a multivariate Gaussian distribution can be 
expressed as a directed graph corresponding to a linear Gaussian model.  

•  Consider an arbitrary acyclic graph over D random variables, in which 
each node represent a single continuous Gaussian distribution with its 
mean given by the linear function of the parents: 

where wij and bi are parameters governing the mean, and vi is the variance.   
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Linear Gaussian Models 
•  The log of the joint distribution takes form: 

where ‘const’ denotes terms independent of x.   

•  This is a quadratic function of x, and hence the joint distribution p(x) is a 
multivariate Gaussian. 

•  For example, consider a directed graph over three Gaussian variables 
with one missing link:  
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Computing the Mean 
•  We can determine the mean and covariance of the joint distribution. 
Remember: 

hence 

so its expected value: 

•  Hence we can find components:                                         by doing 
ancestral pass: start at the top and proceed in order (see example): 
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Computing the Covariance 
•  We can obtain the i,j element of the covariance matrix in the form of a 
recursion relation: 

•  Consider two cases: 

-  There are no links in the graph (graph is fully factorized), so that wij’s are zero. 
In this case:                                   and the covariance is diagonal                 
The joint distribution represents D independent univariate Gaussian 
distributions.    

-  The graph is fully connected. The total number of parameters is D + D(D-1)/2. 
The covariance corresponds to a general symmetric covariance matrix.   19 



Bilinear Gaussian Model 
•  Consider the following model: 

Gaussian terms 

•  The mean is given by the product of two Gaussians. 20 



Hierarchical Models 
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Conditional Independence 
•  We now look at the concept of conditional independence. 
•  a is independent of b given c: 

•  Equivalently: 

•  We will use the notation: 

•  An important feature of graphical models is that conditional independence 
properties of the joint distribution can be read directly from the graph 
without performing any analytical manipulations 

•  The general framework for achieving this is called d-separation, where d 
stands for  ‘directed’ (Pearl 1988).  22 



•  The joint distribution over three variables can be written: 

•  If none of the variables are observed, 
we can examine whether a and b are 
independent:  

•  In general, this does not factorize into 
the product 

•  a and b have a common cause.  

Example 1: Tail-to-Tail Node 

•  The node c is said to be tail-to-tail node with respect to this path (the 
node is connected to the tails of the two arrows).  



•  Suppose we condition on the variable c: 

•  We obtain conditional independence 
property: 

•  Once c has been observed, a and b can no longer have any effect on 
each other. They become independent. 

Example 1: Tail-to-Tail Node 



Example 2: Head-to-Tail Node 
•  The joint distribution over three variables can be written: 

•  If none of the variables are observed, we can examine whether a and b 
are independent:  

•  The node c is said to be head-to-tail node with respect to the path from 
node a to node b.  

•  If c is not observed, a can influence c, and c can influence b. 



Example 2: Head-to-Tail Node 

•  We obtain conditional independence 
property: 

•  If c is observed, the value of a can no longer influence b.  

•  Suppose we condition on the variable c: 



Example 3: Head-to-Head Node 
•  The joint distribution over three variables can be written: 

•  If none of the variables are observed, 
we can examine whether a and b are 
independent:  

•  An unobserved descendant has no effect. 

•  The node c is said to be head-to-head node with respect to the path 
from a to b (because it connects to the heads of two arrows).  

•  Opposite to Example 1. 



Example 3: Head-to-Head Node 

•  If the descendant (or any of its descendants) is observed, its value has 
implications for both a and b, 

•  Opposite to Example 1. 

•  Suppose we condition on the variable c: 

•  In general, this does not factorize into 
the product. 



Fuel Example  
•  Consider the following example over three binary random variables: 

B = 	Battery	(0=dead,	1=fully	charged)	
F 	= 	Fuel	Tank	(0=empty,	1=full)	
G = 	Fuel	Gauge	Reading	
	 	(0=empty,	1=full)	

and	hence	



Fuel Example  

•  Probability of an empty tank increased 
by observing G = 0.  

B  = 	Battery	(0=dead,	1=fully	charged)	
F 	= 	Fuel	Tank	(0=empty,	1=full)	
G = 	Fuel	Gauge	Reading	
	 	(0=empty,	1=full)	

•  Suppose that we observe that the Fuel Gauge Reading is empty G = 0.  



Markov Blanket in Directed Models 
•   The Markov blanket of a node is the minimal set of nodes that must be 
observed to make this node independent of all other nodes 

Factors independent of xi cancel 
between numerator and	denominator.	

•  In a directed model, the Markov blanket includes parents, children and 
co-parents (i.e. all the parents of the node’s children) due to explaining 
away.  
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Directed Graphs as Distribution Filters 
•   We can view the graphical model as a filter.  

•  The joint probability distribution p(x) is allowed through the filter if and 
only if it satisfies the factorization property.  

•  Note: The fully connected graph exhibits no conditional 
independence properties at all. 

•  The fully disconnected graph (no links) corresponds to a joint 
distribution that factorizes into the product of marginal distributions. 32 



Popular Models 
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• 	One	of	the	popular	models	for	
modeling	word	count	vectors.		
We	will	see	this	model	later.		

Latent	Dirichlet	Allocation	

• 	One	of	the	popular	models	for	
collaborative	filtering	applications.	

Bayesian	Probabilistic	Matrix	Factorization	
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