
10417/10617	
Intermediate	Deep	Learning:		

Fall2019	
Russ	Salakhutdinov	

Machine Learning Department
rsalakhu@cs.cmu.edu

	
https://deeplearning-cmu-10417.github.io/	

Deep Belief Networks 	

Neural Networks Online Course

•  Hugo’s class covers
many other topics:
convolutional networks,
neural language model,
Boltzmann machines,
autoencoders, sparse
coding, etc.

•  We will use his
material for some of the
other lectures.

•  Disclaimer: Much of the material and slides for this lecture were
borrowed from Hugo Larochelle’s class on Neural Networks:
https://sites.google.com/site/deeplearningsummerschool2016/

Deep Autoencoder

Ø  Pre-training initializes the
optimization problem
in a region with better local
optima of the training objective

Ø  Each RBM used to initialize
parameters both in encoder
and decoder (‘‘unrolling’’)

Ø  Better optimization algorithms
can also help: Deep learning
via Hessian-free optimization.
Martens, 2010

3

W

W

W +�

W

W

W

W

W +�

W +�

W +�

W

W +�

W +�

W +�

+�

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine�tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

•  Pre-training can be used to initialize a deep autoencoder

Image	

Low-level	features:	
Edges	

Input:	Pixels	

Built	from	unlabeled	inputs.		

Deep	Belief	Network		

(Hinton et.al. Neural Computation 2006)

Image	

Higher-level	features:	
Combination	of	edges	

Low-level	features:	
Edges	

Input:	Pixels	

Built	from	unlabeled	inputs.		

Deep	Belief	Network	

Internal	representations	capture	
higher-order	statistical	structure	

(Hinton et.al. Neural Computation 2006)

Deep	Belief	Network	

Hidden	
Layers	

Visible	Layer	

RBM	

Sigmoid	
Belief	
Network	

Deep Belief Network

7

•  Deep Belief Networks:

Ø  it is a generative model that mixes
undirected and directed connections
between variables

Ø  top 2 layers’ distribution
is an RBM!

Deep learning

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h(1) h(2) h(3)

• p(h(2),h(3))

• p(xi = 1|h(1)) = sigm(b(0) +W(1)>h(1))

• p(h(1)
j = 1|h(2)) = sigm(b(1) +W(2)>h(2))

1

Ø  other layers form a Bayesian network
with conditional distributions:

Deep learning

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h(1) h(2) h(3)

• p(h(2),h(3))

• p(xi = 1|h(1)) = sigm(b(0) +W(1)>h(1))

• p(h(1)
j = 1|h(2)) = sigm(b(1) +W(2)>h(2))

1

Deep learning

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h(1) h(2) h(3)

• p(h(2),h(3))

• p(xi = 1|h(1)) = sigm(b(0) +W(1)>h(1))

• p(h(1)
j = 1|h(2)) = sigm(b(1) +W(2)>h(2))

1

Ø  This is not a feed-forward neural network

Deep	Belief	Network	

RBM	

Sigmoid		
Belief		
Network	

Deep	Belief	Network	
Ø  top 2 layers’ distribution

is an RBM

Deep learning

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h(1) h(2) h(3)

• p(h(2),h(3))

• p(xi = 1|h(1)) = sigm(b(0) +W(1)>h(1))

• p(h(1)
j = 1|h(2)) = sigm(b(1) +W(2)>h(2))

1

Ø  other layers form a Bayesian
network with conditional
distributions:

Deep learning

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h(1) h(2) h(3)

• p(h(2),h(3))

• p(xi = 1|h(1)) = sigm(b(0) +W(1)>h(1))

• p(h(1)
j = 1|h(2)) = sigm(b(1) +W(2)>h(2))

1

Deep learning

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h(1) h(2) h(3)

• p(h(2),h(3))

• p(xi = 1|h(1)) = sigm(b(0) +W(1)>h(1))

• p(h(1)
j = 1|h(2)) = sigm(b(1) +W(2)>h(2))

1

Deep	Belief	Network	
•  The joint distribution of a DBN is as follows

where

9

Deep learning

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h(1) h(2) h(3)

• p(h(2),h(3))

• p(xi = 1|h(1)) = sigm(b(0) +W(1)>h(1))

• p(h(1)
j = 1|h(2)) = sigm(b(1) +W(2)>h(2))

• p(x,h(1),h(2),h(3)) = p(h(2),h(3)) p(h(1)|h(2)) p(x|h(1))

• p(h(2),h(3)) = exp
⇣
h(2)>W(3)h(3) + b(2)>h(2) + b(3)>h(3)

⌘
/Z

• p(h(1)|h(2)) =
Q

j p(h
(1)
j |h(2))

• p(x|h(1)) =
Q

i p(xi|h(1))

1

Deep learning

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h(1) h(2) h(3)

• p(h(2),h(3))

• p(xi = 1|h(1)) = sigm(b(0) +W(1)>h(1))

• p(h(1)
j = 1|h(2)) = sigm(b(1) +W(2)>h(2))

• p(x,h(1),h(2),h(3)) = p(h(2),h(3)) p(h(1)|h(2)) p(x|h(1))

• p(h(2),h(3)) = exp
⇣
h(2)>W(3)h(3) + b(2)>h(2) + b(3)>h(3)

⌘
/Z

• p(h(1)|h(2)) =
Q

j p(h
(1)
j |h(2))

• p(x|h(1)) =
Q

i p(xi|h(1))

1

Deep learning

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h(1) h(2) h(3)

• p(h(2),h(3))

• p(xi = 1|h(1)) = sigm(b(0) +W(1)>h(1))

