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Neural Networks Online Course

e Disclaimer: Much of the material and slides for this lecture were
borrowed from Hugo Larochelle’s class on Neural Networks:

* Hugo’s class covers http://info.usherbrooke.ca/hlarochelle/neural_networks
many other topics:

convolutional networks, : e —
neural language model, RESTRICTED BOLTZMANN MACHINE

Boltzmann machines,

Topics: RBM, visible layer; hidden layer, energy function
autoencoders, sparse OBHOOO0) h-
coding, etc.
g o\ et
CBOO0) x+

* We will use his
material for some ofthe
other lectures.

~h"™Wx—-c¢c'x—b'h
=3 Wjkhjzi - Z ke — Y bjh;
J k k J

tion: p(x,h) = exp(—E(x, h))/Z,\ :

tion: E(x,h)

|




Autoencoders

e Feed-forward neural network trained to reproduce its input at the
output layer

Decoder
2 (OeOO00) X = o(a(x))
W WT = \81gm(cj+ W*h(x))
(tied weights) ForIinary units
h(x) (OGOOO0)
W Encoder

h(x) = gla(x))

x (OOO0000) —  sigm(b + Wx)




Autoencoders

Feature Representation

U

]

Feed-forward,
bottom-up

Feed-back, N 4 ™\
generative,
top-down Decoder Encoder
N\ / N\ /
U 1]
[ Input Image

1

e Details of what goes insider the encoder and decoder matter!

* Need constraints to avoid learning an identity.



Autoencoders

Binary Features z

U

]

Decoder Encoder
fiters D [~ N 4 N filters W.
Linear W'z Z=G(WX) Sigmoid
function Y, \_ _/ function
1

7 ﬁ " e

Input Image x

1




Another Autoencoder Model

[ Binary Features z }

@ ﬁ Encoder

filters W.
T =
Decoder [ G(W Z) } [Z G(WX)} Sigmoid

filters WT @ ﬁ function

[ Binary Input x }

* Need additional constraints to avoid learning an identity.

e Relates to Restricted Boltzmann Machines.
* Encoder and Decoder filters can be different.



Loss Function

e L oss function for binary inputs
[(f(x)) = = >y (@k log(Zk) + (1 — @) log(1 — Zk))

»  Cross-entropy error function (reconstruction loss) f(X) X

 Loss function for real-valued inputs
[(f(x)) = 5 2% (@k — 21)°

> sum of squared differences (reconstruction loss)

> we use a linear activation function at the output



Loss Function

* For both cases, the gradient Va<x<t))l(f(x(t)))
has a very simple form:

Vaeol(f(xM)) =% —x f(x) =X

e Parameter gradients are obtained by backpropagating the gradient
Va(x<t))l(f(x(t))) like in a regular network

» important: when using tied weights (W* = W), Vwl(f(x®))
is the sum of two gradients

> this is because W is present in the encoder and in the decoder



Autoencoder

e Adapting an autoencoder to a new type of input

> choose a joint distribution p(x|t) over the inputs, where
is the vector of parameters of that distribution

> choose the relationship between p and the hidden layer h(x)

> use [(f(x)) = — log p(x|u) as the loss function

e Example: we get the sum of squared distance by

» choosing a Gaussian distribution with mean ¢ and identity

covariance for p(x|u) = W exp(—3 > p(zk — pi)?)

> And choosing p = ¢+ W*h(x)



Example: MNIST

e MNIST dataset:
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Learned Features

* MNIST dataset:

RBM

Autoenncoder

(Larochelle et al., JMLR 2009)




Optimality of the Linear Autoencoder

[ Linear Features z ] e If the hidden and output layers
@ ﬁ are linear, it will learn hidden units
that are a linear function of the data
[ } [ } and minimize the squared error.
Wz z=Wx
* The K hidden units will span the

@ ﬁ same space as the first k principal

components. The weight vectors
Input Image x ]

may not be orthogonal.

e \With nonlinear hidden units, we have a nonlinear
generalization of PCA.



