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Neural Networks Online Course 

•  Hugo’s class covers 
many other topics: 
convolutional networks, 
neural language model, 
Boltzmann machines, 
autoencoders, sparse 
coding, etc. 

•  We will use his 
material for some of the 
other lectures.  

•  Disclaimer: Much of the material and slides for this lecture were 
borrowed from Hugo Larochelle’s class on Neural Networks: 
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Autoencoders 
•  Feed-forward neural network trained to reproduce its input at the 
output layer 

Autoencoders

Hugo Larochelle
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Abstract

Math for my slides “Autoencoders”.

•

h(x) = g(a(x))

= sigm(b+Wx)

•

bx = o(ba(x))
= sigm(c+W⇤h(x))

• f(x) ⌘ bx l(f(x)) =
P

k(bxk � xk)2 l(f(x)) = �
P

k (xk log(bxk) + (1� xk) log(1� bxk))
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Encoder 

For binary units 
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Autoencoders	

Encoder Decoder 

Input Image 

Feature Representation 

Feed-back, 
generative, 
top-down 
path	

Feed-forward,  
bottom-up	

• 	Details	of	what	goes	insider	the	encoder	and	decoder	matter!	
• 	Need	constraints	to	avoid	learning	an	identity.		 4 



Autoencoders	

z=σ(Wx) WTz 

Input Image x 

 Binary Features z 

Decoder 
filters D 
 
Linear 
function 
path	

Encoder 
filters W. 
 
Sigmoid 
function	
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Another	Autoencoder	Model	

z=σ(Wx) σ(WTz) 

Binary Input x 

 Binary Features z 

Decoder 
filters WT 
path	

Encoder 
filters W. 
 
Sigmoid 
function	

• 	Relates	to	Restricted	Boltzmann	Machines.	
• 	Encoder	and	Decoder	filters	can	be	different.		

• 	Need	additional	constraints	to	avoid	learning	an	identity.		
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Loss Function 
•  Loss function for binary inputs 
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P
k(bxk � xk)2 l(f(x)) = �

P
k (xk log(bxk) + (1� xk) log(1� bxk))

• rba(x(t))l(f(x
(t))) = bx(t) � x(t)

a(x(t)) (= b+Wx(t)

h(x(t)) (= sigm(a(x(t)))

ba(x(t)) (= c+W>h(x(t))

bx(t) (= sigm(ba(x(t)))

rba(x(t))l(f(x
(t))) (= bx(t) � x(t)

rcl(f(x
(t))) (= rba(x(t))l(f(x

(t)))

rh(x(t))l(f(x
(t))) (= W

⇣
rba(x(t))l(f(x

(t)))
⌘

ra(x(t))l(f(x
(t))) (=

⇣
rh(x(t))l(f(x

(t)))
⌘
� [. . . , h(x(t))j(1� h(x(t))j), . . . ]

rbl(f(x
(t))) (= ra(x(t))l(f(x

(t)))

rWl(f(x(t))) (=
⇣
ra(x(t))l(f(x

(t)))
⌘
x(t)> + h(x(t))

⇣
rba(x(t))l(f(x

(t)))
⌘>

• W⇤ = W>

1

•  Loss function for real-valued inputs 

Ø  sum of squared differences (reconstruction loss) 

Ø  we use a linear activation function at the output 

Ø  Cross-entropy error function (reconstruction loss) 
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Loss Function 
•  For both cases, the gradient   
has a very simple form: 
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•  Parameter gradients are obtained by backpropagating the gradient                                   
                               like in a regular network 

Ø  important: when using tied weights (                ),                            

is the sum of two gradients 

Ø  this is because      is present in the encoder and in the decoder  
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Département d’informatique
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Autoencoder 
•  Adapting an autoencoder to a new type of input 

Ø  choose a joint distribution                over the inputs, where            

is the vector of parameters of that distribution 

Ø  choose the relationship between     and the hidden layer 
Ø  use                                       as the loss function 

• rWl(f(x(t))) W

• p(x|µ) µ

• µ h(x)

• l(f(x(t))) = � log p(x(t))