• p(h(1)
j = 1|h(2)) = sigm(b(1) +W(2)>h(2))

• p(x,h(1),h(2),h(3)) = p(h(2),h(3)) p(h(1)|h(2)) p(x|h(1))

• p(h(2),h(3)) = exp
⇣
h(2)>W(3)h(3) + b(2)>h(2) + b(3)>h(3)

⌘
/Z

• p(h(1)|h(2)) =
Q

j p(h
(1)
j |h(2))

• p(x|h(1)) =
Q

i p(xi|h(1))

1

Deep learning

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h(1) h(2) h(3)

• p(h(2),h(3))

• p(xi = 1|h(1)) = sigm(b(0) +W(1)>h(1))

• p(h(1)
j = 1|h(2)) = sigm(b(1) +W(2)>h(2))

• p(x,h(1),h(2),h(3)) = p(h(2),h(3)) p(h(1)|h(2)) p(x|h(1))

• p(h(2),h(3)) = exp
⇣
h(2)>W(3)h(3) + b(2)>h(2) + b(3)>h(3)

⌘
/Z

• p(h(1)|h(2)) =
Q

j p(h
(1)
j |h(2))

• p(x|h(1)) =
Q

i p(xi|h(1))

1

•  As in a deep feed-forward network, training a DBN is hard

Layer-wise	Pretraining	
•  This is where the RBM stacking procedure comes from:

10

Ø  idea: improve prior on last layer by

adding another hidden layer

Deep learning

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h(1) h(2) h(3)

• p(h(2),h(3))

• p(xi = 1|h(1)) = sigm(b(0) +W(1)>h(1))

• p(h(1)
j = 1|h(2)) = sigm(b(1) +W(2)>h(2))

• p(x,h(1),h(2),h(3)) = p(h(2),h(3)) p(h(1)|h(2)) p(x|h(1))

• p(h(2),h(3)) = exp
⇣
h(2)>W(3)h(3) + b(2)>h(2) + b(3)>h(3)

⌘
/Z

• p(h(1)|h(2)) =
Q

j p(h
(1)
j |h(2))

• p(x|h(1)) =
Q

i p(xi|h(1))

• p(x) =
P

h(1) p(x,h(1))

• p(x,h(1)) = p(x|h(1))
P

h(2) p(h(1),h(2))

• p(h(1),h(2)) = p(h(1)|h(2))
P

h(3) p(h(2),h(3))

1

Deep learning

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h(1) h(2) h(3)

• p(h(2),h(3))

• p(xi = 1|h(1)) = sigm(b(0) +W(1)>h(1))

• p(h(1)
j = 1|h(2)) = sigm(b(1) +W(2)>h(2))

• p(x,h(1),h(2),h(3)) = p(h(2),h(3)) p(h(1)|h(2)) p(x|h(1))

• p(h(2),h(3)) = exp
⇣
h(2)>W(3)h(3) + b(2)>h(2) + b(3)>h(3)

⌘
/Z

• p(h(1)|h(2)) =
Q

j p(h
(1)
j |h(2))

• p(x|h(1)) =
Q

i p(xi|h(1))

• p(x) =
P

h(1) p(x,h(1))

• p(x,h(1)) = p(x|h(1))
P

h(2) p(h(1),h(2))

• p(h(1),h(2)) = p(h(1)|h(2))
P

h(3) p(h(2),h(3))

1

Deep learning

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h(1) h(2) h(3)

• p(h(2),h(3))

• p(xi = 1|h(1)) = sigm(b(0) +W(1)>h(1))

• p(h(1)
j = 1|h(2)) = sigm(b(1) +W(2)>h(2))

• p(x,h(1),h(2),h(3)) = p(h(2),h(3)) p(h(1)|h(2)) p(x|h(1))

• p(h(2),h(3)) = exp
⇣
h(2)>W(3)h(3) + b(2)>h(2) + b(3)>h(3)

⌘
/Z

• p(h(1)|h(2)) =
Q

j p(h
(1)
j |h(2))

• p(x|h(1)) =
Q

i p(xi|h(1))

• p(x) =
P

h(1) p(x,h(1))

• p(x,h(1)) = p(x|h(1))
P

h(2) p(h(1),h(2))

• p(h(1),h(2)) = p(h(1)|h(2))
P

h(3) p(h(2),h(3))

1

Concavity
•  We will use the fact that the logarithm function is concave:

11

Deep learning

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h(1) h(2) h(3)

• p(h(2),h(3))

• p(xi = 1|h(1)) = sigm(b(0) +W(1)>h(1))

• p(h(1)
j = 1|h(2)) = sigm(b(1) +W(2)>h(2))

• p(x,h(1),h(2),h(3)) = p(h(2),h(3)) p(h(1)|h(2)) p(x|h(1))

• p(h(2),h(3)) = exp
⇣
h(2)>W(3)h(3) + b(2)>h(2) + b(3)>h(3)

⌘
/Z

• p(h(1)|h(2)) =
Q

j p(h
(1)
j |h(2))

• p(x|h(1)) =
Q

i p(xi|h(1))

• p(x) =
P

h(1) p(x,h(1))

• p(x,h(1)) = p(x|h(1))
P

h(2) p(h(1),h(2))

• p(h(1),h(2)) = p(h(1)|h(2))
P

h(3) p(h(2),h(3))

• log(
P

i !i ai) �
P

i !i log(ai)
P

i !i = 1 !i � 0

• ai ⌘ p(x|h(1))p(h(1))
q(h(1)|x) !i ⌘ q(h(1)|x)

•

log p(x) = log
X

h(1)

q(h(1)|x)p(x|h
(1))p(h(1))

q(h(1)|x)
(1)