Optimality of the Linear Autoencoder

e et us consider the following theorem:

> let A be any matrix, with singular value decomposition A = U X \val
. Y, is a diagonal matrix
- 'V, U are orthonormal matrices (columns/rows are orthonormal

vectors)

13



Optimality of the Linear Autoencoder

e et us consider the following theorem:

> let A be any matrix, with singular value decomposition A = U X \val
. Y, is a diagonal matrix
- 'V, U are orthonormal matrices (columns/rows are orthonormal
vectors)
> let U o, X<k < V., be the decomposition where we keep
only the k largest sing’Lﬁar values
» then, the matrix B of rank k that is closest to A.:

B*= argmin ||A —B||g
B s.t. rank(B)=k

_ T
is B" =U. <k Z<k,<k V. <k
14



matrix where columns are X(t)

N
mlnz Z(a:(t) "(t))g > min l||X—W*h(X) .

W* h(X) 2
based on matrix of all hidden layers
linear encoder (could be any encoder)
arg min —||x W*h(X)|[7 = (W« U < S<p <k h(X)« V')

W= h(X) 2 | -
based on previous theorem,where X = U X V
and k is the hidden layer size
Let's show h(X) is a linear encoder:
T
h(X) - V',Sk
Vi XTX)™' (X" X) <— multiplying by identity

= V-Tgk (V yTuTuxn VT)—l (V Tyt X) = replace with SVD

= Vi, vETo)l'viveTuT X — V(IS IVIVETEVT = I
VT;k A" (ET E)_l »U'x <— V'V = I (orthonormal)

= I<k, (ZT E)_l »TU'X <— idem

= I 27PN ITUTX -— (YTY) 1= 2Y(ET)!

= I4.27'UTX
Zz}c <k (U. <k)T X <— multiplying by I<;. . selects
S — the k first rows 15

this is a linear encoder _
(Slide from Hugo Larochelle)



Optimality of the Linear Autoencoder

e So an optimal pair of encoder and decoder is

h(x) = (Z;llc,ﬁkz (U-,gk)T) X X = (U. <k Y<p,<k) h(x)
|\ Y J |\ Y J
W W
% [Q@OQQO] » for the sum of squared
. T difference error
W'=W
(tied weights) > for an autoencoder with a linear
h(x) [OOOOJ decoder
W > where optimality means “has
the lowest training
x (OOOOO0)

reconstruction error”
16



Optimality of the Linear Autoencoder

e So an optimal pair of encoder and decoder is

h(x) = (Z;llc,ﬁkz (U-,gk)T) X X = (U. <k Y<p,<k) h(x)
\\ Y J \\ Y J
A% W+
4000000 e If inputs are normalized as follows:
W =W' x(t) ﬁ (X(t) DT X(t/))
(tied weights)
h(x) (OGOOO) » encoder corresponds to Principal
W Component Analysis (PCA)

> singular values and (left) vectors =

X (OOOOQOJ the eigenvalues/vectors of

covariance matrix

17



Undercomplete Representation

e Hidden layer is undercomplete if smaller than the input layer
(bottleneck layer, e.g. dimensionality reduction):

> hidden layer “compresses” the input

>  will compress well only for the

training distribution

* Hidden units will be

> good features for the
training distribution
>  will not be robust to other

types of iINpUt ey

A

% (OO000)

(tied weights)

h(x) (O&OO0)

W

x (OOOOO00)

18




Overcomplete Representation

e Hidden layer is overcomplete if greater than the input layer

> no compression in hidden layer

> each hidden unit could copy a X [O@OOOO]
A

different input component 5 T
W'=W
* No guarantee that the hidden units (tied weights)
will extract meaningful structure h(X)@O OOOOQ@
W

x (OOOO00)

19



Denoising Autoencoder

e |dea: representation should be robust to introduction of noise:

> random assignment of subset of

inputs to 0, with probability 1/ X (O@OOOOJ

Similar to dropouts on the input layer W= W'
Gaussian additive noise (tied weights)
hxOO0O0OBHOO000
\Y%

« Reconstruction X computed

from the corrupted input X (@QO@O@]

noise process

« Loss function compares X ' p(X|x)

reconstruction with the noiseless X [QQQQOO]

input X

(Vincent et.al., ICML 2008)



