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Carnegie Mellon University

Statistical Generative Models

el | et | |
myo S AT T _I_ Model family, loss function,

optimization algorithm, etc.

LD SIRNg
PR BN Ry

Data % | @ Prior Knowledge
Learning

_ A probability N
Image x distribution > probability p(x)

p(x)

Sampling from p(x) generates new images: mL'm

Grover and Ermon, DGM Tutorial
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Conditional Generation

» Conditional generative model P(zebra images| horse images)

Input Image Monet Van Gogh
Zhou el al., Cycle GAN 2017



Carnegie Mellon University

Fully Observed Models

» Density Estimation by Autoregression

d d
P(X1, ..., Xq4) = Hp(x,-|x,-_1, LX) R Hp(x,-]g(x,-_l, X1))

—  [a=sOh)] — ] p(x)

Each conditional can be a

> [ I k
—y  [ha =g, BN , p(x2]x;) deep neural networ
I
— hs = (23, h2) — P(X3‘X2.X1)
I

) — [ha=gGarhan] — () p(xdlxq. ..., X1)

» Ordering of variables is crucial
NADE (Uria 2013), MADE (Germain 2017), MAF
(Papamakarios 2017), PixelCNN (van den Oord, et al, 2016)
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Fully Observed Models

» Density Estimation by Autoregression

PlerCNN (van den Oord et al, 2016)

NADE (Uria 2013), MADE (Germain 2017), MAF
(Papamakarios 2017), PixelCNN (van den Oord, et al, 2016)



WaveNet

» Generative Model of Speech Signals

Output

Hidden
Layer

Hidden
Layer

Hidden
Layer

Input

@ e @

O

O

O

O

@)

O

O

® © © 900 @ @

O

O

O

O

1 Second

O

O

@

O

O

O

3.86

Carnegie Mellon University

Quality: Mean Opinion Scores
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van den Oord et al, 2016
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Deep Directed Generative Models
Code Z » Latent Variable Models

» Recognition 1 » Generative

» Bottom-up » Top-Down

> Q(z|x) > P(x|2) log pe(x) = log [ po(x,z)dz
v

» Conditional distributions are
parameterized by deep neural
networks
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Directed Deep Generative Models

» Directed Latent Variable Models with Inference Network

» Maximum log-likelihood objective

s 3" log pa(2)
xED

» Marginal log-likelihood is intractable:

log pg(x) = 10g/p9(X7Z)dZ

» Key idea: Approximate true posterior p(z|x) with a simple, tractable
distribution q(z|x) (inference/recognition network).

Grover and Ermon, DGM Tutorial
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Variational Autoencoders (VAEs)

» Single stochastic (Gaussian) layer, followed by many deterministic layers
p(z) = N(0,1)

po(x]z) = N (u(z, 0),%(z, 0))
N/

Deep neural network parameterized by 6.
(Can use different noise models)

4s(z[x) = N'(u(x, ¢), B(x, ¢))
N\

Deep neural network parameterized by ¢.
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Generative Adversarial Networks (GAN)

» Implicit generative model for
an unknown target density p(x)

» Converts sample from a known noise Unknown target density p(x) of
density p,(z) to the target p(x) data over domain X, e.g. R32X3

Distribution of generated samples
should follow target density p(x)

Noise density p,(z) over space Z

[Slide Credit: Manzil Zaheer] Goodfellow et al, 2014



GAN Formulation

» GAN consists of two components

Generator

G:Z—> X

Random
input

Goal: Produce samples
indistinguishable from true data

[Slide Credit: Manzil Zaheer]

Discriminator

D: X — R

Carnegie Mellon University

Goal: Distinguish
true and generated

data apart

Goodfellow et al, 2014
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GAN Formulation: Discriminator

» Discriminator’s objective: Tell real and generated data apart like a classifier

max thp[log D(:IJ)] + Ep, [log (1 — D( (Z)))]

Real Data p(x) Discriminator

D outputs:
D(x) =1 real
D(x) = 0 generated

Generator

pal2) Frtr

[Slide Credit: Manzil Zaheer] Goodfellow et al, 2014
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GAN Formulation: Generator

» Generator's objective: Fool the best discriminator

min mngpr [log D(CIZ)] + Eomp, [log (1 — D( (Z)))}

Discriminator

D outputs:
D(x) =1 real
D(x) = 0 generated

Generator

pal2) Frtr

[Slide Credit: Manzil Zaheer] Goodfellow et al, 2014
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GAN Formulation: Optimization

» Overall GAN optimization

minmax V (¢, D) = Egnp[log D(x)] + Eznp, [log (1 - D(C(2)))]

» The generator-discriminator are iteratively updated using SGD to find
“equilibrium” of a “min-max objective” like a game

G+ G —ncVeV(G, D)

D<+ D — nDVDV(G: D)

[Slide Credit: Manzil Zaheer]
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Distributional perspective - Discriminator

mén mg,x V(G, D) — Exmpdata [10g D(X)] T ]Ezwp(z) [k)g(]' R D(G(Z))]

» For a fixed generator, discriminator is maximizing negative cross entropy

» Optimal discriminator is given by:

* . Pdata (33)
DG(w) - pdata(m) +pg (m)

Goodfellow et al, 2014
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A minimax learning objective

» During learning, generator and discriminator are updated alternatively

mein quﬁxx V(Ge, D¢) — EXdiata [10g qu (X)] -+ Ezwp(z) [log(l — D¢(G0 (Z))]
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Goodfellow et al, 2014
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Evaluation

