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Deep Belief Networks 	



Neural Networks Online Course 

•  Hugo’s class covers 
many other topics: 
convolutional networks, 
neural language model, 
Boltzmann machines, 
autoencoders, sparse 
coding, etc. 

•  We will use his 
material for some of the 
other lectures.  

•  Disclaimer: Much of the material and slides for this lecture were 
borrowed from Hugo Larochelle’s class on Neural Networks: 
https://sites.google.com/site/deeplearningsummerschool2016/ 



Deep Autoencoder 

Ø  Pre-training initializes the 
optimization problem  
in a region with better local 
optima of the training objective 

Ø  Each RBM used to initialize 
parameters both in encoder 
and decoder (‘‘unrolling’’) 

Ø  Better optimization algorithms 
can also help: Deep learning 
via Hessian-free optimization. 
Martens, 2010 
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•  Pre-training can be used to initialize a deep autoencoder 



Image	

Low-level	features:	
Edges	

Input:	Pixels	

Built	from	unlabeled	inputs.		

Deep	Belief	Network		

(Hinton et.al. Neural Computation 2006)



Image	

Higher-level	features:	
Combination	of	edges	

Low-level	features:	
Edges	

Input:	Pixels	

Built	from	unlabeled	inputs.		

Deep	Belief	Network	

Internal	representations	capture	
higher-order	statistical	structure	

(Hinton et.al. Neural Computation 2006)



Deep	Belief	Network	

Hidden	
Layers	

Visible	Layer	

RBM	

Sigmoid	
Belief	
Network	



Deep Belief Network  
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•  Deep Belief Networks: 

Ø  it is a generative model that mixes 
undirected and directed connections 
between variables 

Ø  top 2 layers’ distribution                        
is an RBM! 
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October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h(1) h(2) h(3)

• p(h(2),h(3))

• p(xi = 1|h(1)) = sigm(b(0) +W(1)>h(1))

• p(h(1)
j = 1|h(2)) = sigm(b(1) +W(2)>h(2))

1

Ø  other layers form a Bayesian network 
with conditional distributions: 
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Ø  This is not a feed-forward neural network 



Deep	Belief	Network	

RBM	

Sigmoid		
Belief		
Network	

Deep	Belief	Network	
Ø  top 2 layers’ distribution                        

is an RBM 
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Ø  other layers form a Bayesian 
network with conditional 
distributions: 
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Deep	Belief	Network	
•  The joint distribution of a DBN is as follows 

where 
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Département d’informatique
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•  As in a deep feed-forward network, training a DBN is hard 



Layer-wise	Pretraining	
•  This is where the RBM stacking procedure comes from: 
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Ø  idea: improve prior on last layer by 

adding another hidden layer 
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Département d’informatique
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Concavity 
•  We will use the fact that the logarithm function is concave: 
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(where                  and            )  
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Variational Bound 
•  For any model                   with latent variables          we can write: 
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Ø  for a single hidden layer DBN (i.e. an RBM), both the likelihood                          

                         and  the prior               depend on the parameters of 

the first layer.  
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Ø  we can now improve the model by building a better prior  
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•  When adding a second layer, we model             using a separate 
set of parameters 
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Ø  they are the parameters of the RBM involving         and  

Ø              is now the marginalization of the second hidden layer 
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Variational Bound 
•  This is called a variational bound 
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adding	2nd	layer	means	
untying	the	parameters	

Ø  we can train the parameters of the new second layer by maximizing 
the bound. This is equivalent to minimizing the following, since the 
other terms are constant: 
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Ø  this is like training an RBM on data generated from                   !  

•

log p(x) = log

 
X

h(1)

q(h(1)|x)p(x|h
(1))p(h(1))

q(h(1)|x)

!
(1)

�
X

h(1)

q(h(1)|x) log
✓
p(x|h(1))p(h(1))

q(h(1)|x)

◆
(2)

=
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(3)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (4)

(5)

• h(1) q(h(1)|x) p(h(1)|x)

•

log p(x) �
X

h(1)

q(h(1)|x)
⇣
log p(x|h(1)) + log p(h(1))

⌘
(6)

�
X

h(1)

q(h(1)|x) log q(h(1)|x) (7)

(8)

2

Layerwise	pretraining		
improves		variational		
lower	bound	



Variational Bound 
•  This is called a variational bound 
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adding	2nd	layer	means	
untying	the	parameters	

Ø  for                     we use the posterior of the first layer RBM. This is 

equivalent to a feed-forward (sigmoidal) layer, followed by sampling  
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Ø  by initializing the weights of the second layer RBM as the transpose 

of the first layer weights, the bound is initially tight! 

Ø  a 2-layer DBN with tied weights is equivalent to a 1-layer RBM  



Layer-wise	Pretraining	
•  This is where the RBM stacking procedure comes from: 
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Ø  idea: improve prior on last layer by 

adding another hidden layer 
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DBN	Layer-wise	Training	
•  Learn	an	RBM	with	an	input	
layer	v=x	and	a	hidden	layer	h.	
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layer	v=x	and	a	hidden	layer	h.	

