10417/10617

Intermediate Deep Learning:
Fall2019

Russ Salakhutdinov

Machine Learning Department
rsalakhu@cs.cmu.edu

https://deeplearning-cmu-10417.github.io/

Deep Belief Networks

Neural Networks Online Course

e Disclaimer: Much of the material and slides for this lecture were
borrowed from Hugo Larochelle’s class on Neural Networks:
https://sites.google.com/site/deeplearningsummerschool2016/

http://info.usherbrooke.ca/hlarochelle/neural _networks

e Hugo’s class covers

many other topics: x o
convolutional networks, RESTRICTED BOLTZMANN MACHINE

neural language model,

_ Topics: RBM, visible layer; hidden layer, energy function
Boltzmann machines, OO0 h-
autoencoders, sparse —
. &
coding, etc.
(OO0 x+

~h"™Wx—-c¢c'x—b'h
=3 Wjkhjzi - Z ke — Y bjh;
J k k J

tion: p(x,h) = exp(—FE(x,h))/Z

RN

* We will use his don: E(x,)

material for some of the
other lectures.

~ £

Deep Autoencoder

* Pre-training can be used to initialize a deep autoencoder

e ‘ Decoder ! =
.. T | 0 | | |
Pre-training initializes the § @W o ' s ’
3 A 4 4 TOp 3 % i
optimization problem O T mem :

77 | T wr | T Wik,
: : : e ‘ i 2000 | 2000 |
in a region with better local e - i
optima of the training objective | W o Lw T L 1w]
: 1000 : 3 W, : Wi+eg
S e a1 e
| : WI+£5
‘ E1
W,+ey

[500]

Y

Each RBM used to initialize
parameters both in encoder
and decoder (“unrolling™)

Wi+es
[1000 |
A

W, +e,
| 2000 |

TW1+81

Pretraining Unrolling Fine—tuning

Martens, 2010 3

Better optimization algorithms
can also help: Deep learning

Deep Belief Network

Low-level features:
Edges

Built from unlabeled inputs.

Input: Pixels

(Hinton et.al. Neural Computation 2006)

Deep Belief Network

Internal representations capture
u higher-order statistical structure

Higher-level features:
‘ Combination of edges

|) Low-level features:
Edges

4,
X

() A

Built from unlabeled inputs.

Input: Pixels

(Hinton et.al. Neural Computation 2006)

Deep Belief Network

Visible Layer V (O

Deep Belief Network

e Deep Belief Networks:

> itis a generative model that mixes
undirected and directed connections
between variables

> top 2 layers’ distribution p(h(?), h(3))
iIs an RBM!

> other layers form a Bayesian network
with conditional distributions:

P(h§1) = 1|h®)) = sigm(bM) + W(Q)Th(2))

p(z; = 1/h(M) = sigm(b(®) 4 W(l)Th(l))

» This is not a feed-forward neural network 7

Deep Belief Network

Deep Belief Network > top 2 layers’ distribution p(h(z), h(3))
Is an RBM

> RBM .
> other layers form a Bayesian
network with conditional
distributions:

Sigmoid (1) _ 1@ — o (1) 2) 'R ©2)
. Belief plhy " = 1[h1) = sigm(b™ + W= hi=)

Network p(z; = 1/hM) = sigm(b(®) 4 W(l)Th(D)

Deep Belief Network

e The joint distribution of a DBN is as follows

p(x,h() h) 1) = p(h® h®)) p(h™M|h?)) p(x/hD)

where

p(h® h®)) = exp (h<2>TW<3>h<3> L b@ h®@ o b<3>Th<3>) /7
1
p(hD[h®) = [T, p(h"[h®)

p(x/hM)) =T, p(a; D)

e As in a deep feed-forward network, training a DBN is hard

Layer-wise Pretraining

e This is where the RBM stacking procedure comes from:
> Iidea: improve prior on last layer by

adding another hidden layer

Concavity

* We will use the fact that the logarithm function is concave:

log(}_; wi a;) >), w;ilog(a;)

(where > .w; =1 and w; > 0)

log(wy a1 + ws as)

w1 log(a) + w; log(as):

11

Variational Bound

« For any model p(x, h™)) with latent variables h(1) we can write:

log p(x)

[V

> q(h™M[x)log p(x,h")
h(1)

~ 3" 4(hDx) log g(hMx)
h(1)

where ¢(h(W|x) is any approximationto p(h!)|x)

Variational Bound

e This is called a variational bound

logp(x) > Y qhM|x)logp(x,h)
h(1)
—> _q(hM|x)log g(h™M[x)
h(1)

> if ¢(hW|x) is equal to the true conditional p(h(M|x), then we

have an equality — the bound is tight!
> the more g(hV|x) is different from p(h™|x) the less tight the

bound is.