�
X

h(1)

q(h(1)|x) log
✓
p(x|h(1))p(h(1))

q(h(1)|x)

◆
(2)

=
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(3)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (4)

(5)

1

(where and)

Deep learning

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h(1) h(2) h(3)

• p(h(2),h(3))

• p(xi = 1|h(1)) = sigm(b(0) +W(1)>h(1))

• p(h(1)
j = 1|h(2)) = sigm(b(1) +W(2)>h(2))

• p(x,h(1),h(2),h(3)) = p(h(2),h(3)) p(h(1)|h(2)) p(x|h(1))

• p(h(2),h(3)) = exp
⇣
h(2)>W(3)h(3) + b(2)>h(2) + b(3)>h(3)

⌘
/Z

• p(h(1)|h(2)) =
Q

j p(h
(1)
j |h(2))

• p(x|h(1)) =
Q

i p(xi|h(1))

• p(x) =
P

h(1) p(x,h(1))

• p(x,h(1)) = p(x|h(1))
P

h(2) p(h(1),h(2))

• p(h(1),h(2)) = p(h(1)|h(2))
P

h(3) p(h(2),h(3))

• log(
P

i !i ai) �
P

i !i log(ai)
P

i !i = 1 !i � 0

• ai ⌘ p(x|h(1))p(h(1))
q(h(1)|x) !i ⌘ q(h(1)|x)

•

log p(x) = log
X

h(1)

q(h(1)|x)p(x|h
(1))p(h(1))

q(h(1)|x)
(1)

�
X

h(1)

q(h(1)|x) log
✓
p(x|h(1))p(h(1))

q(h(1)|x)

◆
(2)

=
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(3)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (4)

(5)

1

Deep learning

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h(1) h(2) h(3)

• p(h(2),h(3))

• p(xi = 1|h(1)) = sigm(b(0) +W(1)>h(1))

• p(h(1)
j = 1|h(2)) = sigm(b(1) +W(2)>h(2))

• p(x,h(1),h(2),h(3)) = p(h(2),h(3)) p(h(1)|h(2)) p(x|h(1))

• p(h(2),h(3)) = exp
⇣
h(2)>W(3)h(3) + b(2)>h(2) + b(3)>h(3)

⌘
/Z

• p(h(1)|h(2)) =
Q

j p(h
(1)
j |h(2))

• p(x|h(1)) =
Q

i p(xi|h(1))

• p(x) =
P

h(1) p(x,h(1))

• p(x,h(1)) = p(x|h(1))
P

h(2) p(h(1),h(2))

• p(h(1),h(2)) = p(h(1)|h(2))
P

h(3) p(h(2),h(3))

• log(
P

i !i ai) �
P

i !i log(ai)
P

i !i = 1 !i � 0

• ai ⌘ p(x|h(1))p(h(1))
q(h(1)|x) !i ⌘ q(h(1)|x)

•

log p(x) = log
X

h(1)

q(h(1)|x)p(x|h
(1))p(h(1))

q(h(1)|x)
(1)

�
X

h(1)

q(h(1)|x) log
✓
p(x|h(1))p(h(1))

q(h(1)|x)

◆
(2)

=
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(3)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (4)

(5)

1

Variational Bound
•  For any model with latent variables we can write:

12

•

log p(x) = log

X

h(1)

q(h(1)|x)p(x|h
(1))p(h(1))

q(h(1)|x)

!
(1)

�
X

h(1)

q(h(1)|x) log
✓
p(x|h(1))p(h(1))

q(h(1)|x)

◆
(2)

=
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(3)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (4)

(5)

•

log p(x) = log

X

h(1)

q(h(1)|x)p(x,h
(1))

q(h(1)|x)

!
(6)

�
X

h(1)

q(h(1)|x) log
✓
p(x,h(1))

q(h(1)|x)

◆
(7)

=
X

h(1)

q(h(1)|x) log p(x,h(1)) (8)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (9)

(10)

• h(1) q(h(1)|x) p(h(1)|x)

•

log p(x) �
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(11)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (12)

(13)

•

log p(x) �
X

h(1)

q(h(1)|x) log p(x,h(1)) (14)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (15)

(16)

• KL(q||p) =
P

h(1) q(h(1)|x) log
⇣

q(h(1)|x)
p(h(1)|x)

⌘

• p(x|h(1)) p(h(1)) h(1) h(2) p(h(1)) =
P

h(2) p(h(1),h(2))

2

•

log p(x) = log
X

h(1)

q(h(1)|x)p(x|h
(1))p(h(1))

q(h(1)|x)
(1)

�
X

h(1)

q(h(1)|x) log
✓
p(x|h(1))p(h(1))

q(h(1)|x)

◆
(2)

=
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(3)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (4)

(5)

• h(1) q(h(1)|x) p(h(1)|x)

2

•

log p(x) = log

X

h(1)

q(h(1)|x)p(x|h
(1))p(h(1))

q(h(1)|x)

!
(1)

�
X

h(1)

q(h(1)|x) log
✓
p(x|h(1))p(h(1))

q(h(1)|x)

◆
(2)

=
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(3)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (4)

(5)

•

log p(x) = log

X

h(1)

q(h(1)|x)p(x,h
(1))

q(h(1)|x)

!
(6)

�
X

h(1)

q(h(1)|x) log
✓
p(x,h(1))

q(h(1)|x)

◆
(7)

=
X

h(1)

q(h(1)|x) log p(x,h(1)) (8)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (9)

(10)

• h(1) q(h(1)|x) p(h(1)|x)

•

log p(x) �
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(11)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (12)