2

• rWl(f(x(t))) W

• p(x|µ) µ

• µ h(x)

• l(f(x(t))) = � log p(x(t))

2

• rWl(f(x(t))) W

• p(x|µ) µ

• µ h(x)

• l(f(x(t))) = � log p(x(t))

2

• rWl(f(x(t))) W

• p(x|µ) µ

• µ h(x)

• l(f(x(t))) = � log p(x(t))

2

• rWl(f(x(t))) W

• p(x|µ) µ

• µ h(x)

• l(f(x)) = � log p(x|µ)

• p(x|µ) = 1
(2⇡)D/2 exp(� 1

2

P
k(xk � µk)2) µ = c+W⇤h(x)

2

•  Example: we get the sum of squared distance by • rWl(f(x(t))) W

• p(x|µ) µ

• µ h(x)

• l(f(x(t))) = � log p(x(t))

2

Ø  choosing a Gaussian distribution with mean     and identity 

covariance for 

Ø  And choosing 

• rWl(f(x(t))) W

• p(x|µ) µ

• µ h(x)

• l(f(x)) = � log p(x|µ = h(x))

• p(x|µ) = 1
(2⇡)D/2 exp(� 1

2

P
k(xk � µk)2) µ = c+W⇤h(x)

2

• rWl(f(x(t))) W

• p(x|µ) µ

• µ h(x)

• l(f(x)) = � log p(x|µ = h(x))

• µ = c+W⇤h(x)

2
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Example:	MNIST	
•  MNIST dataset: 

LAROCHELLE, BENGIO, LOURADOUR AND LAMBLIN
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Figure 5: Samples from the MNIST digit recognition data set. Here, a black pixel corresponds to

an input value of 0 and a white pixel corresponds to 1 (the inputs are scaled between 0

and 1).

1. To what extent does initializing greedily the parameters of the different layers help?

2. How important is unsupervised learning for this procedure?

To address these two questions, we will compare the learning algorithms for deep networks of

Sections 4 and 5 with the following algorithms.

6.1.1 DEEP NETWORK WITHOUT PRE-TRAINING

To address the first question above, we compare the greedy layer-wise algorithm with a more stan-

dard way to train neural networks: using standard backpropagation and stochastic gradient descent,

and starting at a randomly initialized configuration of the parameters. In other words, this variant

simply puts away the pre-training phase of the other deep network learning algorithms.

6.1.2 DEEP NETWORK WITH SUPERVISED PRE-TRAINING

To address the second question, we run an experiment with the following algorithm. We greedily

pre-train the layers using a supervised criterion (instead of the unsupervised one), before performing

as before a final supervised fine-tuning phase. Specifically, when greedily pre-training the param-

eters Wi and bi, we also train another set of weights Vi and biases ci which connect hidden layer

ĥ
i(x) to a temporary output layer as follows:

oi(x) = f
(
c
i+Viĥi(x)

)

12
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Learned	Features	
LAROCHELLE, BENGIO, LOURADOUR AND LAMBLIN
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Figure 6: Display of the input weights of a random subset of the hidden units, learned by an RBM

when trained on samples from the MNIST data set. The activation of units of the first

hidden layer is obtained by a dot product of such a weight “image” with the input image.

In these images, a black pixel corresponds to a weight smaller than −3 and a white pixel
to a weight larger than 3, with the different shades of gray corresponding to different

weight values uniformly between −3 and 3.
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Figure 7: Input weights of a random subset of the hidden units, learned by an autoassociator when

trained on samples from the MNIST data set. The display setting is the same as for

Figure 6.

16

(Larochelle et al., JMLR 2009) 

•  MNIST dataset: 

RBM Autoenncoder 

11 



• 		If	the	hidden	and	output	layers	
are	linear,	it	will	learn	hidden	units	
that	are	a	linear	function	of	the	data	
and	minimize	the	squared	error.	

• 	The	K	hidden	units	will	span	the	
same	space	as	the	first	k	principal	
components.	The	weight	vectors	
may	not	be	orthogonal.		

z=Wx Wz 

Input Image x 

 Linear Features z 

• 	With	nonlinear	hidden	units,	we	have	a	nonlinear	
generalization	of	PCA.	

