
Don’t Mesh Around: Side-Channel Attacks
and Mitigations on Mesh Interconnects

Miles Dai∗

MIT
Riccardo Paccagnella∗

UIUC
Miguel Gomez-Garcia

MIT

John McCalpin
TACC

Mengjia Yan
MIT

Abstract
This paper studies microarchitectural side-channel attacks

and mitigations on the on-chip mesh interconnect used in
modern, server-class Intel processors. We find that, though
difficult to exploit, the mesh interconnect can be abused by
an adversary even when known attack vectors inside the cores
and caches are closed. We then present novel, non-invasive
mitigation mechanisms to interconnect side-channel attacks
and offer insights to guide the design of future defenses.

Our analysis starts by thoroughly reverse engineering the
mesh interconnect to reveal, for the first time, the precise
conditions under which it is susceptible to contention. We
show that an attacker can use these conditions to build a cross-
core covert channel with a capacity of over 1.5 Mbps. We
then demonstrate the feasibility of side-channel attacks that
leak keys from vulnerable cryptographic implementations by
monitoring mesh interconnect contention. Finally, we present
an analytical model to quantify the vulnerability levels of
different victim and attacker placements on the chip and use
the results to design a software-only mitigation mechanism.

1 Introduction

Microarchitectural attacks have become an increasingly seri-
ous threat to system security. In a microarchitectural attack,
an attacker infers secrets about a victim program by mon-
itoring the side effects of the victim’s execution on shared
hardware resources. These types of attacks can be used to leak
cryptographic keys [6,30,61,73,75,101,103], browsing activ-
ity [72,83,84], user keystrokes [37,38,56,57,77,78], and other
secret information [35,41,43,98]. Moreover, these attacks can
employ speculative execution to completely bypass memory
isolation and leak arbitrary data [13, 54, 59, 81, 86, 87].

In the past two decades, several hardware resources have
been exploited to mount microarchitectural attacks, including
caches [61, 73, 75, 101], branch predictors [2, 22, 23], and exe-
cution ports [5, 10, 33]. Fortunately, we have also seen more

∗These authors contributed equally to this work.

practical mitigation mechanisms. For example, to block at-
tacks targeting SMT contexts, operating systems can disallow
programs from different security domains from being sched-
uled onto the same CPU cores. Multiple effective mitigations
to block cache side-channel attacks have also been proposed
via spatially partitioning shared caches or flushing cache con-
tent upon context switches [12, 28, 32, 53, 60, 100, 107].

In this paper, we study an on-chip microarchitectural attack
surface that remains open even if all attack vectors in the
cores and caches are closed: the on-chip interconnect. De-
spite active research on microarchitectural security, very few
works [20, 74, 82, 90, 92] have explored attacks and defenses
on the on-chip interconnect. Such an interconnect extends
across the whole chip and is used to connect all on-chip re-
sources, including shared caches, DRAM controllers, and I/O
ports. Specifically, the majority of accesses to the last-level
caches and all accesses to DRAM need to travel through cer-
tain segments of the on-chip interconnect. Given their high
accessibility, on-chip interconnects are likely to become in-
creasingly relevant for microarchitectural security, especially
as attack vectors inside the cores and caches are closed.

1.1 Challenges of Exploiting Mesh Interconnects

In particular, we explore microarchitectural attacks and miti-
gations on the mesh interconnect used in Intel server proces-
sors since 2016 [96]. On these processors, on-chip resources,
including cores, private caches, and LLC slices, are organized
into tiles and placed on the die using a 2-dimensional grid
layout, shown in Figure 1. The mesh interconnect provides a
bidirectional link between each pair of neighboring tiles.

There exist two key challenges to building microarchitec-
tural attacks on the mesh interconnect. First, it is difficult to
contend spatially on a mesh topology. For contention to occur,
the attacker’s and the victim’s traffic flows must overlap on the
interconnect. Server processors with a mesh interconnect con-
tain many cores, providing numerous placement options for
the victim and the attacker. Moreover, the mesh interconnect
is designed to distribute traffic to avoid congestion. Consider-

1

ing the numerous placement options and sparsely-distributed
traffic flows, blindly trying to detect interconnect contention
is ineffective. An effective attacker must carefully consider
the scheduling policies used by the mesh interconnect.

Second, it is difficult to create temporal contention. Tem-
poral contention happens when the attacker’s and the victim’s
traffic use a segment of the interconnect simultaneously. A
memory access that misses in the L2 cache and hits in the LLC
slice of a neighboring tile may spend 50 cycles in the cache
but only 2 to 3 cycles on the interconnect. The probability
for two such memory accesses to contend on the interconnect
is low. Moreover, the extra latency caused by interconnect
contention is small and thus is very sensitive to noise.

Taken together, these challenges require the attacker to have
a thorough understanding of the mesh interconnect protocols.
In fact, we show that uncovering details about the interconnect
is not only essential for attacks, but also useful for mitigations.

1.2 This Paper

In this paper, we answer the following two questions. First,
is it really feasible to construct side-channel attacks by only
exploiting contention on a mesh interconnect? Second, are
there non-invasive approaches that can mitigate interconnect
side channels without requiring hardware modifications?

We start by reverse engineering previously unknown details
about Intel’s mesh interconnect. First, we reverse engineer the
lane scheduling policy on the interconnect. We find that each
segment in the mesh interconnect consists of multiple lanes,
and the lane scheduling policy decides which lane a traffic
flow will use based on the flow’s source and/or destination
tile. Interestingly, the policies for vertical rings and horizontal
rings are completely different. Second, we reverse engineer
the priority arbitration policy used at each tile. We find that
the priority of a traffic flow is determined by its source tile.
The priority information is important since traffic flows with
a high priority cannot be delayed by ones with a low priority
and thus cannot be used to observe interconnect contention.

We use the reverse-engineering results to build covert and
side-channel attacks that exploit mesh interconnect contention.
Our attacks work even if the processor has deployed miti-
gations against a wide range of microarchitectural attacks,
including attacks targeting SMT resources, private and shared
caches, and DRAM. Our covert channel can achieve a capac-
ity of 1.53 Mbps. Our side-channel attack can extract keys
from vulnerable ECDSA and RSA implementations.

Finally, we offer insights into mitigating interconnect side-
channel attacks. Specifically, we find that the victim and at-
tacker placements significantly affect attack efficacy. Impor-
tantly, not all the cores are equally vulnerable. We then design
an analytical model to quantify vulnerability levels and vali-
date this model using our side channel. We use the findings
of our model to guide the design of a non-invasive software-
based mitigation to interconnect side-channel attacks.

Disclosure We disclosed our findings to Intel in Q2’21. Intel
classified our attack as a “traditional side-channel attack”, and
referred to their guidance on software-based mitigations [46].

2 Background

2.1 Cache Architecture

The cache is used to store data and instructions for fast access.
On modern processors, the cache is typically set-associative.
A cache line can reside in any way of a cache set, and the
cache set that a line maps to is determined by its address bits.