Variational Bound

e This is called a variational bound

logp(x) > Y qhM|x)logp(x,h)
h(1)

~ 3" 4(hDx) log g(b M x)
h(1)

> In fact, difference between the left and right terms is the KL

divergence between ¢(h™"|x) and p(h(M|x):

hD|x
KL(q|lp) = > ¢(hMx) log (nguixi)

Variational Bound

e This is called a variational bound

logp(x) > > q(h}x) (logp(x|h®) + log p(h™)))
h(1)

~ 3" 4(hDx) log g(hM[x)
h(1)

> for a single hidden layer DBN (i.e. an RBM), both the likelihood
p(x/hM)) and the prior p(h?)) depend on the parameters of

the first layer.

» we can now improve the model by building a better prior p(h(l))

Variational Bound

adding 2nd layer means
e This is called a variational bound untying the parameters

/N
logp(x) > > q(bM[x) (log p(x/hV) + log p(h"))
h(1)

~ 3" 4(hDx) log g(hM[x)
h(1)

« When adding a second layer, we model p(h(")) using a separate
set of parameters

» they are the parameters of the RBM involving hMand h(2

> p(h(l)) is now the marginalization of the second hidden layer

p(hV) =37y p(h), b))

Variational Bound

adding 2nd layer means

e This is called a variational bound untying the parameters

/N

logp(x) > Zq(h(l)\x) <logp(x\h(1)) + logp(h(l)))

h(1)

~ 3" 4(hDx) log g(h M |x)

h(1)

> we can train the parameters Jn

the bound. This is equivalent
other terms are constant:

= >~ a(hx) log p(™)

h(1)

> this is like training an RBM on data generated from q(h(l) |X)!

4 : .
Layerwise pretraining

improves variational

lower bound

~N
9

J

17

Variational Bound

adding 2nd layer means
e This is called a variational bound untying the parameters

/N
logp(x) > > q(bM[x) (log p(x/hV) + log p(h"))
h(1)

~ 3" 4(hDx) log g(hM[x)
h(1)

> for q(h(l) |x) we use the posterior of the first layer RBM. This is

equivalent to a feed-forward (sigmoidal) layer, followed by sampling

> by initializing the weights of the second layer RBM as the transpose
of the first layer weights, the bound is initially tight!
> a 2-layer DBN with tied weights is equivalent to a 1-layer RBM

Layer-wise Pretraining

e This is where the RBM stacking procedure comes from:
> Iidea: improve prior on last layer by

adding another hidden layer

Deep Belief Network

Approximate Generative
Inference Process
Q(h3h?) P(h* h®)
AN
Q(hZ|h!) P(h'|h?)
'T‘
Q(h'|v) P(v|h')

DBN Layer-wise Training

* Learn an RBM with an input

layer v=x and a hidden layer h.

DBN Layer-wise Training

* Learn an RBM with an input
layer v=x and a hidden layer h.

* Treat inferred values

Q(h'|lv) = P(hl|v) as the data
for training 2"d-layer RBM.

|
* Learn and freeze 2" layer h?
RBM.

————————————

* Treat inferred values

DBN Layer-wise Training

* Learn an RBM with an input

layer v=x and a hidden layer h. Unsupervised Feature Learning.

Q(h'|v) = P(hl|v) as the data
for training 2"d-layer RBM.

P = = == = = = = =

* Learn and freeze 2" |ayer

A
RBM. O’

* Proceed to the next layer.

Q(h'|v)

* Treat inferred values

* Proc

DBN Layer-wise Training

* Learn an RBM with an input

layer v=x and a hidden layer h. Unsupervised Feature Learning.

Q(h'|v) = P(hl|v) as the data
for training 2"d-layer RBM.

h o e e = =

e Learn and freeze 2" [ayer
RBM' Layerwise pretraining
improves variational
_lower bound

Deep Belief Networks

e This process of adding layers can be repeated recursively

> we obtain the greedy layer-wise pre-training procedure for neural

networks

* We now see that this procedure corresponds to maximizing a
bound on the likelihood of the data in a DBN
> in theory, if our approximation q(h(l) |X) is very far from the true
posterior, the bound might be very loose
> this only means we might not be improving the true likelihood
> we might still be extracting better features!

e Fine-tuning is done by the Up-Down algorithm
> Afast learning algorithm for deep belief nets. Hinton, Teh,

Osindero, 2006.