Optimality of the Linear Autoencoder 

12 



Optimality of the Linear Autoencoder 
•  Let us consider the following theorem: 

Ø  let     be any matrix, with singular value decomposition  

•   is a diagonal matrix 

•  ,      are orthonormal matrices (columns/rows are orthonormal 
vectors) 

Ø  let                                      be the decomposition where we keep 

only the k largest singular values 

Ø  then, the matrix     of rank k that is closest to     : 

 

 

is  
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Optimality of the Linear Autoencoder 
•  Let us consider the following theorem: 

Ø  let     be any matrix, with singular value decomposition  

•   is a diagonal matrix 

•  ,      are orthonormal matrices (columns/rows are orthonormal 
vectors) 

Ø  let                                      be the decomposition where we keep 

only the k largest singular values 

Ø  then, the matrix     of rank k that is closest to     : 
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Optimality of the Linear Autoencoder 
•  So an optimal pair of encoder and decoder is 
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Ø  for the sum of squared 

difference error 

Ø  for an autoencoder with a linear 
decoder 

Ø  where optimality means ‘‘has 

the lowest training 

reconstruction error’’ 
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Optimality of the Linear Autoencoder 
•  So an optimal pair of encoder and decoder is 
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•  If inputs are normalized as follows:  

Ø  encoder corresponds to Principal 

Component Analysis (PCA) 

Ø  singular values and (left) vectors = 
the eigenvalues/vectors of 

covariance matrix 
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Undercomplete Representation 
•  Hidden layer is undercomplete if smaller than the input layer 
(bottleneck layer, e.g. dimensionality reduction): 

Ø  hidden layer ‘‘compresses’’ the input 

Ø  will compress well only for the  

training distribution 

•  Hidden units will be  

Ø  good features for the  

training distribution 

Ø  will not be robust to other  
types of input 
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Overcomplete Representation 
•  Hidden layer is overcomplete if greater than the input layer 

Ø  no compression in hidden layer 

Ø  each hidden unit could copy a  

different input component 

•  No guarantee that the hidden units 
will extract meaningful structure 
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Denoising Autoencoder 
•  Idea: representation should be robust to introduction of noise: 

Ø  random assignment of subset of 

inputs to 0, with probability 

Ø  Similar to dropouts on the input layer 
Ø  Gaussian additive noise 
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•  Reconstruction     computed 
from the corrupted input 

•  Loss function compares 
reconstruction with the noiseless 
input 
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p( eX|X) = qD( eX|X). p(Y ) is a uniform prior over
Y 2 [0, 1]d

0
. This defines a generative model with pa-

rameter set ✓0 = {W0,b0
}. We will use the previ-

ously defined q0(X, eX,Y ) = q0(X)qD( eX|X)�f✓( eX)(Y )
(equation 4) as an auxiliary model in the context of
a variational approximation of the log-likelihood of
p( eX). Note that we abuse notation to make it lighter,
and use the same letters X, eX and Y for di↵erent
sets of random variables representing the same quan-
tity under di↵erent distributions: p or q0. Keep in
mind that whereas we had the dependency structure
X ! eX ! Y for q or q0, we have Y ! X ! eX for p.

Since p contains a corruption operation at the last
generative stage, we propose to fit p( eX) to corrupted
training samples. Performing maximum likelihood fit-
ting for samples drawn from q0( eX) corresponds to min-
imizing the cross-entropy, or maximizing

H = max
✓0

{�IH(q0( eX)kp( eX))}

= max
✓0

{EEq0( eX)[log p( eX)]}. (6)

Let q?(X, Y | eX) be a conditional density, the quan-
tity L(q?, eX) = EEq?(X,Y | eX)

h
log p(X, eX,Y )

q?(X,Y | eX)

i
is a lower

bound on log p( eX) since the following can be shown to
be true for any q?:

log p( eX) = L(q?, eX) + IDKL(q?(X, Y | eX)kp(X, Y | eX))

Also it is easy to verify that the bound is tight when
q?(X, Y | eX) = p(X, Y | eX), where the IDKL becomes 0.
We can thus write log p( eX) = maxq? L(q?, eX), and
consequently rewrite equation 6 as

H = max
✓0

{EEq0( eX)[max
q?