(13)

•

log p(x) �
X

h(1)

q(h(1)|x) log p(x,h(1)) (14)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (15)

(16)

• KL(q||p) =
P

h(1) q(h(1)|x) log
⇣

q(h(1)|x)
p(h(1)|x)

⌘

• p(x|h(1)) p(h(1)) h(1) h(2) p(h(1)) =
P

h(2) p(h(1),h(2))

2

where is any approximation to

•

log p(x) = log
X

h(1)

q(h(1)|x)p(x|h
(1))p(h(1))

q(h(1)|x)
(1)

�
X

h(1)

q(h(1)|x) log
✓
p(x|h(1))p(h(1))

q(h(1)|x)

◆
(2)

=
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(3)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (4)

(5)

• h(1) q(h(1)|x) p(h(1)|x)

2

•

log p(x) = log
X

h(1)

q(h(1)|x)p(x|h
(1))p(h(1))

q(h(1)|x)
(1)

�
X

h(1)

q(h(1)|x) log
✓
p(x|h(1))p(h(1))

q(h(1)|x)

◆
(2)

=
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(3)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (4)

(5)

• h(1) q(h(1)|x) p(h(1)|x)

2

Variational Bound
•  This is called a variational bound

13

•

log p(x) = log

X

h(1)

q(h(1)|x)p(x|h
(1))p(h(1))

q(h(1)|x)

!
(1)

�
X

h(1)

q(h(1)|x) log
✓
p(x|h(1))p(h(1))

q(h(1)|x)

◆
(2)

=
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(3)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (4)

(5)

•

log p(x) = log

X

h(1)

q(h(1)|x)p(x,h
(1))

q(h(1)|x)

!
(6)

�
X

h(1)

q(h(1)|x) log
✓
p(x,h(1))

q(h(1)|x)

◆
(7)

=
X

h(1)

q(h(1)|x) log p(x,h(1)) (8)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (9)

(10)

• h(1) q(h(1)|x) p(h(1)|x)

•

log p(x) �
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(11)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (12)

(13)

•

log p(x) �
X

h(1)

q(h(1)|x) log p(x,h(1)) (14)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (15)

(16)

• KL(q||p) =
P

h(1) q(h(1)|x) log
⇣

q(h(1)|x)
p(h(1)|x)

⌘

• p(x|h(1)) p(h(1)) h(1) h(2) p(h(1)) =
P

h(2) p(h(1),h(2))

2

Ø  if is equal to the true conditional , then we

have an equality – the bound is tight!

Ø  the more is different from the less tight the
bound is.

•

log p(x) = log

X

h(1)

q(h(1)|x)p(x|h
(1))p(h(1))

q(h(1)|x)

!
(1)

�
X

h(1)

q(h(1)|x) log
✓
p(x|h(1))p(h(1))

q(h(1)|x)

◆
(2)

=
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(3)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (4)

(5)

• h(1) q(h(1)|x) p(h(1)|x)

•

log p(x) �
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(6)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (7)

(8)

2

•

log p(x) = log

X

h(1)

q(h(1)|x)p(x|h
(1))p(h(1))

q(h(1)|x)

!
(1)

�
X

h(1)

q(h(1)|x) log
✓
p(x|h(1))p(h(1))

q(h(1)|x)

◆
(2)

=
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(3)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (4)

(5)

• h(1) q(h(1)|x) p(h(1)|x)

•

log p(x) �
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(6)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (7)

(8)

2

•

log p(x) = log

X

h(1)

q(h(1)|x)p(x|h
(1))p(h(1))

q(h(1)|x)

!
(1)

�
X

h(1)

q(h(1)|x) log
✓
p(x|h(1))p(h(1))

q(h(1)|x)

◆
(2)

=
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(3)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (4)

(5)

• h(1) q(h(1)|x) p(h(1)|x)

•

log p(x) �
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(6)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (7)

(8)

2

•

log p(x) = log

X

h(1)

q(h(1)|x)p(x|h
(1))p(h(1))

q(h(1)|x)

!
(1)

�
X

h(1)

q(h(1)|x) log
✓
p(x|h(1))p(h(1))

q(h(1)|x)

◆
(2)

=
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(3)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (4)

(5)

• h(1) q(h(1)|x) p(h(1)|x)

•

log p(x) �
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(6)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (7)

(8)

2

Variational Bound
•  This is called a variational bound

Ø  In fact, difference between the left and right terms is the KL

divergence between and :

14

•

log p(x) = log

X

h(1)

q(h(1)|x)p(x|h
(1))p(h(1))

q(h(1)|x)

!
(1)

�
X

h(1)

q(h(1)|x) log
✓
p(x|h(1))p(h(1))

q(h(1)|x)

◆
(2)

=
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(3)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (4)

(5)

•

log p(x) = log

X

h(1)

q(h(1)|x)p(x,h
(1))

q(h(1)|x)

!
(6)

�
X

h(1)

q(h(1)|x) log
✓
p(x,h(1))

q(h(1)|x)

◆
(7)

=
X

h(1)

q(h(1)|x) log p(x,h(1)) (8)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (9)

(10)

• h(1) q(h(1)|x) p(h(1)|x)

•

log p(x) �
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(11)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (12)

(13)

•

log p(x) �
X

h(1)

q(h(1)|x) log p(x,h(1)) (14)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (15)

(16)

• KL(q||p) =
P

h(1) q(h(1)|x) log
⇣

q(h(1)|x)
p(h(1)|x)

⌘

• p(x|h(1)) p(h(1)) h(1) h(2) p(h(1)) =
P

h(2) p(h(1),h(2))