» Likelihoods may not be defined or tractable

» Directed model permits ancestral sampling

» For labelled datasets, metrics such as inception scores quantify sample diversity and quality
using pretrained classifiers

Wu et al., 2017, Grover et al., 2018, Salimans et al., 2016, Heusel et al., 2018
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Mode Collapse

» In practice, GANs suffer from mode collapse
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Arjovsky et al., 2017
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Wasserstein GAN

» WGAN optimization

minmng( , D) =Egp [D(fl?)} —Bonp, [D( (Z))}

» Difference in expected output on real vs. generated images

» Generator attempts to drive objective = 0
D outputs:

D(x) =1 real
D(x) = 0 generated

» More stable optimization

Arjovsky et al., 2017
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LSUN Bedroom: Samples

Radford et al., 2015
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CIFAR Dataset

Training Samples

Salimans et. al., 2016
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ImageNet: Cherry-Picked Samples

» Open Question: How can we quantitatively evaluate these models!
Slide Credit: lan Goodfellow
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Modelling Point Cloud Data

(d) Guitar

Zaheer et al. Point Cloud GAN 2018
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Interpolation in Latent Space

Interpolate

Chair Table

Zaheer et al. Point Cloud GAN 2018



Carnegie Mellon University

Cycle GAN
Paired
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- Expensive to collect pairs.
. - Impossible in many scenarios.

Slide credit: Jun-Yan Zhu [Zhu*, Park™*, Isola, and Efros, ICCV 2017]
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Cycle GAN
Paired Unpaired
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Slide credit: Jun-Yan Zhu [Zhu™*, Park™, Isola, and Efros, ICCV 2017]
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No input-output pairs!

Slide credit: Jun-Yan Zhu [Zhu*, Park™*, Isola, and Efros, ICCV 2017]
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Generator | Discriminator

Slide credit: Jun-Yan Zhu [Zhu™*, Park™, Isola, and Efros, ICCV 2017]
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NiRN
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Generator o Discriminator

GANs doesn't force output to correspond to input

Slide credit: Jun-Yan Zhu [Zhu™*, Park™, Isola, and Efros, ICCV 2017]
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mode collapse

Slide credit: Jun-Yan Zhu
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Cycle Consistent Adversarial Networks
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Slide credit: Jun-Yan Zhu [Zhu™*, Park™, Isola, and Efros, ICCV 2017]
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Cycle Consistent Adversarial Networks

[Mark Twain, 1903]

Slide credit: Jun-Yan Zhu [Zhu™*, Park™, Isola, and Efros, ICCV 2017]
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Cycle Consistency Loss

. \
Reconstruction S\

error

Slide credit: Jun-Yan Zhu [Zhu™*, Park™, Isola, and Efros, ICCV 2017]
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Cycle Consistency Loss

Small cycle loss
Large cycle loss

Reconstruction | ..
error

Slide credit: Jun-Yan Zhu [Zhu™*, Park™, Isola, and Efros, ICCV 2017]
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Cycle Consistency Loss

D¢ (F(x))
X G(x) X 60 R .
Reconstruction S\ < \.\ ecogf;cc:l;cuon
error ] /9
|IF(Ge) -, IG(F&)) - wll,

Slide credit: Jun-Yan Zhu [Zhu™*, Park™, Isola, and Efros, ICCV 2017]
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Collection Style Transfer

Ukiyo-e Cezanne

Van Gogh Monet
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Conditional Generation

» Conditional generative model P(zebra images| horse images)

Input Image Monet Van Gogh
Zhou el al., Cycle GAN 2017
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Normalizing Flows

» Directed Latent Variable Invertible models

» The mapping between x and z is deterministic and
invertible:

x = fy(z)
z = f,(x)

» Use change-of-variables to relate densities between z and x
—1
of, " (x)
0X

px(x;0) = pz(z)| det

X=x

Grover and Ermon DGM Tutorial, NICE (Dinh et al. 2014),
Real NVP (Dinh et al. 2016)
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Normalizing Flows

» Invertible transformations can be composed:
o(fg") "

det 5 7m

M
x:fé\/"o---of;(zo); px(x;0) :PZO(ZO) H
=1

7/ Mm—=gm

3

» Planar Flows

f(2z) =z +ug(w 'z +b)

Unit Gaussian

Rezendre and Mohamed, 2016

Rezendre and Mohamed, 2016, Grover and Ermon DGM Tutorial
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Normalizing Flows

» Maximum log-likelihood objective

0(fp) "

det 95X

max log px (D;6) = ) (lOgPZ(Z) — log
xeD

.

» Exact log-likelihood evaluation via inverse transformations

» Sampling from the model

z~pz(z), x="7F(z)

» Inference over the latent representations:
. —1
z = £ (x)

Rezendre and Mohamed, 2016, Grover and Ermon DGM Tutorial
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Example: GLOW

» Generative Flow with Invertible 1x1 Convolutions
https://blog.openai.com/glow/

| atent factors of variation

Image X

Kingma, Dhariwal, 2018
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Example: GLOW

Input Add Beard Increase Age

https://blog.openai.com /glow/
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Flow Models

» Simple prior that allows for sampling and tractable likelihood evaluation
e.g., isotropic Gaussian

» Invertible transformations with tractable evaluation:
» Likelihood evaluation requires efficient evaluation of inverse

» Sampling requires efficient evaluation of inverse

» Tractable evaluation of determinants of Jacobian for large models
» Computing determinants for a large matrix is prohibitive

» Key idea: Determinant of triangular matrices is the product of the diagonal
entries, 1.e., an operation

Grover and Ermon, DGM Tutorial
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Thank you



