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Bernoulli	Distribution	
• 	Consider	a	single	binary	random	variable																										For	example,	x	
can	describe	the	outcome	of	flipping	a	coin:																									

Coin	flipping:	heads	=	1,	tails	=	0.																										

• 	The	probability	of	x=1	will	be	denoted	by	the	parameter	µ,	so	that:	

• 	The	probability	distribution,	known	as	Bernoulli	distribution,		can	be	
written	as:	



Parameter	Estimation		

• 	We	can	construct	the	likelihood	function,	which	is	a	function	of	µ.		

• 	Suppose	we	observed	a	dataset		

• 	Equivalently,	we	can	maximize	the	log	of	the	likelihood	function:		

• 	Note	that	the	likelihood	function	depends	on	the	N	observations	xn	only	
through	the	sum				

Sufficient	
Statistic	



Parameter	Estimation		
• 	Suppose	we	observed	a	dataset		

• 	Setting	the	derivative	of	the	log-likelihood	function	w.r.t	µ	to	zero,	we	
obtain:	

where	m	is	the	number	of	heads.		



Multinomial	Variables	
• 	Consider	a	random	variable	that	can	take	on	one	of	K	possible	mutually	
exclusive	states	(e.g.	roll	of	a	dice).		

• 	We	will	use	so-called	1-of-K	encoding	scheme.		

• 		If	a	random	variable	can	take	on	K=6	states,	and	a	particular	
observation	of	the	variable	corresponds	to	the	state	x3=1,	then	x	will	be	
resented	as:			

1-of-K	coding	scheme:	

• 	If	we	denote	the	probability	of	xk=1		by	the	parameter	µk,	then	the	
distribution	over	x	is	defined	as:	



Multinomial	Variables	
• 	Multinomial	distribution	can	be	viewed	as	a	generalization	of	Bernoulli	
distribution	to	more	than	two	outcomes.	

• 	It	is	easy	to	see	that	the	distribution	is	normalized:		

and	



Maximum	Likelihood	Estimation		
• 	Suppose	we	observed	a	dataset		

• 	We	can	construct	the	likelihood	function,	which	is	a	function	of	µ.		

• 	Note	that	the	likelihood	function	depends	on	the	N	data	points	only	
though	the	following	K	quantities:		

which	represents	the	number	of	observations	of	xk=1.				

• 	These	are	called	the	sufficient	statistics	for	this	distribution.		



Maximum	Likelihood	Estimation		

which	is	the	fraction	of	observations	for	which	xk=1.	

• 	To	find	a	maximum	likelihood	solution	for	µ,	we	need	to	maximize	the	
log-likelihood	taking	into	account	the	constraint	that			

• 	Forming	the	Lagrangian:			



Gaussian	Univariate	Distribution		
• 	In	the	case	of	a	single	variable	x,	the	Gaussian	distribution	takes	form:	

which	is	governed	by	two	parameters:	

-  	µ	(mean)	
-  	¾2	(variance)	

•  The	Gaussian	distribution	satisfies:	



Multivariate	Gaussian	Distribution		
• 	For	a	D-dimensional	vector	x,	the	Gaussian	distribution	takes	form:	

and	|§|	denotes	the	determinant	of	§.		

which	is	governed	by	two	parameters:	

-  	µ	is	a	D-dimensional	mean	vector.		
-  	§	is	a	D	by	D	covariance	matrix.			

•  Note	that	the	covariance	matrix	is	a	symmetric	positive	definite	
matrix.				



Central	Limit	Theorem		
• 	The	distribution	of	the	sum	of	N	i.i.d.	random	variables	becomes	
increasingly	Gaussian	as	N	grows.		

• 	Consider	N	variables,	each	of	which	has	a	uniform	distribution	over	the	
interval	[0,1].		

• 	Let	us	look	at	the	distribution	over	the	mean:		

• 	As	N	increases,	the	distribution	tends	towards	a	Gaussian	distribution.			



Moments	of	the	Gaussian	Distribution	
• 	The	expectation	of	x	under	the	Gaussian	distribution:		

The	term	in	z	in	the	factor	(z+µ)	
will	vanish	by	symmetry.		



Moments	of	the	Gaussian	Distribution	
• 	The	second	order	moments	of	the	Gaussian	distribution:		

• 	The	covariance	is	given	by:	

• 	Because	the	parameter	matrix	§	governs	the	covariance	of	x	under	the	
Gaussian	distribution,	it	is	called	the	covariance	matrix.		