2

•

log p(x) = log

X

h(1)

q(h(1)|x)p(x|h
(1))p(h(1))

q(h(1)|x)

!
(1)

�
X

h(1)

q(h(1)|x) log
✓
p(x|h(1))p(h(1))

q(h(1)|x)

◆
(2)

=
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(3)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (4)

(5)

• h(1) q(h(1)|x) p(h(1)|x)

•

log p(x) �
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(6)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (7)

(8)

2

•

log p(x) = log

X

h(1)

q(h(1)|x)p(x|h
(1))p(h(1))

q(h(1)|x)

!
(1)

�
X

h(1)

q(h(1)|x) log
✓
p(x|h(1))p(h(1))

q(h(1)|x)

◆
(2)

=
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(3)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (4)

(5)

• h(1) q(h(1)|x) p(h(1)|x)

•

log p(x) �
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(6)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (7)

(8)

2

•

log p(x) = log

X

h(1)

q(h(1)|x)p(x|h
(1))p(h(1))

q(h(1)|x)

!
(1)

�
X

h(1)

q(h(1)|x) log
✓
p(x|h(1))p(h(1))

q(h(1)|x)

◆
(2)

=
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(3)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (4)

(5)

• h(1) q(h(1)|x) p(h(1)|x)

•

log p(x) �
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(6)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (7)

(8)

• KL(q||p) =
P

h(1) q(h(1)|x) log
⇣

q(h(1)|x)
p(h(1)|x)

⌘

2

Variational Bound
•  This is called a variational bound

15

•

log p(x) = log

X

h(1)

q(h(1)|x)p(x|h
(1))p(h(1))

q(h(1)|x)

!
(1)

�
X

h(1)

q(h(1)|x) log
✓
p(x|h(1))p(h(1))

q(h(1)|x)

◆
(2)

=
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(3)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (4)

(5)

• h(1) q(h(1)|x) p(h(1)|x)

•

log p(x) �
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(6)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (7)

(8)

2

Ø  for a single hidden layer DBN (i.e. an RBM), both the likelihood

 and the prior depend on the parameters of

the first layer.

•

log p(x) = log

X

h(1)

q(h(1)|x)p(x|h
(1))p(h(1))

q(h(1)|x)

!
(1)

�
X

h(1)

q(h(1)|x) log
✓
p(x|h(1))p(h(1))

q(h(1)|x)

◆
(2)

=
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(3)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (4)

(5)

• h(1) q(h(1)|x) p(h(1)|x)

•

log p(x) �
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(6)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (7)

(8)

• KL(q||p) =
P

h(1) q(h(1)|x) log
⇣

q(h(1)|x)
p(h(1)|x)

⌘

• p(x|h(1)) p(h(1)) h(1) h(2) p(h(1)) =
P

h(2) p(h(1),h(2))

2

•

log p(x) = log

X

h(1)

q(h(1)|x)p(x|h
(1))p(h(1))

q(h(1)|x)

!
(1)

�
X

h(1)

q(h(1)|x) log
✓
p(x|h(1))p(h(1))

q(h(1)|x)

◆
(2)

=
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(3)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (4)

(5)

• h(1) q(h(1)|x) p(h(1)|x)

•

log p(x) �
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(6)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (7)

(8)

• KL(q||p) =
P

h(1) q(h(1)|x) log
⇣

q(h(1)|x)
p(h(1)|x)

⌘

• p(x|h(1)) p(h(1)) h(1) h(2) p(h(1)) =
P

h(2) p(h(1),h(2))

2

Ø  we can now improve the model by building a better prior

•

log p(x) = log

X

h(1)

q(h(1)|x)p(x|h
(1))p(h(1))

q(h(1)|x)

!
(1)

�
X

h(1)

q(h(1)|x) log
✓
p(x|h(1))p(h(1))

q(h(1)|x)

◆
(2)

=
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(3)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (4)

(5)

• h(1) q(h(1)|x) p(h(1)|x)

•

log p(x) �
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(6)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (7)

(8)

• KL(q||p) =
P

h(1) q(h(1)|x) log
⇣

q(h(1)|x)
p(h(1)|x)

⌘

• p(x|h(1)) p(h(1)) h(1) h(2) p(h(1)) =
P

h(2) p(h(1),h(2))

2

Variational Bound
•  This is called a variational bound

16

•

log p(x) = log

X

h(1)

q(h(1)|x)p(x|h
(1))p(h(1))

q(h(1)|x)

!
(1)

�
X

h(1)

q(h(1)|x) log
✓
p(x|h(1))p(h(1))

q(h(1)|x)

◆
(2)

=
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(3)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (4)

(5)

• h(1) q(h(1)|x) p(h(1)|x)

•

log p(x) �
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(6)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (7)

(8)

2

•  When adding a second layer, we model using a separate
set of parameters

•

log p(x) = log

X

h(1)

q(h(1)|x)p(x|h
(1))p(h(1))

q(h(1)|x)

!
(1)

�
X

h(1)

q(h(1)|x) log
✓
p(x|h(1))p(h(1))

q(h(1)|x)

◆
(2)

=
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(3)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (4)

(5)

• h(1) q(h(1)|x) p(h(1)|x)

•

log p(x) �
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(6)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (7)

(8)

• KL(q||p) =
P

h(1) q(h(1)|x) log
⇣

q(h(1)|x)
p(h(1)|x)

⌘

• p(x|h(1)) p(h(1)) h(1) h(2) p(h(1)) =
P

h(2) p(h(1),h(2))

2

Ø  they are the parameters of the RBM involving and

Ø  is now the marginalization of the second hidden layer

•

log p(x) = log

X

h(1)

q(h(1)|x)p(x|h
(1))p(h(1))

q(h(1)|x)