Modern Intel processors have two levels of private caches
(L1 and L2), and a shared L3 cache, also called last-level
cache or LLC. The L1 cache is small (e.g., 32-64 KB) and
fast, typically responding within 5 cycles. The L2 cache is
slightly bigger (e.g., 256 KB-1 MB) and has a latency of 10-
20 cycles. Finally, the shared LLC is large (e.g., several to
tens of MBs) and has a latency of 40-60 cycles. The LLC
latency is still much lower than the main memory (DRAM)
access latency, which is on the order of 200-300 cycles.

When a memory access is issued by the core, the L1 cache
is checked to find out if the data is present in the cache. If it
is a hit, the data is sent to the core. If it is a miss, the request
is sent to the L2 cache. Similarly, if the request misses in L2,
it is further sent to the LLC and then to main memory.

LLC Slice Organization The LLC of modern Intel proces-
sors is organized into multiple slices (partitions). In client-
class processors, the number of slices is the same as the num-
ber of cores. In server-class processors, the number of slices
is sometimes greater than the number of cores (as we see in
Section 3). Such an organization is helpful to keep the de-
sign modular and scalable. Intel processors map each memory
address to a particular slice ID using a proprietary mapping
function that is designed to keep the distribution of cache lines
among slices as uniform as possible [43,44,48,50,64,67,102].

Cache Inclusiveness The LLC can be inclusive, exclusive,
or non-inclusive. In an inclusive LLC, cache lines in the L2
caches are also present in the LLC. In an exclusive LLC, a
cache line is never present in both the L2 caches and the LLC.
In a non-inclusive LLC, a cache line in the L2 caches may or
may not be present in the LLC.

2.2 On-chip Interconnect

On multi-core processors, an on-chip interconnect connects
physical cores, shared caches, and memory controllers. Since
the late 2000s, Intel has used a ring interconnect architecture,
known as a ring bus. However, rising core counts on Intel’s
high-end processors revealed scalability issues which led In-
tel to develop the mesh interconnect. This interconnect first
appeared in the Knights Landing microarchitecture in 2016
and has since been used by all Intel processors in the Xeon
Scalable server series and the high-end Core X-series [96].

2

IMC
Tile

IMC
Tile

Core
Tile

CPU Core
L1/L2 caches

LLC slice
directory slice

CHA

Ring Stop
(Router)

(a) Mesh Layout (b) Core Tile

Figure 1: Intel mesh interconnect architecture.

Mesh Topology The interconnect topology determines the
physical layout and connections between hardware modules.
We call each hardware module a tile. Intel’s mesh intercon-
nect topology, shown in Figure 1(a), organizes tiles into a
2-dimensional array and forms a grid. Each tile is directly
connected to its immediate neighbors [47, 96].

Tile Types Relevant to this paper are two types of tiles:
Core tiles and IMC tiles [96]. As shown in Figure 1(b), a Core
tile incorporates a CPU core (including L1 and L2), an LLC
slice, and a ring stop. The LLC slice includes the data, direc-
tory (snoop filter), and a control unit called the Caching/Home
Agent (CHA), used to maintain cache coherency between tiles.
The ring stop is responsible for injecting, forwarding, and re-
ceiving traffic to/from the interconnect. It is also referred to as
a node router or ring station [74]. An IMC tile includes a ring
stop and an integrated memory controller that is connected to
off-chip DRAM modules. Cascade Lake processors have two
IMC tiles placed symmetrically on the border of the grid.

2.3 Microarchitectural Side Channels

A microarchitectural side channel involves a transmitter in the
victim’s security domain and a receiver in the attacker’s se-
curity domain stealthily communicating with each other. The
medium of the communication channel is some microarchitec-
tural structures whose states and occupancy can be modified
by the transmitter and the receiver’s activities. Similar to prior
work [33, 74], we classify microarchitectural side channels
into two groups based on the type of resource they exploit:
eviction-based attacks and contention-based attacks.

Eviction-based attacks (also called “stateful”) focus on
microarchitectural resources that hold shared states, such as
caches [1,3,6,17,19,30,37–40,49,52,58,61,65,69,72,73,75,
80,83,84,101,105,106], TLBs [34], DRAM row buffers [77],
and Branch Target Buffers (BTB) [2, 22, 23]. An eviction-
based attack generally involves three steps. First, the receiver
executes and brings a shared microarchitectural structure into
a known state. Second, the transmitter is triggered to modify
the shared state based on some secret value. Third, the receiver
probes the structure to learn the modified state and infer the

secret. The classical cache attacks such as Flush+Reload [101]
and Prime+Probe [73, 75] follow the three steps above.

Contention-based attacks (also called “stateless”) exploit
the finite bandwidth capacity of a resource that is shared
by multiple programs. Such resources include functional
units [4,93], cache banks [103], execution ports [5,10,33], the
memory bus [97], random number generators [21], the on-chip
interconnect [74], and the off-chip interconnect [51]. When
multiple parties concurrently use such a resource, delays oc-
cur which might result in information leaks. In a contention-
based attack, information leakage happens only during the
time when the victim is utilizing the shared resource, in con-
trast to an eviction-based attack, where the attacker and the
victim do not need to simultaneously use the shared resource.

3 Target Architecture and Tile Layout

In this section, we describe some basic architectural param-
eters of the Intel Xeon Scalable Family Processors on the
Purley platform launched in 2017, which implement the mesh
interconnect. These parameters include the cache configura-
tions, the tile layout, and the tile mapping which are necessary
to reverse engineer the mesh interconnect in Section 6 and
carry out the attacks in Sections 7 and 8. Throughout the
paper, we run our experiments on a 24-core Intel Xeon Gold
5220R (Cascade Lake) processor running Ubuntu 18.04.

Cache Configurations Our processor features three levels
of caches. The L1 is 32 KB with 64 sets and 8 ways. The L2
is 1 MB with 1024 sets and 16 ways. Each LLC slice is 1.375
MB with 2048 sets and 11 ways. Importantly, the shared LLC
is non-inclusive. To generate interconnect traffic between two
given tiles, we need to generate cache accesses that miss in
the private caches and hit in a specific LLC slice. We describe
how to do this with a non-inclusive LLC in Section 5.1.

Tile Layout Intel Cascade Lake processors come with three
different die configurations, namely, LCC (low core count),
HCC (high core count), and XCC (extreme core count). We
focus our analysis on the XCC configuration, which consists
of 30 tiles, organized into a 5×6 grid, shown in Figure 2.

Prior work [42, 55, 68] provides multiple approaches to re-
verse engineer the tile layout. We used an approach similar to
the one from McCalpin [68], that we describe in Appendix B.

Figure 2 shows the results of our reverse engineering. We
label each tile using a 2D coordinate (x,y), where x indicates
the row number and y indicates the column number. For ex-
ample, tile (0,0) is at the top left corner of the chip.