Moments	of	the	Gaussian	Distribution	
• 	Contours	of	constant	probability	density:		

Covariance	
matrix	is	of	
general	form.		

Diagonal,	axis-
aligned	covariance	
matrix.	

Spherical	
(proportional	to	
identity)	covariance	
matrix.		



Partitioned	Gaussian	Distribution	
• 	Consider	a	D-dimensional	Gaussian	distribution:	

• 	Let	us	partition	x	into	two	disjoint	subsets	xa	and	xb:	

• 	In	many	situations,	it	will	be	more	convenient	to	work	with	the	
precision	matrix	(inverse	of	the	covariance	matrix):		

• 	Note	that	¤aa	is	not	given	by	the	inverse	of	§aa.	



Conditional	Distribution	
• 	It	turns	out	that	the	conditional	distribution	is	also	a	Gaussian	
distribution:		

Linear	function	
of	xb.	

Covariance	does	not	
depend	on	xb.		



Marginal	Distribution	
• 	It	turns	out	that	the	marginal	distribution	is	also	a	Gaussian	distribution:		

• 	For	a	marginal	distribution,	the	mean	and	covariance	are	most	simply	
expressed	in	terms	of	partitioned	covariance	matrix.			



Conditional	and	Marginal	Distributions	



Maximum	Likelihood	Estimation		
• 	Suppose	we	observed	i.i.d	data	

• 	We	can	construct	the	log-likelihood	function,	which	is	a	function	of	
µ	and	§:	

• 	Note	that	the	likelihood	function	depends	on	the	N	data	points	only	
though	the	following	sums:		

Sufficient	Statistics	



Maximum	Likelihood	Estimation		
• 	To	find	a	maximum	likelihood	estimate	of	the	mean,	we	set	the	
derivative	of	the	log-likelihood	function	to	zero:		

and	solve	to	obtain:	

• 	Similarly,	we	can	find	the	ML	estimate	of	§:	



Maximum	Likelihood	Estimation		
• 	Evaluating	the	expectation	of	the	ML	estimates	under	the	true	
distribution,	we	obtain:		

• 	We	can	correct	the	bias	by	defining	a	different	estimator:		

Unbiased	estimate	

Biased	estimate	

• 	Note	that	the	maximum	likelihood	estimate	of	§	is	biased.		



Student’s	t-Distribution		
• 	Consider	Student’s	t-Distribution			
	
	
	
	
	where	

Infinite	mixture	
of	Gaussians		

Sometimes	called	
the	precision	
parameter.		

Degrees	of	freedom	



Student’s	t-Distribution		

	
	
	
	
	
	

• 	Setting	º	=	1	recovers	Cauchy	distribution			
• 	The	limit	º	!	1		corresponds	to	a	Gaussian	distribution.			



Student’s	t-Distribution		

	
	
	
	
	
	

• 	Robustness	to	outliners:	Gaussian	vs.	t-Distribution.		



Student’s	t-Distribution		

	
	
	
	
	
	

• 	The	multivariate	extension	of	the	t-Distribution:		

where	

• 	Properties:		



Mixture	of	Gaussians	

	
	
	
	
	
	

• 		When	modeling	real-world	data,	Gaussian	assumption	may	not	be	
appropriate.		

Single	Gaussian	 Mixture	of	two	
Gaussians	

• 	Consider	the	following	example:	Old	Faithful	Dataset	



Mixture	of	Gaussians	

	
	
	
	
	
	

• 	We	can	combine	simple	models	into	a	complex	model	by	defining	a	
superposition	of	K	Gaussian	densities	of	the	form:			

Component	

Mixing	coefficient	

K=3 

• 	Note	that	each	Gaussian	component	has	its	own	mean	µk	and	
covariance	§k.	The	parameters	¼k	are	called	mixing	coefficients.		

• 	Mote	generally,	mixture	models	can	comprise	linear	combinations	of	
other	distributions.		



Mixture	of	Gaussians	

	
	
	
	
	
	

• 	Illustration	of	a	mixture	of	3	Gaussians	in	a	2-dimensional	space:		

(a)	Contours	of	constant	density	of	each	of	the	mixture	components,	
along	with	the	mixing	coefficients	

(b)	Contours	of	marginal	probability	density			

(c)	A	surface	plot	of	the	distribution	p(x).		