!
(1)

�
X

h(1)

q(h(1)|x) log
✓
p(x|h(1))p(h(1))

q(h(1)|x)

◆
(2)

=
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(3)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (4)

(5)

• h(1) q(h(1)|x) p(h(1)|x)

•

log p(x) �
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(6)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (7)

(8)

• KL(q||p) =
P

h(1) q(h(1)|x) log
⇣

q(h(1)|x)
p(h(1)|x)

⌘

• p(x|h(1)) p(h(1)) h(1) h(2) p(h(1)) =
P

h(2) p(h(1),h(2))

2

•

log p(x) = log

X

h(1)

q(h(1)|x)p(x|h
(1))p(h(1))

q(h(1)|x)

!
(1)

�
X

h(1)

q(h(1)|x) log
✓
p(x|h(1))p(h(1))

q(h(1)|x)

◆
(2)

=
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(3)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (4)

(5)

• h(1) q(h(1)|x) p(h(1)|x)

•

log p(x) �
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(6)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (7)

(8)

• KL(q||p) =
P

h(1) q(h(1)|x) log
⇣

q(h(1)|x)
p(h(1)|x)

⌘

• p(x|h(1)) p(h(1)) h(1) h(2) p(h(1)) =
P

h(2) p(h(1),h(2))

2

•

log p(x) = log

X

h(1)

q(h(1)|x)p(x|h
(1))p(h(1))

q(h(1)|x)

!
(1)

�
X

h(1)

q(h(1)|x) log
✓
p(x|h(1))p(h(1))

q(h(1)|x)

◆
(2)

=
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(3)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (4)

(5)

• h(1) q(h(1)|x) p(h(1)|x)

•

log p(x) �
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(6)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (7)

(8)

• KL(q||p) =
P

h(1) q(h(1)|x) log
⇣

q(h(1)|x)
p(h(1)|x)

⌘

• p(x|h(1)) p(h(1)) h(1) h(2) p(h(1)) =
P

h(2) p(h(1),h(2))

2

•

log p(x) = log

X

h(1)

q(h(1)|x)p(x|h
(1))p(h(1))

q(h(1)|x)

!
(1)

�
X

h(1)

q(h(1)|x) log
✓
p(x|h(1))p(h(1))

q(h(1)|x)

◆
(2)

=
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(3)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (4)

(5)

• h(1) q(h(1)|x) p(h(1)|x)

•

log p(x) �
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(6)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (7)

(8)

• KL(q||p) =
P

h(1) q(h(1)|x) log
⇣

q(h(1)|x)
p(h(1)|x)

⌘

• p(x|h(1)) p(h(1)) h(1) h(2) p(h(1)) =
P

h(2) p(h(1),h(2))

2

adding	2nd	layer	means	
untying	the	parameters	

Variational Bound
•  This is called a variational bound

17

•

log p(x) = log

X

h(1)

q(h(1)|x)p(x|h
(1))p(h(1))

q(h(1)|x)

!
(1)

�
X

h(1)

q(h(1)|x) log
✓
p(x|h(1))p(h(1))

q(h(1)|x)

◆
(2)

=
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(3)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (4)

(5)

• h(1) q(h(1)|x) p(h(1)|x)

•

log p(x) �
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(6)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (7)

(8)

2

adding	2nd	layer	means	
untying	the	parameters	

Ø  we can train the parameters of the new second layer by maximizing
the bound. This is equivalent to minimizing the following, since the
other terms are constant:

•

log p(x) = log

X

h(1)

q(h(1)|x)p(x|h
(1))p(h(1))

q(h(1)|x)

!
(1)

�
X

h(1)

q(h(1)|x) log
✓
p(x|h(1))p(h(1))

q(h(1)|x)

◆
(2)

=
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(3)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (4)

(5)

• h(1) q(h(1)|x) p(h(1)|x)

•

log p(x) �
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(6)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (7)

(8)

• KL(q||p) =
P

h(1) q(h(1)|x) log
⇣

q(h(1)|x)
p(h(1)|x)

⌘

• p(x|h(1)) p(h(1)) h(1) h(2) p(h(1)) =
P

h(2) p(h(1),h(2))

•

�
X

h(1)

q(h(1)|x) log p(h(1)) (9)

2

Ø  this is like training an RBM on data generated from !

•

log p(x) = log

X

h(1)

q(h(1)|x)p(x|h
(1))p(h(1))

q(h(1)|x)

!
(1)

�
X

h(1)

q(h(1)|x) log
✓
p(x|h(1))p(h(1))

q(h(1)|x)

◆
(2)

=
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(3)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (4)

(5)

• h(1) q(h(1)|x) p(h(1)|x)

•

log p(x) �
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(6)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (7)

(8)

2

Layerwise	pretraining		
improves		variational		
lower	bound	

Variational Bound
•  This is called a variational bound

18

•

log p(x) = log

X

h(1)

q(h(1)|x)p(x|h
(1))p(h(1))

q(h(1)|x)

!
(1)

�
X

h(1)

q(h(1)|x) log
✓
p(x|h(1))p(h(1))

q(h(1)|x)

◆
(2)

=
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(3)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (4)

(5)

• h(1) q(h(1)|x) p(h(1)|x)

•

log p(x) �
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(6)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (7)

(8)

2

adding	2nd	layer	means	
untying	the	parameters	

Ø  for we use the posterior of the first layer RBM. This is

equivalent to a feed-forward (sigmoidal) layer, followed by sampling

•

log p(x) = log

X

h(1)

q(h(1)|x)p(x|h
(1))p(h(1))

q(h(1)|x)

!
(1)

�
X

h(1)

q(h(1)|x) log
✓
p(x|h(1))p(h(1))

q(h(1)|x)

◆
(2)

=
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(3)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (4)

(5)

• h(1) q(h(1)|x) p(h(1)|x)

•

log p(x) �
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(6)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (7)

(8)

2

Ø  by initializing the weights of the second layer RBM as the transpose

of the first layer weights, the bound is initially tight!