L(q?, eX)]}

= max
✓0,q?

{EEq0( eX)[L(q?, eX)]} (7)

x

x

x̃

x̃
qD(x̃|x)

g✓0(f✓(x̃))

Figure 2. Manifold learning perspective. Suppose
training data (⇥) concentrate near a low-dimensional man-
ifold. Corrupted examples (.) obtained by applying cor-

ruption process qD( eX|X) will lie farther from the manifold.

The model learns with p(X| eX) to “project them back” onto
the manifold. Intermediate representation Y can be inter-
preted as a coordinate system for points on the manifold.

where we moved the maximization outside of the ex-
pectation because an unconstrained q?(X, Y | eX) can
in principle perfectly model the conditional distribu-
tion needed to maximize L(q?, eX) for any eX. Now
if we replace the maximization over an unconstrained
q? by the maximization over the parameters ✓ of our
q0 (appearing in f✓ that maps an x to a y), we get
a lower bound on H: H � max✓0,✓{EEq0( eX)[L(q0, eX)]}
Maximizing this lower bound, we find

arg max
✓,✓0

{EEq0( eX)[L(q0, eX)]}

=arg max
✓,✓0

EEq0(X, eX,Y )

"
log

p(X, eX,Y )
q0(X, Y | eX)

#

=arg max
✓,✓0

EEq0(X, eX,Y)

h
log p(X, eX,Y)

i

+ EEq0( eX)

h
IH[q0(X, Y | eX)]

i

=arg max
✓,✓0

EEq0(X, eX,Y )

h
log p(X, eX,Y )

i
.

Note that ✓ only occurs in Y = f✓( eX), and ✓0 only
occurs in p(X|Y ). The last line is therefore obtained
because q0(X| eX) / qD( eX|X)q0(X) (none of which de-
pends on (✓, ✓0)), and q0(Y | eX) is deterministic, i.e., its
entropy is constant, irrespective of (✓, ✓0). Hence the
entropy of q0(X, Y | eX) = q0(Y | eX)q0(X| eX), does not
vary with (✓, ✓0). Finally, following from above, we
obtain our training criterion (eq. 5):

arg max
✓,✓0

EEq0( eX)[L(q0, eX)]

= arg max
✓,✓0

EEq0(X, eX,Y )[log[p(Y )p(X|Y )p( eX|X)]]

= arg max
✓,✓0

EEq0(X, eX,Y )[log p(X|Y )]

= arg max
✓,✓0

EEq0(X, eX)[log p(X|Y = f✓( eX))]

= arg min
✓,✓0

EEq0(X, eX)

h
LIH

⇣
X, g✓0(f✓( eX))

⌘i

where the third line is obtained because (✓, ✓0)
have no influence on EEq0(X, eX,Y )[log p(Y )] because
we chose p(Y ) uniform, i.e. constant, nor on
EEq0(X, eX)[log p( eX|X)], and the last line is obtained
by inspection of the definition of LIH in eq. 2, when
p(X|Y = f✓( eX)) is a Bg✓0 (f✓( eX)).

4.3. Other Theoretical Perspectives

Information Theoretic Perspective: Consider
X ⇠ q(X), q unknown, Y = f✓( eX). It can easily
be shown (Vincent et al., 2008) that minimizing the
expected reconstruction error amounts to maximizing
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Table 1. Comparison of stacked denoising autoencoders (SdA-3) with other models.
Test error rate on all considered classification problems is reported together with a 95% confidence interval. Best performer
is in bold, as well as those for which confidence intervals overlap. SdA-3 appears to achieve performance superior or
equivalent to the best other model on all problems except bg-rand. For SdA-3, we also indicate the fraction � of destroyed
input components, as chosen by proper model selection. Note that SAA-3 is equivalent to SdA-3 with � = 0%.