Maximum	Likelihood	Estimation	

	
	
	
	
	
	

• 	Given	a	dataset	D,	we	can	determine	model	parameters	µk.	§k,	¼k	by	
maximizing	the	log-likelihood	function:		

Log	of	a	sum:	no	closed	form	solution	

• 	Solution:	use	standard,	iterative,	numeric	optimization	methods	or	the	
Expectation	Maximization	algorithm.		



The	Exponential	Family		

	
	
	
	
	
	

• 	The	exponential	family	of	distributions	over	x	is	defined	to	be	a	set	of	
distributions	of	the	form:			

• 	The	function	g(´)	can	be	interpreted	as	the	coefficient	that	ensures	
that	the	distribution	p(x|´)	is	normalized:		

where		
-  	´	is	the	vector	of	natural	parameters		

-  	u(x)	is	the	vector	of	sufficient	statistics	



ML	for	the	Exponential	Family		

	
	
	
	
	
	

• 	Remember	the	Exponential	Family:		

• 	From	the	definition	of	the	normalizer	g(´):		

• 	We	can	take	a	derivative	w.r.t	´:		

• 	Thus		



ML	for	the	Exponential	Family		

	
	
	
	
	
	

• 	Remember	the	Exponential	Family:		

• 	We	can	take	a	derivative	w.r.t	´:		

• 	Thus		

• 		Note	that	the	covariance	of	u(x)	can	be	expressed	in	terms	of	the	
second	derivative	of	g(´),	and	similarly	for	the	higher	moments.		



ML	for	the	Exponential	Family		

	
	
	
	
	
	

• 	Suppose	we	observed	i.i.d	data	

• 	We	can	construct	the	log-likelihood	function,	which	is	a	function	of	
the	natural	parameter	´.		

• 	Therefore	we	have		

Sufficient	Statistic		



End	



Bernoulli	Distribution		

	
	
	
	
	
	

• 	The	Bernoulli	distribution	is	a	member	of	the	exponential	family:		

and	so		

Logistic	sigmoid	

• 	Comparing	with	the	general	form	of	the	exponential	family:	

we	see	that		



Bernoulli	Distribution		

	
	
	
	
	
	• 	The	Bernoulli	distribution	can	therefore	be	written	as:	

where	

• 	The	Bernoulli	distribution	is	a	member	of	the	exponential	family:		



Multinomial	Distribution		

	
	
	
	
	
	

• 	The	Multinomial	distribution	is	a	member	of	the	exponential	family:		

where	

and	
NOTE:	The	parameters	´k	
are	not	independent	since	
the	corresponding	µk	must	
satisfy	

• 	In	some	cases	it	will	be	convenient	to	remove	the	constraint	by	
expressing	the	distribution	over	the	M-1	parameters.		



Multinomial	Distribution		

	
	
	
	
	
	

• 	Let		

• 	This	leads	to:	

and	

Softmax	function		• 	Here	the	parameters	´k	are	independent.			

• 	Note	that:		
and	

• 	The	Multinomial	distribution	is	a	member	of	the	exponential	family:		



Multinomial	Distribution		

	
	
	
	
	
	

• 	The	Multinomial	distribution	can	therefore	be	written	as:		

where	

• 	The	Multinomial	distribution	is	a	member	of	the	exponential	family:		



Gaussian	Distribution		

	
	
	
	
	
	

• 	The	Gaussian	distribution	can	be	written	as:		

where	



ML	for	the	Exponential	Family		

	
	
	
	
	
	

• 	Remember	the	Exponential	Family:		

• 	From	the	definition	of	the	normalizer	g(´):		

• 	We	can	take	a	derivative	w.r.t	´:		

• 	Thus		



ML	for	the	Exponential	Family		

	
	
	
	
	
	

• 	Remember	the	Exponential	Family:		

• 	We	can	take	a	derivative	w.r.t	´:		

• 	Thus		

• 		Note	that	the	covariance	of	u(x)	can	be	expressed	in	terms	of	the	
second	derivative	of	g(´),	and	similarly	for	the	higher	moments.		



ML	for	the	Exponential	Family		

	
	
	
	
	
	

• 	Suppose	we	observed	i.i.d	data	

• 	We	can	construct	the	log-likelihood	function,	which	is	a	function	of	
the	natural	parameter	´.		

• 	Therefore	we	have		

Sufficient	Statistic		