Denoising Autoencoder

X = sigm(c + W*h(x))==---

21



Learned Filters

Non-corrupted

25% corrupted input

22
(Vincent et.al., ICML 2008)




Learned Filters

Non-corrupted

50% corrupted input

23
(Vincent et.al., ICML 2008)



Squared Error Loss

e Training on natural image patches, with squared loss

PCA may not the best solution

>

REEEHZNSNER
2 5 S = I 5 0 A
] 50 o 23 0 I
Y D el I R N
NENIENSRNS
] 2 1 N
N 5 ) ) O )
) I =
SO 8 o o
e 0 50 N I I

L

4
AN

Filters

Data



Squared Error Loss

e Training on natural image patches, with squared loss

PCA may not the best solution

>
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Contractive Autoencoders

e Alternative approach to avoid uninteresting solutions

> add an explicit term in the loss that

penalizes that solution

= (080000

W* _ WT
e \We wish to extract features that (tied weights)

only reflect variations observed in - h(x)(O O OGOOOO0)

the training set

\%%

> we’d like to be invariant to the x [OOOOOO]

other variations

26
(Salah Rifaiet et.al., 2011)



Contractive Autoencoders

e Consider the following loss function:

L(f(x)) + AV h(xD)][3

\ Y J Y
Reconstruction Jacobian of
Loss Encoder

e For the binary observations:

(F(x®)) = = 5, (2 10g(@) + (1 - 2" log(1 - 3"))

Oh(x(®) \
(")

Vo h(x)|[5 = ZZ

k

/

O (t) Autoencoder attempts to
preserve all information

Encoder throws

away all information 27



Contractive Autoencoders

e [llustration: encoder doesn't need to be

sensitive to this variation
(not observed in training set)

»r

2 S
=

28



Pros and Cons

e Advantage of denoising autoencoder: simpler to implement

> requires adding one or two lines of code to regular autoencoder

> no need to compute Jacobian of hidden layer

e Advantage of contractive autoencoder: gradient is deterministic

> can use second order optimizers (conjugate gradient, LBFGS,

etc.)
> might be more stable than denoising autoencoder, which uses a

sampled gradient

29



Autoencoder

Feature Representation

U

]

Feed-forward,
bottom-up

Feed-back, N 4 ™\
generative,
top-down Decoder Encoder
N\ / N\ /
U 1]
[ Input Image

1

e Details of what goes insider the encoder and decoder matter!

* Need constraints to avoid learning an identity.



Predictive Sparse Decomposition

K Binary Features z }

6_1 Sparsity} @ ﬁ Encoder

filters W.
Decoder [ Dz } [ £= G(WX) } Sigmoid

filters D @ ﬁ function

[ Real-valued Input x }

At training - Dz — x|12 £ )\ Wx) — z||2
ALUBINING. amin || Dz —x|[3 + M|y + [|o(Wx) — |3

Decoder Encoder
Kavukcuoglu et al., ‘09



Stacked Autoencoders

[ Class Labels ]
m Z

[ Decoder } [ Encoder }
R ]

[ Features

m ZS
[ Sparsity } [ Decoder } [ Encoder }
R ]

[ Features

m Z

[ Sparsity } [ Decoder} [ Encoder }
1 ]

[ Input x




Stacked Autoencoders

[ Class Labels ]
m Z

[ Decoder } [ Encoder }
7 O

[ Features

m Z
{ Sparsity } L Decoder} [ Encoder }

N ]

D

( Features
(Ef Greedy Layer-wise Learning.
S
P 7 T G 7 o 7

[ Input x

33



Stacked Autoencoders

[ Class Labels ]

e Remove decoders and <>

use feed-forward part. [ Encoder }
L]

e Standard, or [ Features

convolutional neural A\

network architecture. [ Encoder }
L]

e Parameters can be [ Features

fine-tuned using N

backpropagation. [ Encoder }
L]

[ Input x




Stacked Autoencoders

[ Class Labels ]
e Remove decoders and >
use feed-forward part. [ Encoder J
L]
e Standard, or [ Features ]
convolutional neural A\
network architecture. { Encoder }
4 )
*Paranl  Top-down vs. bottom up?
fine-tui :
Is there a more rgorous
backpr¢

. —
. mathematical formulation: y

[ Input x




Deep Autoencoders

Pretraining

Decoder

,,,,,,,,,,,,,,,,,,,,,

Encoder

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Unrolling Fine—tuning 36



Deep Autoencoders

* We used 25x25 — 2000 — 1000 — 500 — 30 autoencoder to extract
30-D real-valued codes for Olivetti face patches.