•  Treat	inferred	values																																
	 	 	 	 			as	the	data	

for	training	2nd-layer	RBM.	
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RBM.	
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Unsupervised	Feature	Learning.	
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improves		variational		
lower	bound	



Deep Belief Networks 
•  This process of adding layers can be repeated recursively 

Ø  we obtain the greedy layer-wise pre-training procedure for neural 

networks 

25 

•  We now see that this procedure corresponds to maximizing a 
bound on the likelihood of the data in a DBN 

Ø  in theory, if our approximation                   is very far from the true 

posterior, the bound might be very loose  

Ø  this only means we might not be improving the true likelihood 
Ø  we might still be extracting better features! 
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•  Fine-tuning is done by the Up-Down algorithm 
Ø  A fast learning algorithm for deep belief nets. Hinton, Teh, 

Osindero, 2006. 



Supervised	Learning	with	DBNs	
•  If	we	have	access	to	label	information,	we	can	train	the	joint	
generative	model	by	maximizing	the	joint	log-likelihood	of	data	
and	labels	

v

h2

h1

h3

W1

W3

W2label	y	

•  Discriminative	fine-tuning:	

•  Use	DBN	to	initialize	a	
multilayer	neural	network.	

•  Maximize	the	conditional	
distribution:	



...
h2 ∼ P(h2,h3)

h1 ∼ P(h1|h2)

v ∼ P(v|h1)

h3 ∼ Q(h3|h2)

h2 ∼ Q(h2|h1)

h1 ∼ Q(h1|v)

v

h3 ∼ Q̃(h3|v)

h2 ∼ Q̃(h2|v)

h1 ∼ Q̃(h1|v)

v

Sampling	from	DBNs	
•  To	sample	from	the	DBN	model:	

•  Sample	h2	using	alternating	Gibbs	sampling	from	RBM.	
•  Sample	lower	layers	using	sigmoid	belief	network.	

v
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h3
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W3

W2

Gibbs	chain	



Learned	Features	



Learning	Part-based	Representation	
Convolutional	DBN	

Faces	

v

h2

h1

h3

W1

W3

W2

Trained	on	face	images.	

Object	Parts	

Groups	of	parts.	

Lee	et.al.,	ICML	2009	



Learning	Part-based	Representation	
Faces	 Cars	 Elephants	 Chairs	

Lee	et.al.,	ICML	2009	



Learning	Part-based	Representation	

Trained	from	multiple	
classes	(cars,	faces,	
motorbikes,	airplanes).	

Class-specific	object	
parts	

Groups	of	parts.	

Lee	et.al.,	ICML	2009	



DBNs	for	Classification	

• 	After	layer-by-layer	unsupervised	pretraining,	discriminative	fine-tuning		
by	backpropagation	achieves	an	error	rate	of	1.2%	on	MNIST.	SVM’s	get	
1.4%	and	randomly	initialized	backprop	gets	1.6%.		

• 	Clearly	unsupervised	learning	helps	generalization.	It	ensures	that	most	of	
the	information	in	the	weights	comes	from	modeling	the	input	data.	

(Hinton and Salakhutdinov, Science 2006)
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DBNs	for	Regression	
Predicting	the	orientation	of	a	face	patch	

Training	Data:	1000	face	patches	of		
30	training	people.	

Regression	Task:	predict	orientation	of	a	new	face.	

Test	Data:	1000	face	patches	of		
10	new	people.		

Gaussian	Processes	with	spherical	Gaussian	kernel	achieves	a	RMSE			
(root	mean	squared	error)	of	16.33	degree.		

(Salakhutdinov and Hinton, NIPS 2007)



DBNs	for	Regression	

• 	Pretrain	a	stack	of	RBMs:	784-1000-1000-1000.	

Additional	Unlabeled	Training	Data:	12000	face	patches	from	
30	training	people.	

• 	Features	were	extracted	with	no	idea	of	the	final	task.	

GP	with	fine-tuned	covariance	Gaussian	kernel: 	 	 	RMSE:	6.42	
The	same	GP	on	the	top-level	features: 	 	 	 	 	RMSE:	11.22	

Standard	GP	without	using	DBNs: 	 	 	 	 	 	RMSE:	16.33	



Deep	Autoencoders	
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Deep	Autoencoders	
• 	We	used	25x25	–	2000	–	1000	–	500	–	30	autoencoder	to	extract	
30-D	real-valued	codes	for	Olivetti	face	patches.			

• 	Top:	Random	samples	from	the	test	dataset.			
• 	Middle:	Reconstructions	by	the	30-dimensional	deep	autoencoder.	

• 	Bottom:	Reconstructions	by	the	30-dimentinoal	PCA.		



Information	Retrieval	
2-D	LSA	space	

Legal/JudicialLeading          
Economic         
Indicators       

European Community 
Monetary/Economic  

Accounts/
Earnings 

Interbank Markets

Government 
Borrowings 

Disasters and 
Accidents     

Energy Markets

• 	The	Reuters	Corpus	Volume	II	contains	804,414	newswire	stories	
(randomly	split	into	402,207	training	and	402,207	test).	

• 	“Bag-of-words”	representation:	each	article	is	represented	as	a	vector	
containing	the	counts	of	the	most	frequently	used	2000	words	in	the	
training	set.	

(Hinton and Salakhutdinov, Science 2006)