In this processor, there are two IMC tiles, located symmet-
rically at (1,0) and (1,5). The remaining 28 tiles are all Core
tiles. Two Core tiles, (3,3) and (4,2), are completely disabled
(black), and another two tiles, (4,0) and (4,5), are partially
disabled (yellow). In a partially disabled Core tile, the LLC
slice, directory slice, and CHA are enabled while the core and

3

(0, 0)

cpu 0
slice 0

(0, 1)

cpu 1
slice 4

(0, 2)

cpu 15
slice 9

(0, 3)

cpu 16
slice 13

(0, 4)

cpu 17
slice 17

(0, 5)

cpu 12
slice 22

(1, 0)

IMC 0

(1, 1)

cpu 14
slice 5

(1, 2)

cpu 9
slice 10

(1, 3)

cpu 10
slice 14

(1, 4)

cpu 11
slice 18

(1, 5)

IMC 1

(2, 0)

cpu 13
slice 1

(2, 1)

cpu 8
slice 6

(2, 2)

cpu 20
slice 11

(2, 3)

cpu 21
slice 15

(2, 4)

cpu 22
slice 19

(2, 5)

cpu 23
slice 23

(3, 0)

cpu 7
slice 2

(3, 1)

cpu 19
slice 7

(3, 2)

cpu 3
slice 12

(3, 3)

X

(3, 4)

cpu 5
slice 20

(3, 5)

cpu 6
slice 24

(4, 0)

slice 3

(4, 1)

cpu 2
slice 8

(4, 2)

X

(4, 3)

cpu 4
slice 16

(4, 4)

cpu 18
slice 21

(4, 5)

slice 25

Figure 2: An example tile layout of an Intel Cascade Lake
processor with 24 active cores and 26 active LLC slices.

private caches are disabled. As a result, our processor has 24
active cores and 26 active LLC slices.

The position of the disabled tiles may vary between chips of
the same model [68]. For example, we found that on another
chip with the same processor model, the completely disabled
tiles are located at (3,1) and (4,5) and the partially disabled
ones at (4,0) and (3,5). We describe how this variability can
be accounted for by an attacker in Appendix B.

Tile Mapping To reverse engineer the mesh interconnect
protocols, we also need to know 1) which tile a given CPU
ID maps to, and 2) which tile a given LLC slice ID maps to.
The CPU ID is used by the operating system (OS). Since our
24-core processor has hyper-threading (SMT) enabled, the
OS sees 48 logical CPUs. CPU c and CPU c+24 always map
to the same tile. The LLC slice ID is kept internally by the
hardware and is referred to as the CHA ID by Intel.

Our approach to inferring the tile mapping information is
similar to the one from McCalpin [68] and is described in
Appendix B. Figure 2 shows the two mapping relationships
we found using such an approach on our processor. For clarity,
we use the 2D coordinates to refer to tiles, CPU IDs, and
LLC slices in the remainder of this paper. The reader can use
Figure 2 to figure out CPU and slice IDs if needed.

To generate and monitor traffic between two tiles (x0,y0)
and (x1,y1), we pin a process to Core (x0,y0) and make it per-
form cache accesses to LLC slice (x1,y1). For conciseness, we
use the following format to describe the above configuration:

Core(x0,y0)↔ Slice(x1,y1)

The bidirectional arrow represents the multiple traffic flows
in both directions, which we explain in Section 6.

4 Threat Model

Like prior work, we assume that the victim and the attacker
are co-located on the same machine and run on the same

processor. They belong to different security domains, do not
share memory [89, 108], and can run on different processes
or virtual machines. We assume a restrictive scenario where
the system has adopted effective defense mechanisms against
known on-chip side-channel attacks. For example, the system
may disallow software from different security domains from
concurrently running on the same core [7, 16, 63] and adopt
LLC partitioning to prevent cross-core cache attacks [12, 60,
85].1 Assuming the presence of such mechanisms allows us
to study the microarchitectural attack surface beyond known
on-chip side-channel attacks. Indeed, the goal is to highlight
that even if known on-chip side channels are mitigated, we
are still vulnerable to interconnect side-channel attacks.

In the cross-process setup, we consider an attacker who is
able to choose its placement (which core to execute on) using
the set-affinity command. When targeting cryptographic
implementations, we also make the standard assumption that
the attacker knows the code of the victim as most crypto-
graphic libraries are open source. Finally, we assume that
the attacker can observe multiple victim executions to leak
multiple bits of the key and increase the efficacy of the attack.

5 Designing Receivers and Transmitters

In this section, we describe the design of the receiver and the
transmitter that we use to reverse engineer the mesh intercon-
nect (Section 6) and mount our attacks (Sections 7 and 8).

5.1 Designing the Receiver

The goal of the receiver is to detect contention on the mesh
interconnect. Since interconnect contention can be small (a
few cycles per load), it is important for the receiver to make
accurate and reliable measurements.

Baseline Receiver The receiver monitors the interconnect
by pinning itself to a given core and accessing addresses that
map to a given LLC slice. These accesses will travel through
the mesh interconnect and may be delayed by interconnect
contention from other applications. The receiver can then time
these accesses to determine whether contention happened.

To generate reliable accesses to a given LLC slice, the re-
ceiver’s accesses need to miss in the L2 and hit in the LLC
while avoiding L2 hits and DRAM accesses. To this end,
we use two sets of addresses called a monitoring set and
an eviction set (EV). The monitoring set monitors traffic be-
tween a remote LLC slice and the receiver’s core, and the
EV evicts the monitoring set from the L2 cache to the LLC.
The addresses in the monitoring set are mapped to the target
LLC slice and to one or more L2 sets. The addresses in the
EV are mapped to the receiver’s local LLC slice (to avoid

1This is partially possible on today’s processors using Intel CAT, which
allows the creation of way-based partitions [70]. Additionally, mechanisms
that partition cache directories (to block [99]) have been proposed in the
literature [11, 15, 100] and may be deployed in future hardware.

4

generating unnecessary interconnect traffic) and to the same
L2 set(s) as the monitoring-set addresses. We can obtain ad-
dresses that map to the desired L2 set and LLC slice using
prior approaches [74, 102], discussed in Appendix A.

The receiver works in three steps:

1. Preparation: The receiver accesses the addresses in the
monitoring set, bringing them into the L2 cache of the
receiver’s core. Since the LLC is non-inclusive, these
addresses may not be present in the LLC.

2. Eviction: The receiver accesses the addresses in the EV
multiple times to evict the addresses in the monitoring set
from the L2 cache of the receiver’s core. Any addresses
in the monitoring set that were not in the LLC will be
written back to the corresponding LLC slice [99].

3. Measurement: The receiver accesses the addresses in
the monitoring set and times the latency of each access
using rdtsc. This latency includes the time for the ac-
cesses to travel through the interconnect. Note that this
step collects multiple latency samples. The number of
samples is determined by the size of the monitoring set.

The last two steps (Eviction and Measurement) can be re-
peated to collect more latency samples.

Tuning the Receiver We tune the following knobs to find
the receiver configuration that gives the most reliable mea-
surements: 1) monitoring set size, 2) EV size, and 3) number
of times we access the EV during the Eviction step.