Supervised Learning with DBNs

* If we have access to label information, we can train the joint

e Discriminative fine-tuning:

generative model by maximizing the joint log-likelihood of data
and labels

log P(y, V)

 Use DBN to initialize a
multilayer neural network.

e Maximize the conditional
distribution:

log P(y|v)

Sampling from DBNs

* To sample from the DBN model:
P(v,h' h* h*)= P(v|h!)P(h'|h?)P(h?, h?)

* Sample h? using alternating Gibbs sampling from RBM.

e Sample lower layers using sigmoid belief network.

Gibbs chain

Learned Features

15t-layer features 2n4_]ayer features

Learning Part-based Representation

Convolutional DBN

iﬁﬂﬂ@ﬁﬂm Groups of parts.
Snd .09
gahenmn

A A== Object Parts
<™ (= . J
NEEANSEE
REREDY=N -

L -.\ﬁ.r 1,

Trained on face images.

Lee et.al., ICML 2009

Learning Part-based Representation

Faces
mamﬁgﬁ.

Al S
PEOERnNI===
n&%ﬁmﬂ’-f

Elephants Chairs

Lee et.al., ICML 2009

Groups of parts.

Class-specific object
parts

Trained from multiple
classes (cars, faces,

motorbikes, airplanes).
Lee et.al., ICML 2009

DBNs for Classification

| 2990 |
\4 W3
| 500 | RBME Softmax Output
O 500 | § T wt T wlie,
! w, | 2000_ | 2000 |
L S0 | rBMm — s | 500W3+83 |
T wr T wiie,
I 500 | | | 500 | 500

I Wl 3 T Wl T W1+81

Pretraining Unrolling Fine—tuning

* After layer-by-layer unsupervised pretraining, discriminative fine-tuning
by backpropagation achieves an error rate of 1.2% on MNIST. SVM’s get
1.4% and randomly initialized backprop gets 1.6%.

* Clearly unsupervised learning helps generalization. It ensures that most of
the information in the weights comes from modeling the input data.

(Hinton and Salakhutdinov, Science 2006)

DBNs for Regression

Predicting the orientation of a face patch
Training Data
-22.07 3299 -41.15 6638 2749

LIRS $Y " AR TR e L

Training Data: 1000 face patches of Test Data: 1000 face patches of
30 training people. 10 new people.

Test Data

Regression Task: predict orientation of a new face.

Gaussian Processes with spherical Gaussian kernel achieves a RMSE
(root mean squared error) of 16.33 degree.

(Salakhutdinov and Hinton, NIPS 2007)

DBNs for Regression

Training Data
-22.07 3299 -41.15 6638 2749 Unlabeled

et N RN

Additional Unlabeled Training Data: 12000 face patches from
30 training people.

* Pretrain a stack of RBMs: 784-1000-1000-1000.

* Features were extracted with no idea of the final task.

The same GP on the top-level features: RMSE: 11.22
GP with fine-tuned covariance Gaussian kernel: RMSE: 6.42

Standard GP without using DBNs: RMSE: 16.33

Deep Autoencoders

Decoder

,,,,,,,,,,,,,,,,,,,,,

Encoder

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Pretraining Unrolling Fine—tuning

Deep Autoencoders

* We used 25x25 — 2000 — 1000 — 500 — 30 autoencoder to extract
30-D real-valued codes for Olivetti face patches.

20 R

* Top: Random samples from the test dataset.

* Middle: Reconstructions by the 30-dimensional deep autoencoder.

* Bottom: Reconstructions by the 30-dimentinoal PCA.

Information Retrieval

European Community 3 _
Interbank Markets Monetary/Economic 2-D LSA Space

4

.. Disasters and
7.7 s Accidents

e :. oV, il :i..

. > LI : ,_:.; e o
Leading s -4k LegallJudicial
Economic 0 T .

Indicators S fﬁ #;"‘
. . :o. ._,:._: . o
. Lt g
Accounts/ - oy Government
Earnings . ”? Borrowings

* The Reuters Corpus Volume Il contains 804,414 newswire stories
(randomly split into 402,207 training and 402,207 test).

* “Bag-of-words” representation: each article is represented as a vector
containing the counts of the most frequently used 2000 words in the

training set. _ _ _
(Hinton and Salakhutdinov, Science 2006)