Ø  a 2-layer DBN with tied weights is equivalent to a 1-layer RBM

Layer-wise	Pretraining	
•  This is where the RBM stacking procedure comes from:

19

Ø  idea: improve prior on last layer by

adding another hidden layer

Deep learning

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h(1) h(2) h(3)

• p(h(2),h(3))

• p(xi = 1|h(1)) = sigm(b(0) +W(1)>h(1))

• p(h(1)
j = 1|h(2)) = sigm(b(1) +W(2)>h(2))

• p(x,h(1),h(2),h(3)) = p(h(2),h(3)) p(h(1)|h(2)) p(x|h(1))

• p(h(2),h(3)) = exp
⇣
h(2)>W(3)h(3) + b(2)>h(2) + b(3)>h(3)

⌘
/Z

• p(h(1)|h(2)) =
Q

j p(h
(1)
j |h(2))

• p(x|h(1)) =
Q

i p(xi|h(1))

• p(x) =
P

h(1) p(x,h(1))

• p(x,h(1)) = p(x|h(1))
P

h(2) p(h(1),h(2))

• p(h(1),h(2)) = p(h(1)|h(2))
P

h(3) p(h(2),h(3))

1

Deep learning

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h(1) h(2) h(3)

• p(h(2),h(3))

• p(xi = 1|h(1)) = sigm(b(0) +W(1)>h(1))

• p(h(1)
j = 1|h(2)) = sigm(b(1) +W(2)>h(2))

• p(x,h(1),h(2),h(3)) = p(h(2),h(3)) p(h(1)|h(2)) p(x|h(1))

• p(h(2),h(3)) = exp
⇣
h(2)>W(3)h(3) + b(2)>h(2) + b(3)>h(3)

⌘
/Z

• p(h(1)|h(2)) =
Q

j p(h
(1)
j |h(2))

• p(x|h(1)) =
Q

i p(xi|h(1))

• p(x) =
P

h(1) p(x,h(1))

• p(x,h(1)) = p(x|h(1))
P

h(2) p(h(1),h(2))

• p(h(1),h(2)) = p(h(1)|h(2))
P

h(3) p(h(2),h(3))

1

Deep learning

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h(1) h(2) h(3)

• p(h(2),h(3))

• p(xi = 1|h(1)) = sigm(b(0) +W(1)>h(1))

• p(h(1)
j = 1|h(2)) = sigm(b(1) +W(2)>h(2))

• p(x,h(1),h(2),h(3)) = p(h(2),h(3)) p(h(1)|h(2)) p(x|h(1))

• p(h(2),h(3)) = exp
⇣
h(2)>W(3)h(3) + b(2)>h(2) + b(3)>h(3)

⌘
/Z

• p(h(1)|h(2)) =
Q

j p(h
(1)
j |h(2))

• p(x|h(1)) =
Q

i p(xi|h(1))

• p(x) =
P

h(1) p(x,h(1))

• p(x,h(1)) = p(x|h(1))
P

h(2) p(h(1),h(2))

• p(h(1),h(2)) = p(h(1)|h(2))
P

h(3) p(h(2),h(3))

1

Deep	Belief	Network	
Generative	
Process	

Approximate	
Inference	

v

h2

h1

h3

W1

W3

W2

DBN	Layer-wise	Training	
•  Learn	an	RBM	with	an	input	
layer	v=x	and	a	hidden	layer	h.	

h

v

W1

DBN	Layer-wise	Training	

h1

h2

v

W1

W1⊤

•  Learn	an	RBM	with	an	input	
layer	v=x	and	a	hidden	layer	h.	

•  Treat	inferred	values																																
	 	 	 	 			as	the	data	

for	training	2nd-layer	RBM.	

													

•  Learn	and	freeze	2nd	layer	
RBM.	

DBN	Layer-wise	Training	

v

h2

h1

h3

W1

W3

W2

•  Proceed	to	the	next	layer.	

													

•  Learn	an	RBM	with	an	input	
layer	v=x	and	a	hidden	layer	h.	

•  Learn	and	freeze	2nd	layer	
RBM.	

•  Treat	inferred	values																																
	 	 	 	 			as	the	data	

for	training	2nd-layer	RBM.	

Unsupervised	Feature	Learning.	

DBN	Layer-wise	Training	

v

h2

h1

h3

W1

W3

W2

•  Proceed	to	the	next	layer.	

													

•  Learn	an	RBM	with	an	input	
layer	v=x	and	a	hidden	layer	h.	

•  Learn	and	freeze	2nd	layer	
RBM.	

•  Treat	inferred	values																																
	 	 	 	 			as	the	data	

for	training	2nd-layer	RBM.	

Unsupervised	Feature	Learning.	

Layerwise	pretraining		
improves		variational		
lower	bound	

Deep Belief Networks
•  This process of adding layers can be repeated recursively

Ø  we obtain the greedy layer-wise pre-training procedure for neural

networks

25

•  We now see that this procedure corresponds to maximizing a
bound on the likelihood of the data in a DBN

Ø  in theory, if our approximation is very far from the true

posterior, the bound might be very loose

Ø  this only means we might not be improving the true likelihood
Ø  we might still be extracting better features!