The monitoring set contains addresses that map to multiple
L2 sets and multiple addresses mapped to each L2 set. We de-
note the number of L2 sets as NL2 and the number of addresses
mapped to each L2 set as WL2. The size of the monitoring set
is NL2×WL2. Using a larger monitoring set allows for more
consecutive latency samples in the Measurement step (step 3
above), leading to a larger consecutive monitoring window.
However, constructing a larger monitoring set takes longer
and also requires constructing NL2 eviction sets.

We adjust NL2 and WL2 to tailor the transmitter and receiver
to different tasks. In the reverse engineering of Section 6, we
set NL2 = 1 to reduce the time spent creating the monitoring
set. We set WL2 = 16. Recall that each LLC slice has 11 ways
but has twice as many sets as the L2 cache. Thus, 22 addresses
per L2 set could ideally fit in an LLC slice. In practice, we
found that 16 addresses per L2 set works more reliably. When
measuring the receiver’s temporal resolution (Section 7) and
executing side-channel attacks (Section 8), we set NL2 = 32 to
have a large consecutive monitoring window. For the covert-
channel (Section 7), we also design a version of the receiver
that has an infinite monitoring window and does not require
eviction-set accesses, at the cost of a lower sampling density.

Finally, we consider the EV size and the number of times to
access the EV. The goal of the EV is to evict all the monitoring
set addresses from the L2 cache to the LLC. Through experi-
mentation, we found that accessing an EV with 16 addresses
per L2 set 4 times can achieve 100% eviction rate.

0 5 10 15 20 25
Addresses per L2 Set per EV

0

1

2

3

La
te

nc
y

In
cr

ea
se

 (c
yc

le
s)

1 L2 set
2 L2 sets, same parity
2 L2 sets, diff parity

Figure 3: Increased access latency of the receiver for different
transmitter configurations.

5.2 Designing the Transmitter

The goal of the transmitter is to reliably generate contention
on the interconnect. To this end, it must satisfy the follow-
ing requirements. First, the transmitter’s traffic should incur
high contention to help distinguish different levels of con-
tention. Second, the traffic should be reliable, introducing low
variance in the receiver’s signal. Third, the transmitter should
generate as few coherence transactions as possible to facilitate
analyzing the traffic patterns.

Baseline Transmitter The baseline transmitter configura-
tion resembles that of the receiver in Section 5.1. The trans-
mitter uses 2 eviction sets: a target EV that maps to a given
target LLC slice and a local EV that maps to the local LLC
slice. The two EVs map to the same L2 sets and can evict
each other from the L2 to their LLC slices. The transmitter al-
ternately accesses the two EVs to generate traffic to the target
LLC slice. The local EV only generates local traffic and does
not use the interconnect, simplifying our reverse-engineering
process. When addresses in each EV are mapped to multiple
L2 sets, the accesses to the different L2 sets are interleaved.

Tuning Transmitter Configurations We adjust the follow-
ing to find the best transmitter configuration: 1) the number of
L2 sets that are mapped to by addresses within each EV, and 2)
the number of addresses that map to each of those L2 sets. To
compare configurations, we use the receiver from Section 5.1
to monitor the transmitter’s traffic and measure the increase
in average latency when the transmitter is on. The receiver
monitors on Core(0,3)↔ Slice(0,2), and the transmitter gen-
erates traffic on Core(0,5)↔ Slice(0,1). This configuration
was found experimentally to exhibit interconnect contention.

Figure 3 shows the receiver’s observation when using dif-
ferent transmitter configurations. A larger latency increase
suggests that the transmitter introduced more contention.

Regarding the number of addresses per L2 set, we see that
when the number of addresses per L2 set is 8 or lower, the
latency difference is zero. Since the L2 associativity is 16,
the transmitter is unable to generate LLC hits when both the
local and target EVs have 8 or fewer addresses. Thus, no
interconnect traffic is generated. When there are between 9
and 22 addresses per L2 set, the latency difference increases,
indicating that the transmitter generates increasing levels of

5

contention. Above 22 addresses per L2 set, the difference
decreases as the transmitter experiences LLC misses. The
loads are served from DRAM, slowing down the transmitter.

Regarding the number of L2 sets used by each EV, we
observe that when the transmitter uses two L2 sets instead
of one, the receiver observes higher contention. For example,
when the transmitter uses two L2 sets and 15 addresses per
L2 set, the receiver observes a 2.1-cycle average difference,
which is nearly twice the 1.1-cycle average difference when
using a single L2 set. Further increasing the number of L2
sets to 3 or above had negligible impact.

We also found that the parity of the set indices of the two L2
sets has an impact on the receiver’s observation. Specifically,
when the two sets have both even or both odd set numbers
(same parity), the latency difference saturates when the num-
ber of addresses per L2 set reaches 15. However, when the
parities of the two sets are different, the average latency dif-
ference keeps increasing and can reach as high as 3.28 cycles.

Optimal Transmitter Configuration Considering all the
above factors, we pick the following transmitter configuration
since it generates high contention and shows high reliability.

• The addresses in each EV map to two L2 sets.
• The two L2 set indices have different parities.
• The number of addresses per L2 set is 20.

6 Reverse Engineering the Mesh Interconnect

In this section, we use the transmitter and the receiver from
Section 5 to reverse engineer the characteristics of Intel’s
mesh interconnect. In particular, we determine the precise
conditions necessary for contention to occur. For both the
covert channel (Section 7) and the side-channel attack (Sec-
tion 8), these findings inform the optimal receiver placement
to leak data with a low error rate and high bandwidth.

Overview Intel’s mesh interconnect is implemented as a
2-dimensional array of ring interconnects [62, 96]. Traffic
on this array follows a Y-X routing policy, meaning that it
always travels vertically first and then horizontally [68, 96].
When changing direction, the traffic must jump from a vertical
ring to a horizontal ring. Each ring is made of 4 functionally-
separate rings: 1) a request ring, also known as address ring,
2) a data ring, also known as block ring, 3) an acknowledge
ring, and 4) an invalidate ring, also known as snoop ring [47].

Intuitively, contention on the mesh interconnect happens
when two memory accesses use the same physical ring, in the
same direction, and on overlapping segments. However, this
is not sufficient to guarantee observable contention. Determin-
ing the precise necessary conditions requires answering the
following three questions. First, what traffic flows and rings
are used by different memory transactions? Second, what
is the scheduling policy that allocates these traffic flows to
physical lanes? Prior work [74] found that Intel’s ring inter-
connects use a multi-lane organization, but the policy on our

0 1 2 3 4 5

0
1

2
3

4
5

So
ur

ce
 C

or
e

C
ol

um
n

In
de

x

Destination Slice
Column Index

0 1 2 3 4

0
1

2
3

4

So
ur

ce
 C

or
e

R
ow

 In
de

x

Destination Slice
Row Index

(a) Horizontal Ring (b) Vertical Ring

Figure 4: Lane scheduling policy for Core→Slice traffic on
horizontal rings and vertical rings. Black and white squares
indicate different lanes. For each pair of source and destina-
tion tiles, the Slice→Core traffic uses the opposite lane.

processor is different from that of a 1-dimensional ring inter-
connect. Finally, what is the arbitration policy that determines
the priority between multiple in-flight traffic flows?