Dataset SVMrbf SVMpoly DBN-1 SAA-3 DBN-3 SdA-3 (�)
basic 3.03±0.15 3.69±0.17 3.94±0.17 3.46±0.16 3.11±0.15 2.80±0.14 (10%)
rot 11.11±0.28 15.42±0.32 14.69±0.31 10.30±0.27 10.30±0.27 10.29±0.27 (10%)
bg-rand 14.58±0.31 16.62±0.33 9.80±0.26 11.28±0.28 6.73±0.22 10.38±0.27 (40%)
bg-img 22.61±0.37 24.01±0.37 16.15±0.32 23.00±0.37 16.31±0.32 16.68±0.33 (25%)
rot-bg-img 55.18±0.44 56.41±0.43 52.21±0.44 51.93±0.44 47.39±0.44 44.49±0.44 (25%)
rect 2.15±0.13 2.15±0.13 4.71±0.19 2.41±0.13 2.60±0.14 1.99±0.12 (10%)
rect-img 24.04±0.37 24.05±0.37 23.69±0.37 24.05±0.37 22.50±0.37 21.59±0.36 (25%)
convex 19.13±0.34 19.82±0.35 19.92±0.35 18.41±0.34 18.63±0.34 19.06±0.34 (10%)

(a) No destroyed inputs (b) 25% destruction (c) 50% destruction

(d) Neuron A (0%, 10%, 20%, 50% destruction) (e) Neuron B (0%, 10%, 20%, 50% destruction)

Figure 3. Filters obtained after training the first denoising autoencoder.
(a-c) show some of the filters obtained after training a denoising autoencoder on MNIST samples, with increasing
destruction levels �. The filters at the same position in the three images are related only by the fact that the autoencoders
were started from the same random initialization point.
(d) and (e) zoom in on the filters obtained for two of the neurons, again for increasing destruction levels.
As can be seen, with no noise, many filters remain similarly uninteresting (undistinctive almost uniform grey patches).
As we increase the noise level, denoising training forces the filters to di�erentiate more, and capture more distinctive
features. Higher noise levels tend to induce less local filters, as expected. One can distinguish di�erent kinds of filters,
from local blob detectors, to stroke detectors, and some full character detectors at the higher noise levels.
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(a-c) show some of the filters obtained after training a denoising autoencoder on MNIST samples, with increasing
destruction levels �. The filters at the same position in the three images are related only by the fact that the autoencoders
were started from the same random initialization point.
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As can be seen, with no noise, many filters remain similarly uninteresting (undistinctive almost uniform grey patches).
As we increase the noise level, denoising training forces the filters to di�erentiate more, and capture more distinctive
features. Higher noise levels tend to induce less local filters, as expected. One can distinguish di�erent kinds of filters,
from local blob detectors, to stroke detectors, and some full character detectors at the higher noise levels.
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is in bold, as well as those for which confidence intervals overlap. SdA-3 appears to achieve performance superior or
equivalent to the best other model on all problems except bg-rand. For SdA-3, we also indicate the fraction � of destroyed
input components, as chosen by proper model selection. Note that SAA-3 is equivalent to SdA-3 with � = 0%.
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(a) No destroyed inputs (b) 25% destruction (c) 50% destruction

(d) Neuron A (0%, 10%, 20%, 50% destruction) (e) Neuron B (0%, 10%, 20%, 50% destruction)