•

log p(x) = log

X

h(1)

q(h(1)|x)p(x|h
(1))p(h(1))

q(h(1)|x)

!
(1)

�
X

h(1)

q(h(1)|x) log
✓
p(x|h(1))p(h(1))

q(h(1)|x)

◆
(2)

=
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(3)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (4)

(5)

• h(1) q(h(1)|x) p(h(1)|x)

•

log p(x) �
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(6)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (7)

(8)

2

•  Fine-tuning is done by the Up-Down algorithm
Ø  A fast learning algorithm for deep belief nets. Hinton, Teh,

Osindero, 2006.

Supervised	Learning	with	DBNs	
•  If	we	have	access	to	label	information,	we	can	train	the	joint	
generative	model	by	maximizing	the	joint	log-likelihood	of	data	
and	labels	

v

h2

h1

h3

W1

W3

W2label	y	

•  Discriminative	fine-tuning:	

•  Use	DBN	to	initialize	a	
multilayer	neural	network.	

•  Maximize	the	conditional	
distribution:	

...
h2 ∼ P(h2,h3)

h1 ∼ P(h1|h2)

v ∼ P(v|h1)

h3 ∼ Q(h3|h2)

h2 ∼ Q(h2|h1)

h1 ∼ Q(h1|v)

v

h3 ∼ Q̃(h3|v)

h2 ∼ Q̃(h2|v)

h1 ∼ Q̃(h1|v)

v

Sampling	from	DBNs	
•  To	sample	from	the	DBN	model:	

•  Sample	h2	using	alternating	Gibbs	sampling	from	RBM.	
•  Sample	lower	layers	using	sigmoid	belief	network.	

v

h2

h1

h3

W1

W3

W2

Gibbs	chain	

Learned	Features	

Learning	Part-based	Representation	
Convolutional	DBN	

Faces	

v

h2

h1

h3

W1

W3

W2

Trained	on	face	images.	

Object	Parts	

Groups	of	parts.	

Lee	et.al.,	ICML	2009	

Learning	Part-based	Representation	
Faces	 Cars	 Elephants	 Chairs	

Lee	et.al.,	ICML	2009	

Learning	Part-based	Representation	

Trained	from	multiple	
classes	(cars,	faces,	
motorbikes,	airplanes).	

Class-specific	object	
parts	

Groups	of	parts.	

Lee	et.al.,	ICML	2009	

DBNs	for	Classification	

• 	After	layer-by-layer	unsupervised	pretraining,	discriminative	fine-tuning		
by	backpropagation	achieves	an	error	rate	of	1.2%	on	MNIST.	SVM’s	get	
1.4%	and	randomly	initialized	backprop	gets	1.6%.		

• 	Clearly	unsupervised	learning	helps	generalization.	It	ensures	that	most	of	
the	information	in	the	weights	comes	from	modeling	the	input	data.	

(Hinton and Salakhutdinov, Science 2006)

W +εW

W

W

W +ε

W +ε

W +ε

W

W

W

W

1 11

500 500

500

2000

500

500

2000

500
2

500

RBM

500

2000
3

Pretraining Unrolling Fine−tuning

4 4

2 2

3 3

1

2

3

4

RBM

10

Softmax Output

10
RBM

T

T

T

T

T

T

T

T

DBNs	for	Regression	
Predicting	the	orientation	of	a	face	patch	

Training	Data:	1000	face	patches	of		
30	training	people.	

Regression	Task:	predict	orientation	of	a	new	face.	

Test	Data:	1000	face	patches	of		
10	new	people.		

Gaussian	Processes	with	spherical	Gaussian	kernel	achieves	a	RMSE			
(root	mean	squared	error)	of	16.33	degree.		

(Salakhutdinov and Hinton, NIPS 2007)

DBNs	for	Regression	

• 	Pretrain	a	stack	of	RBMs:	784-1000-1000-1000.	

Additional	Unlabeled	Training	Data:	12000	face	patches	from	
30	training	people.	

• 	Features	were	extracted	with	no	idea	of	the	final	task.	

GP	with	fine-tuned	covariance	Gaussian	kernel: 	 	 	RMSE:	6.42	
The	same	GP	on	the	top-level	features: 	 	 	 	 	RMSE:	11.22	

Standard	GP	without	using	DBNs: 	 	 	 	 	 	RMSE:	16.33	

Deep	Autoencoders	

W

W

W +�

W

W

W

W

W +�

W +�

W +�

W

W +�

W +�

W +�

+�

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine�tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Deep	Autoencoders	
• 	We	used	25x25	–	2000	–	1000	–	500	–	30	autoencoder	to	extract	
30-D	real-valued	codes	for	Olivetti	face	patches.			

• 	Top:	Random	samples	from	the	test	dataset.			
• 	Middle:	Reconstructions	by	the	30-dimensional	deep	autoencoder.	

• 	Bottom:	Reconstructions	by	the	30-dimentinoal	PCA.		

Information	Retrieval	
2-D	LSA	space	

Legal/JudicialLeading
Economic
Indicators

European Community
Monetary/Economic

Accounts/
Earnings

Interbank Markets

Government
Borrowings

Disasters and
Accidents

Energy Markets

• 	The	Reuters	Corpus	Volume	II	contains	804,414	newswire	stories	
(randomly	split	into	402,207	training	and	402,207	test).	

• 	“Bag-of-words”	representation:	each	article	is	represented	as	a	vector	
containing	the	counts	of	the	most	frequently	used	2000	words	in	the	
training	set.	

(Hinton and Salakhutdinov, Science 2006)