In this section, we answer all three questions. Note that all
the reverse engineering experiments in this section are carried
out with hardware prefetchers disabled [45]. The prefetchers
are enabled to model a realistic setup when we perform the
covert channel and side-channel attacks.

6.1 Traffic Flows

We first figure out which rings are used by different traffic
flows using Intel performance counters (or PMON counters).

We run the transmitter (from Section 5.2) and configure the
PMON counters to measure the number of cycles that each
ring is used for at each ring stop.2 These numbers reveal the
precise rings and segments of the mesh interconnect that are
used by the transmitter.

On running the transmitter, we observed traffic flows from
the core to the LLC slice on the request ring and the data ring.
Traffic was also observed going from the LLC slice to the
core on the data ring and the acknowledge ring. According to
our analysis, the data traffic flow from core to slice is due to
writeback data. On a non-inclusive cache, when an L2 line is
replaced, the data needs to be written back to the LLC [99].

6.2 Lane Scheduling Policy

Prior work discovered that each of the request, data, and ac-
knowledge rings features two physical “lanes” [74]. Intel’s
Uncore PMON guide for our processor [47] confirms the ex-
istence of such lanes and refers to them as “odd/even rings”.
The guide also describes PMON counter unit masks that can
monitor traffic on the two lanes of each ring separately which
we use to reverse engineer the lane scheduling policy. Specifi-
cally, we run our transmitter and use the PMON counters to
identify the lanes used by various transmitter placements.

2This is done using the “In Use RING Events”. For example, the horizon-
tal acknowledge ring can be monitored with HORZ_RING_AK_IN_USE [47].

6

Ea
st

 O
ut

pu
t P

or
ts

from
west

from
north

from
south

from
core

from LLC
slice

North Output Ports

from
south

from
core

from LLC
slice

(a) Horizontal Ring (a) Vertical Ring

traffic from
local core and slice

traffic from
a different ring

traffic on
the same ring > >1 2 3

2 2

22

1

1

3

3

Figure 5: Priority arbitration policy for different traffic flows.

We find that the lane scheduling policy is a static policy
that is determined by the source and/or the destination of a
given traffic flow. The scheduling policy on the horizontal
rings and the vertical rings are independent from each other.

Traffic From a Core to an LLC Slice Figure 4 summarizes
the scheduling policy, where black and white indicate differ-
ent lanes. Figure 4(a) shows the lane scheduling policy for
horizontal rings. Each row is a column index for the source
core and each column is a column index for the destination
slice. The horizontal lane policy is destination-based. If the
destination slice of a traffic flow is on column 0, 2, or 4, the
white lane is used. Otherwise, the black lane is used.

Figure 4(b) shows the lane scheduling policy for vertical
rings. The vertical lane policy is source-based except for 4
special cases. If the source core is on row 0, 2, or 4, the black
lane is used; otherwise, the white lane is used. The 4 special
cases are Core(0,∗)→Slice(1,∗), Core(2,∗)→Slice(1,∗),
Core(2,∗)→Slice(3,∗), Core(4,∗)→Slice(3,∗). Since the
mesh interconnect of our processor has an odd number of
rows (5 rows), we believe these 4 special cases were intro-
duced by hardware designers to distribute the traffic served
by each link more evenly between the two lanes.

We verified that all horizontal rings use the same lane
scheduling policy, including the ones with disabled tiles and
the one with IMC tiles. The same applies to the vertical rings.

Traffic From an LLC Slice to a Core For each pair of
source and destination tiles in Figure 4, the traffic from a slice
to a core uses the opposite lane of the traffic from a core to
a slice. For example, Figure 4(a) indicates that traffic from
Core(∗,0)→Slice(∗,1) uses the black lane. This means that
traffic from Slice(∗,0)→Core(∗,1) uses the white lane.

6.3 Priority Arbitration Policy

The last missing piece required to fully understand the con-
ditions for observable contention to occur on the mesh in-
terconnect is the priority arbitration policy. The priority of
different traffic flows is important because a flow with high
priority cannot be delayed by a flow with low priority, leading

(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

(0
,0

)
(0

,1
)

(0
,2

)
(0

,3
)

(0
,4

)
(0

,5
)

Tr
an

sm
itt

er
 C

or
e

Transmitter Slice

4
cycles

0
cycle

In
cr

ea
se

d
La

te
nc

y

5-10
cycles(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

(0
,0

)
(0

,1
)

(0
,2

)
(0

,3
)

(0
,4

)
(0

,5
)

Tr
an

sm
itt

er
 C

or
e

Transmitter Slice

(a) Receiver monitors
Core(0,2) Slice(0,3)

(b) Receiver monitors
Core(0,0) Slice(0,5)

Figure 6: Observed increased access latency by the receiver
when (a) the receiver monitors Core(0,2)↔ Slice(0,3) and
(b) the receiver monitors Core(0,0)↔ Slice(0,5).

to unobservable contention. To reverse engineer the priority
arbitration policy, we use the transmitter and receiver from
Section 5 and place them on different cores and slices.

To compare the priority of two traffic flows, we pick a trans-
mitter placement (“A”), and a receiver placement (“B”) such
that the receiver can observe contention from the transmitter.
To simplify our analysis, A and B are selected such that the
transmitter and the receiver contend on exactly one ring. We
then swap the placements. If the contention is still observable,
then the traffic flows for A and B have the same priority. If
the receiver can no longer observe contention, then the traffic
flow for A has a higher priority than the flow for B.

Figure 5 shows the results, where we rank the priority of
different traffic flows (with 1 being the highest priority).
When using the horizontal rings (Figure 5(a)), traffic already
on the ring has the highest priority; traffic from the local core
and slice takes second priority; traffic from the vertical rings
has the lowest priority. Figure 5(b) shows the priority on the
vertical rings. Once again, traffic already on the ring has a
higher priority than the traffic injected from the local core or
slice. Due to the Y-X routing policy, there is no traffic flow
that switches from a horizontal ring to a vertical ring.

6.4 Case Studies of Timing Measurement

We performed a comprehensive timing analysis of the lane
scheduling policy and the priority arbitration policy by run-
ning the transmitter and the receiver (Section 5) on all possible
combinations of cores and slices. In this section, we show two
case studies of the horizontal ring on Row 0 and demonstrate
that the reverse-engineering results play an important role in
designing effective covert channel and side-channel attacks.

A Case Study for the Lane Scheduling Policy In the case
study shown in Figure 6(a), the receiver monitors Core(0,2)
↔ Slice(0,3). The transmitter placement is varied by trying
all pairs of cores and slices. Each row indicates the transmit-
ter’s core, and each column indicates the transmitter’s LLC
slice. The row for Core(0,2) is empty since we do not pin the
transmitter and receiver to the same core, which would cause
contention on pipeline and private cache structures.