Figure 3. Filters obtained after training the first denoising autoencoder.
(a-c) show some of the filters obtained after training a denoising autoencoder on MNIST samples, with increasing
destruction levels �. The filters at the same position in the three images are related only by the fact that the autoencoders
were started from the same random initialization point.
(d) and (e) zoom in on the filters obtained for two of the neurons, again for increasing destruction levels.
As can be seen, with no noise, many filters remain similarly uninteresting (undistinctive almost uniform grey patches).
As we increase the noise level, denoising training forces the filters to di�erentiate more, and capture more distinctive
features. Higher noise levels tend to induce less local filters, as expected. One can distinguish di�erent kinds of filters,
from local blob detectors, to stroke detectors, and some full character detectors at the higher noise levels.
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Figure 3. Filters obtained after training the first denoising autoencoder.
(a-c) show some of the filters obtained after training a denoising autoencoder on MNIST samples, with increasing
destruction levels �. The filters at the same position in the three images are related only by the fact that the autoencoders
were started from the same random initialization point.
(d) and (e) zoom in on the filters obtained for two of the neurons, again for increasing destruction levels.
As can be seen, with no noise, many filters remain similarly uninteresting (undistinctive almost uniform grey patches).
As we increase the noise level, denoising training forces the filters to di�erentiate more, and capture more distinctive
features. Higher noise levels tend to induce less local filters, as expected. One can distinguish di�erent kinds of filters,
from local blob detectors, to stroke detectors, and some full character detectors at the higher noise levels.
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Squared Error Loss 
•  Training on natural image patches, with squared loss 

Ø  PCA may not the best solution 
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Figure 5: Regular autoencoder trained on natural image patches. Left: some of the 12�12
image patches used for training. Middle: filters learnt by a regular undercomplete
autoencoder (50 hidden units) using tied weights and L2 reconstruction error.
Right: filters learnt by a regular overcomplete autoencoder (200 hidden units).
The undercomplete autoencoder appears to learn local blob detectors. Filters
obtained in the overcomplete case look even less meaningful.

Figure 6: Weight decay v.s. Gaussian noise. Typical filters learnt from natural image
patches in the overcomplete case (200 hidden units). Left: regular autoencoder
with weight decay. We tried a wide range of weight-decay values and learning
rates: filters never appeared to capture a more interesting structure than what is
shown here. Note that some local blob detectors are recovered compared to using
no weight decay (contrast with Figure 5 right). Right: a denoising autoencoder
with additive Gaussian noise (� = 0.5) learns Gabor-like local oriented edge
detectors. Clearly the filters learnt are qualitatively very di�erent in the two
cases.
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Ø  PCA may not the best solution 



Contractive Autoencoders 
•  Alternative approach to avoid uninteresting solutions 

Ø  add an explicit term in the loss that  

penalizes that solution 

•  We wish to extract features that 
only reflect variations observed in 
the training set 

Ø  we’d like to be invariant to the 

other variations 

(Salah Rifaiet et.al., 2011) 
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Contractive Autoencoders 
•  Consider the following loss function: 
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Encoder throws 
away all information 

Autoencoder attempts to 
preserve all information 
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•  Illustration: 

Contractive Autoencoders 
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Pros and Cons 
•  Advantage of denoising autoencoder: simpler to implement 

Ø  requires adding one or two lines of code to regular autoencoder 

Ø  no need to compute Jacobian of hidden layer 

•  Advantage of contractive autoencoder: gradient is deterministic  

Ø  can use second order optimizers (conjugate gradient, LBFGS, 

etc.) 

Ø  might be more stable than denoising autoencoder, which uses a 
sampled gradient 

29 



Autoencoder	

Encoder Decoder 

Input Image 

Feature Representation 

Feed-back, 
generative, 
top-down 
path	

Feed-forward,  
bottom-up	

• 	Details	of	what	goes	insider	the	encoder	and	decoder	matter!	
• 	Need	constraints	to	avoid	learning	an	identity.		 30 



Predictive	Sparse	Decomposition	

z=σ(Wx) Dz 

Real-valued Input x 

 Binary Features z 

Decoder 
filters D 
path	

Encoder 
filters W. 
 
Sigmoid 
function	

L1 Sparsity 

Encoder	Decoder	

At training 
time 
path	

Kavukcuoglu et al., ‘09 
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Stacked	Autoencoders	

Input x 

Features 

Encoder Decoder 

Class Labels 

Encoder Decoder 

Sparsity 

Features 

Encoder Decoder Sparsity 
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Stacked	Autoencoders	

Input x 

Features 

Encoder Decoder 

Features 

Class Labels 

Encoder Decoder 

Encoder Decoder 

Sparsity 

Sparsity 

Greedy	Layer-wise	Learning.		