20 R

* Top: Random samples from the test dataset.

* Middle: Reconstructions by the 30-dimensional deep autoencoder.

* Bottom: Reconstructions by the 30-dimentinoal PCA.
37



Information Retrieval

European Community 3 _
Interbank Markets Monetary/Economic 2-D LSA Space

4

.. Disasters and
7.7 s Accidents

e :. oV, il :i..

. > LI : ,_:.; e o
Leading s -4k LegallJudicial
Economic 0 T .

Indicators S fﬁ #;"‘
. . :o. ._,:._: . o
. Lt g
Accounts/ - oy Government
Earnings . ”? Borrowings

* The Reuters Corpus Volume Il contains 804,414 newswire stories
(randomly split into 402,207 training and 402,207 test).

* “Bag-of-words” representation: each article is represented as a vector
containing the counts of the most frequently used 2000 words in the

training set. _ _ . 38
(Hinton and Salakhutdinov, Science 2006)



Precision (%)
N w
9 o

Information Retrieval

Reuters Dataset

~)- Deep Generative Model

-©-Latent Sematic Analysis | ReUterS dataset. 804)414
-8~ Latent Dirichlet Allocation . .
newswire stories.

Deep generative model significantly
outperforms LSA and LDA topic models

| 0.‘4 | 1.‘6 |

6.4 25 100
Recall (%)



Semantic Hashing

European Community g% 3
Monetary/Economic o &
GoS T ol S, }
o e@%@ oo O @?‘i * - Disasters and
O S e

7 Accidents

Address Space

Ave)
&
\‘ +; j{:t*
o \ Semantically . fﬁ* ’
! . .
y Similar o
Documents o
Semantic A 3 v
. + 5 2 %
Hashnpg + gy XX@Xxg o Govern.ment
X,
Fllnctlon Energy Markets X %;%%2( %%ix X %4& BOI’FOWIng
X X% X
S 4% £
xx % X x *
Document Accounts/Earnings

* Learn to map documents into semantic 20-D binary codes.

* Retrieve similar documents stored at the nearby addresses with no
search at all.

40
(Salakhutdinov and Hinton, SIGIR 2007)



Searching Large Image Database
using Binary Codes

* Map images into binary codes for fast retrieval.
Input image 30-RBM 64—-RBM 128—RBM 256—RBM
: " T ST T L -

'." ;.:) ‘ 2 L 8 . r 7
. O@QC

9@'@ ﬂﬂ@@

I\

* Small Codes, Torralba, Fergus, Weiss, CVPR 2008

* Spectral Hashing, Y. Weiss, A. Torralba, R. Fergus, NIPS 2008
* Kulis and Darrell, NIPS 2009, Gong and Lazebnik, CVPR 20111
* Norouzi and Fleet, ICML 2011,

82 0%
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Learning Similarity Measures

Maximize the Agreement
DIy .y’

| ] 2000 |

Related to Siamese
Networks of LeCun. X X

* Learn a nonlinear transformation of the input space.

* Optimize to make KNN perform well in the low-dimensional

feature space 42
(Salakhutdinov and Hinton, Al and Statistics 2007)



Learning Similarity Measures

Learning Similarity Metric

Neighborhood Component Linear discriminant
Analysis ' Analysis




Learning Similarity Measures

Learning Similarity Metric

DIy ¥’ 1
ya 3? - - 3 yb
W

A

2000 | |

y

=

x*

* As we change unit 25 in the code layer, 3" image turns
into 5" image

* As we change unit 42 in the code layer, thick 3" image turns into
skinny 3",