7

First, we observe high contention (5-10 extra cycles per
load) on the Slice(0,3) column and the Core(0,3) row. In the
column for Slice(0,3), the transmitter’s target EV shares a
slice with the receiver’s monitoring set, and in the row for
Core(0,3), the transmitter’s local EV shares a slice with the
receiver’s monitoring set. In both cases, the high contention
is caused by LLC slice port contention.3

Second, there are 5 transmitter placements that cause in-
terconnect contention with the receiver’s traffic, resulting in
delays of 1-5 cycles per load. The transmitter’s and receiver’s
traffic contend only if they use the same lane and ring on
overlapping segments and travel in the same direction. For
example, when the transmitter uses Core(0,1)↔ Slice(0,4),
its traffic overlaps with the receiver’s traffic on the east-to-
west direction of the request ring and on the west-to-east
direction of the data and acknowledge rings. However, Fig-
ure 4 shows that the receiver uses the black lane of the request,
data, and acknowledge rings, while the transmitter uses the
white lane of the same rings, so no contention is observed.

The case study also shows that our receiver is able to ob-
serve different levels of contention. Contention on multiple
rings can lead to a larger delay. For example, when the trans-
mitter uses Core(0,0) ↔ Slice(0,5) (the top right cell in
Figure 6(a)), the transmitter and the receiver contend on three
rings—the request, data, and acknowledge rings. We see a
delay of 1-2 extra cycles compared to the other transmitter
placement where contention only happens on 1 or 2 rings.

A Case Study for the Priority Arbitration Policy We
show another case study where the receiver monitors
Core(0,0)↔ Slice(0,5). We vary the transmitter placement
in the same way as in the previous case study. Similarly, we
observe high contention when the transmitter uses Core (0,5)
and when the transmitter uses Slice (0,5) from slice port
contention. However, we do not observe any interconnect con-
tention despite the receiver monitoring all segments on Row
0 since the traffic injected by the receiver from Tile (0,0) and
Tile (0,5) has priority over the traffic injected by the transmit-
ter from the other tiles (Figure 5). Therefore, the receiver’s
traffic is never delayed due to interconnect contention.

7 Interconnect Covert Channel Attacks

In this section, we use the results from Section 6 to build a
cross-core covert channel on the mesh interconnect.

Our attack builds on the receiver and transmitter from Sec-
tion 5. The transmitter generates traffic to send a bit “1” and
remains idle to send a bit “0”. We use the version of our re-
ceiver optimized for continuous monitoring at the cost of a
lower sampling density. In particular, we keep NL2 = 1 but set
WL2 = 24 for the monitoring set. Because 24 exceeds the L2
associativity, accessing new monitoring set addresses evicts

3We make the transmitter and the receiver access different LLC sets to
ensure that we do not introduce any cache line conflicts and LLC misses.

0 5000 10000 15000 20000 25000 30000
Time (cycles)

75

100

125

La
te

nc
y

(c
yc

le
s)

Figure 7: Trace collected by the receiver when the transmit-
ter sends alternating 0s and 1s, with the receiver placement
Core(3,1)↔ Slice(2,1) and sender placement Core(4,1)↔
Slice(1,1), using a transmission interval of 3000 cycles.

1 2 3 4 5 6 7 8
Raw bandwidth (Mbps)

0.5

1.0

1.5

Ca
pa

cit
y

(M
bp

s) Error probability
Capacity

0.0

0.1

0.2

0.3

Er
ro

r p
ro

ba
bi

lit
y

Figure 8: Covert channel capacity and error probability with
decreasing interval size (mean across 5 runs).

previously-accessed addresses from the L2 into the LLC. This
removes the need to access a separate eviction set, allowing
for more evenly-spaced measurements. In practice, this self-
eviction method results in some private cache hits, so we
measure four concurrent loads. The measured latency is the
maximum latency of any of the four loads which significantly
increases the probability of measuring an LLC hit.

Figure 7 shows an example trace when placing the transmit-
ter on Core(4,1)↔ Slice(1,1) and the receiver on Core(3,1)
↔ Slice(2,1), and the transmitter sends an alternating se-
quence of 1s and 0s with an interval of 3000 cycles. Every
other interval contains high latency measurements caused by
the transmitter’s traffic delaying the receiver’s measurements
and should be decoded as bit “1”. The intervals with low
latency measurements should be decoded as bit “0”.

In this setup, the transmitter and the receiver run on differ-
ent cores and load from different slices. Hence, they do not
share any cache structures (sets, directories, or slice ports).
This implies that our covert channel works due to contention
on the mesh interconnect only.

Covert Channel Capacity To evaluate the performance of
our covert channel, we compute the channel capacity metric,
which accounts for both the raw bandwidth and the error
probability [71, 74, 77]. Specifically, we vary the interval
size and track the error probability over a transmission of
100,000 random bits. We perform each experiment 5 times
and show the results in Figure 8. We achieve a maximum
average channel capacity of 1.53 Mbps (σ = 0.04) with an
interval size of 488 cycles. This capacity is in the same order
of magnitude as prior interconnect covert channels [74].

Cross-VM Setup We also build a proof-of-concept where
the transmitter and the receiver run on separate virtual ma-

8

0 50 100 150 200
Latency sample ID

57.5

60.0

62.5

Lo
ad

 la
te

nc
y

(c
yc

le
s)

Figure 9: Temporal resolution trace with the transmitter using
16 accesses. For clarity, this plot is averaged across 300 traces.

chines (VMs). We spawn two VMs using QEMU/KVM and
pin the transmitter VM to Core (4,1) and the receiver VM to
Core (3,1). We use the algorithm described by Yan et al. [99]
to construct monitoring and eviction sets and rely on timing
measurements to determine the mapping of sets to LLC slices.
The receiver targets slices near (2,1) while the transmitter
targets slices near (1,1). We mounted the attack successfully
with an interval of 1000 cycles and observed a 12.5% aver-
age error rate across 4 runs. This corresponds to an average
channel capacity of 1.00 Mbps (σ = 0.04), confirming the
feasibility of interconnect cross-VM covert channels.

Running the attack in a real cloud environment also re-
quires two additional steps: 1) the transmitter and receiver
need to infer the mesh topology and the ID of the physical
core where they are running; and 2) the transmitter and the
receiver need to perform an agreement phase where they syn-
chronize with each other. We discuss how to perform the first
step in Appendix B. For the second step, our VM configura-
tion allowed for synchronization via the wall clock, but on
machines where this is not possible, existing synchronization
protocols based on preambles may be used (e.g., [66]).

Temporal Resolution We now measure the temporal resolu-
tion of the interconnect channel by configuring the transmitter
to spin for 10,000 cycles, issue k LLC loads, and then spin
again for 10,000 cycles. We then plot the latency samples
collected by the receiver during this time. We use NL2 = 32
and WL2 = 16 as our receiver configuration to give us a long
enough monitoring window without EV accesses. If we see a
spike in the plot for a given k (e.g., Figure 9), then we say that
the temporal resolution of the mesh interconnect side channel
is at least k loads. The lower k is, the more fine-grained the
resolution is. We find that using the same placements of the
covert channels above, we reliably observe a contention peak
when k ≥ 7. This resolution is coarser grained than that of
traditional cache attacks, which can detect single memory
accesses. However, as we will show in Section 8, it is still
fine-grained enough to detect secret-dependent LLC loads
performed by vulnerable ECDSA/RSA implementations.