33 



Stacked	Autoencoders	

Input x 

Features 

Encoder 

Features 

Class Labels 

Encoder 

Encoder 
• 	Remove	decoders	and	
use	feed-forward	part.		

• 	Standard,	or	
convolutional	neural	
network	architecture.		

• 	Parameters	can	be	
fine-tuned	using	
backpropagation.		
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Stacked	Autoencoders	

Input x 

Features 

Encoder 

Features 

Class Labels 

Encoder 

Encoder 
• 	Remove	decoders	and	
use	feed-forward	part.		

• 	Standard,	or	
convolutional	neural	
network	architecture.		

• 	Parameters	can	be	
fine-tuned	using	
backpropagation.		

Top-down	vs.	bottom	up?	
Is	there	a	more	rigorous	
mathematical	formulation?	
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Deep	Autoencoders	
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Deep	Autoencoders	
• 	We	used	25x25	–	2000	–	1000	–	500	–	30	autoencoder	to	extract	
30-D	real-valued	codes	for	Olivetti	face	patches.			

• 	Top:	Random	samples	from	the	test	dataset.			
• 	Middle:	Reconstructions	by	the	30-dimensional	deep	autoencoder.	

• 	Bottom:	Reconstructions	by	the	30-dimentinoal	PCA.		
37 



Information	Retrieval	
2-D	LSA	space	

Legal/JudicialLeading          
Economic         
Indicators       

European Community 
Monetary/Economic  

Accounts/
Earnings 

Interbank Markets

Government 
Borrowings 

Disasters and 
Accidents     

Energy Markets

• 	The	Reuters	Corpus	Volume	II	contains	804,414	newswire	stories	
(randomly	split	into	402,207	training	and	402,207	test).	

• 	“Bag-of-words”	representation:	each	article	is	represented	as	a	vector	
containing	the	counts	of	the	most	frequently	used	2000	words	in	the	
training	set.	

(Hinton and Salakhutdinov, Science 2006)
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Deep Generative Model
Latent Sematic Analysis
Latent Dirichlet Allocation

Reuters	Dataset	

Deep	generative	model	significantly	
outperforms	LSA	and	LDA	topic	models	

Reuters	dataset:	804,414		
newswire	stories.	

Information	Retrieval	
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Semantic	Hashing	

• 	Learn	to	map	documents	into	semantic	20-D	binary	codes.	

• 	Retrieve	similar	documents	stored	at	the	nearby	addresses	with	no	
search	at	all.	

Accounts/Earnings

Government 
Borrowing

European Community 
Monetary/Economic

Disasters and 
Accidents

Energy Markets

Semantically
Similar
Documents

Document 

Address Space

Semantic
Hashing
Function

(Salakhutdinov and Hinton, SIGIR 2007)
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Searching	Large	Image	Database	
using	Binary	Codes	

• 	Map	images	into	binary	codes	for	fast	retrieval.	

• 	Small	Codes,	Torralba,	Fergus,	Weiss,	CVPR	2008	
• 	Spectral	Hashing,	Y.	Weiss,	A.	Torralba,	R.	Fergus,	NIPS	2008	
• 	Kulis	and	Darrell,	NIPS	2009,	Gong	and	Lazebnik,	CVPR	20111	
• 	Norouzi	and	Fleet,	ICML	2011,		
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Learning	Similarity	Measures	
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• 	Learn	a	nonlinear	transformation	of	the	input	space.	
• 	Optimize	to	make	KNN	perform	well	in	the	low-dimensional	
feature	space	

(Salakhutdinov and Hinton, AI and Statistics 2007)

Maximize	the	Agreement	

Related	to	Siamese	
Networks	of	LeCun.	
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Neighborhood	Component	
Analysis	

PCA	Linear	discriminant		
Analysis	

Learning	Similarity	Measures	
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Learning	Similarity	Measures	

• 	As	we	change	unit	25	in	the	code	layer,	``3’’	image	turns	
into	``5’’	image	
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• 	As	we	change	unit	42	in	the	code	layer,	thick	``3’’	image	turns	into	
skinny	``3’’.		

44 