8 Interconnect Side-Channel Attacks

We now demonstrate that interconnect side-channel attacks
can be used to leak keys from vulnerable cryptographic imple-
mentations. We start by describing the basic idea and setup of

Algorithm 1: Secret-dependent victim behavior.
1 for bit b in secret key do
2 Func1();
3 if b == 1 then
4 Func2();

Table 1: Execution time (in cycles) of Func1 and Func2 in
the fast implementations of ECDSA and RSA.

Func1 Func1 Func2
(miss in L2) (hit in L2) (miss in L2)

ECDSA 17,000 – 18,000 9,050 15,000 – 16,000
RSA 4,000 – 4,100 3,500 3,900 – 4,000

the attack, followed by examples of attacking fast implemen-
tations of ECDSA and RSA. We find that the placements of
the victim and the attacker play a critical role in the efficacy of
the attack. We then design an analytical model to thoroughly
analyze all the placements in Section 8.5.

8.1 Victim Setup

Our attack targets fast (insecure) implementations of two cryp-
tographic victims, ECDSA and RSA. These implementations
use the code pattern shown in Algorithm 1, which has been
targeted in several prior works on microarchitectural side-
channel attacks [9, 33, 34, 61, 74–76, 99, 101, 105].

The code iterates over every bit in the secret key and calls
two functions based on the secret bit. If the secret bit is 0, only
Func1 executes; otherwise, both Func1 and Func2 execute.
Therefore, an attacker can infer the secret bit used in each
iteration by monitoring whether or not Func2 is executed.

We use the victim implementations from the libgcrypt li-
brary [31]. Specifically, we target the fast implementations4

of 1) scalar point multiplication (_gcry_mpi_ec_mul_point)
used in ECDSA during signature generation5 and 2) modular
exponentiation (_gcry_mpi_powm) used in RSA during de-
cryption. We measure the execution time for the 2 functions
in ECDSA and RSA for the cases when the function hits and
misses in the private caches, shown in Table 1. The attacker
can obtain this information by profiling the victim application
offline. This information is useful when we try to align the
latency traces with the victim’s execution during the attack.

8.2 Attacker Setup

The attack works as follows. Given a victim placement, the
attacker first analyzes the victim’s traffic flows, considering

4These fast implementations were used in versions 1.6.3 and 1.5.2, re-
spectively. Newer versions, by default, use secure (slower) implementations.

5The target function is used to multiply the secret nonce with the group
generator. An attacker who learns the nonce can use it to recover the secret
key. Our victim runs code from the pubkey.c test of libgcrypt, which uses
the curve Ed25519 and generates the 256-bit long nonce deterministically.

9

that the victim’s memory accesses are generally uniformly
distributed across all LLC slices due to the slice hash func-
tion’s design. Second, the attacker picks an optimal placement
to maximize the observable contention. This placement can
be found using the analytical model described in Section 8.5.
Next, the attacker triggers the victim to execute and starts col-
lecting latency sample traces. The attacker uses the receiver
configuration that can achieve a large consecutive monitor-
ing window (Section 5.1). Specifically, the attacker uses a
monitoring set with 32 L2 sets (NL2 = 32) and 16 addresses
mapped to each L2 set (WL2 = 16). Thus, the attacker can
collect 512 consecutive latency samples. Since it takes around
105 cycles to collect and save each sample, the 512 consecu-
tive samples cover more than 50,000 cycles, enough for one
iteration of Algorithm 1 in ECDSA and RSA (see Table 1).

Generating Secret-Dependent Interconnect Traffic A
key remaining challenge is how to force the victim to generate
secret-dependent interconnect traffic. The victim’s memory
accesses only use the interconnect if they miss in the private
caches and need to access a remote LLC slice or DRAM. The
code and data accessed in each iteration of Algorithm 1 fit
in our processor’s 1 MB L2 cache. Therefore, without extra
interference with the victim, the interconnect side channel can
only observe the execution of the first iteration of the victim
and leak the first bit of the secret key.

To force the victim to generate interconnect traffic for every
iteration, we use an approach similar to prior work [26, 74].
The approach requires the system to use a specific defense
mechanism against side-channel attacks on private caches that
flushes the private caches upon context switches (as suggested
by prior work [12,25,27–29,32,39,40,73,75,85,88,107]). The
attacker can use this defense mechanism to their advantage.
If the attacker can trigger a context switch on the victim, the
victim’s private cache will be automatically flushed. When
the victim resumes execution, the memory accesses will then
generate interconnect traffic. Several approaches have been
proposed to preempt a victim program from an unprivileged
process by exploiting the Linux scheduler [8, 40, 69, 79].

We remark that the assumption of flushing the private
caches upon context switches limits the applicability of our at-
tack. However, such an assumption is fairly reasonable. Given
that interconnect side-channel attacks are much more difficult
to carry out than cache side-channel attacks, it is not necessary
to exploit the interconnect side channel on an insecure pro-
cessor without any protection of the caches. In the following
experiments, like prior work [1,3,23,24,36,39,73,74,91], we
simulate the preemption and the cache flushing operations by
manually stopping the victim at the beginning of an iteration
and evicting the victim’s core private caches. The eviction is
done by accessing an eviction set with WL2 addresses for each
L2 set (as in [26]). A practical implementation of the attack
on the Linux scheduler is beyond the scope of this work.

0 20 40 60
Latency sample ID

58

59

60

Lo
ad

 la
te

nc
y

(c
yc

le
s) Bit = 0

0 20 40 60
Latency sample ID

58

59

60

Bit = 1

(a) Results for the RSA victim.

0 50 100 150
Latency sample ID

58

59

60

Lo
ad

 la
te

nc
y

(c
yc

le
s) Bit = 0

0 50 100 150
Latency sample ID

58

59

60

Bit = 1

(b) Results for the ECDSA victim.

Figure 10: Example of latency traces with the victim
on Core(0,0) and the attacker monitoring Core(0,2) ↔
Slice(0,3). The light-blue shade is the standard deviation
across traces.

8.3 Demonstrating Example of Leaking a Single Bit

We now present a proof-of-concept demonstration of the at-
tack against ECDSA and RSA. We start with a demonstration
of single-bit leakage in this section, followed by the full-key
recovery demonstration in Section 8.4. We evaluate how dif-
ferent placements affect attack accuracy in Section 8.5.

For the single-bit leakage demonstration, we target the first
bit of the key and thus focus on monitoring the first itera-
tion of the victim loop (Algorithm 1). We run the victim on
Core(0,0) and choose a valid placement for the attacker which
monitors interconnect contention on Core(0,2)↔ Slice(0,3).
According to our reverse engineering results, such a place-
ment allows the attacker to observe a moderate amount of the
victim’s network traffic. A detailed traffic flow analysis of
this placement can be found in Appendix C.

Example Traces For both the ECDSA and RSA victims,
we generate 5000 random keys. In expectation, half of the
traces have their first secret bit=0, and the rest have their first
secret bit=1. For each key, we collect a trace during the first
iteration of the victim loop. That is, each trace corresponds to
the first iteration of a different random key. We then group the
traces by bit and plot the average for both groups in Figure 10.
We additionally plot the standard deviation of each sample
with light-blue shades to show variations across samples.

Figure 10a shows the results when attacking RSA for the
case when the secret bit is 0 and when the bit is 1. The plot
for bit=1 has an extra spike around cycle 40, corresponding to
the contention caused by Func2. Similarly, Figure 10b shows
the results for ECDSA, where we can observe an extra spike
around cycle 140 only when the secret bit is 1. These results
demonstrate that the interconnect side channel can be used to
effectively leak secret key bits from both implementations.

The specific characteristics of the traces of Figure 10 vary
depending on the physical memory pages used by the vic-

10

0 25 50 75 100
Number of votes

80

90

100

% of key recovered

(a) RSA victim.

0 50 100 150
Number of votes

70
80
90

100

% of key recovered

(b) ECDSA victim.

Figure 11: Percentage of the full key recovered using multiple
traces (i.e., votes) per iteration. For RSA and ECDSA, we
recovered the full key using 65 or 140 traces, respectively.

tim, which influence the mapping of the victim’s code and
data to different LLC slices. However, since the slice hash
function is designed to uniformly distribute memory across
all slices, even when the pages changed, we could always
observe distinguishable signals for different secret bits.

We also tested the susceptibility of the attack to noise by
repeating it while running the stress-ng tool in the back-
ground. When running CPU-intensive tasks (--cpu stress
methods), the secret-dependent spikes in interconnect con-
tention were still distinguishable even when 12 of the other
22 cores were active. However, when running tasks designed
to stress the CPU cache (--cache stress methods), the secret-
dependent spikes in interconnect contention became hard to
see when more than 3 cores were active.

Single-Bit Classification Accuracy We use a random for-
est classifier to simplify the inference of the secret bit used in
each latency trace. Our methodology is similar to that of prior
work [26, 74]. We use 75% of the 5000 traces as the training
set and the remaining 25% as the validation set, which we
compute the prediction accuracy for. To account for the dif-
ferent page mappings across runs, we repeat the experiment
10 times and report a range of accuracies.6

For the placement of Figure 10, we obtain an accuracy
of 69%–71% for ECDSA and 71%–73% for RSA. Next, we
show that the attacker can make predictions using multiple
traces to further boost the accuracy and simplify the process
of full-key recovery on both ECDSA and RSA.

8.4 Full Key Recovery

We now show how our attack can be used to recover full cryp-
tographic keys (a 1024-bit long key for the RSA victim and
256-bit long nonce for the ECDSA victim). Instead of focus-
ing on the first bit, we show that our attack can distinguish
traces collected at different iterations (i.e., different bits) and
can account for variations across both iterations and different
keys. For ECDSA and RSA, we generate 800 and 200 ran-
dom keys respectively for training. For each training key, we

6For simplicity, our proof-of-concept attack trains and tests the classifier
on a single machine. However, since we observed similar secret-dependent
spikes in interconnect contention traces also on a different machine, it should
be feasible for an attacker to train a cross-machine classifier too.

collect one trace for each iteration of the loop when using that
key. We end up with over 200,000 traces across ECDSA and
RSA with approximately half of the traces for a secret bit=1
and half for a secret bit=0. We then group these traces by bit,
regardless of which iteration and which key the traces corre-
spond to, and use them to train a random forest classifier that
is able to make a prediction on secret bits for any iteration.

To evaluate the classification accuracy, we generate a new,
random test key for both RSA and ECDSA that is not in
the training set and collect traces for each bit of the test key.
We apply the classifier to the traces and count the correctly
classified bits. Given a single trace per iteration, the classifier
can correctly identify 77% of the bits for RSA and 68% of
the bits for ECDSA. To boost the prediction accuracy, we
collect additional traces per iteration of the testing key and
use majority voting to merge prediction results. Figure 11
shows how the number of correctly predicted bits changes
when we use multiple traces per iteration with majority voting.
As expected, the number of correctly predicted bits increases
rapidly as the number of traces increases. For RSA, 65 traces
per bit were enough to recover 100% of the key. For ECDSA,
140 traces per bit were enough to recover 100% of the key.

8.5 Impact of Attacker and Victim Placements

Due to the lane scheduling policy and the priority arbitration
policy used by the interconnect, different placements of the
attacker and the victim incur different amounts of observable
contention. To study the impact of different placements, we
design an analytical model to rank tiles by the level of vul-
nerability and empirically validate the resulting vulnerability
scores using the single-bit attack from Section 8.3.

The Analytical Model The analytical model computes the
amount of observable interconnect contention for a given
mesh layout, victim placement, and attacker placement. The
victim’s placement contains a core location, and the attacker’s
placement contains a core location and an LLC slice location.
The model assumes an even distribution of the victim’s mem-
ory addresses across all LLC slices, meaning an equal amount
of traffic flows between the victim’s core and each LLC slice.
Next, the model compares each of the victim’s traffic flows
with the attacker’s traffic flow on the corresponding ring. If
both flows share the same direction, lane, and segment, and
the victim’s flow has higher priority, we say that the victim’s
flow causes observable contention. We assign a score of 1 to
contention on the request and acknowledge rings and a score
of 2 to contention on the data ring. This follows from our
reverse engineering which showed that contention on the data
ring generates larger delays than contention on the request
and acknowledge rings (due to each message on the data ring
requiring two packets [47]). We then sum the scores for all the
victim’s traffic flows to quantify the observable contention.

The search tool ranks the vulnerability level for each tile
as follows. For each tile used as the victim’s core, we search

11

32 32 32 32 32 31

x 20 20 20 20 x

29 13 27 27 13 29

32 20 30 x 20 20

x 32 x 20 32 x

Figure 12: Heatmap of the vulnerability level for different
tiles. The number inside each tile represents the vulnerability
score output by our analytical model.

(2
,0

)
(3

,0
)

(0
,1

)
(1

,1
)

(2
,1

)
(3

,1
)

(4
,1

)
(0

,2
)

(1
,2

)
(2

,2
)

(3
,2

)
(0

,3
)

(1
,3

)
(2

,3
)

(4
,3

)
(0

,4
)

(1
,4

)
(2

,4
)

(3
,4

)
(4

,4
)

(0
,5

)
(2

,5
)

(3
,5

)

Attacker core

1

0

1

2

3 Std RSA ML Acc
Std ECDSA ML Acc
Std Vuln Score

Figure 13: Correlation between standardized analytical model
vulnerability scores and standardized observed attack accura-
cies across all attacker core placements.

for an attacker placement that maximizes the observable con-
tention which is computed using the analytical model. We it-
erate over all the tiles on the chip and rank these tiles based on
their corresponding scores of optimal observable contention.
The tile with the smallest score of optimal observable con-
tention is the least vulnerable. Figure 12 shows our results.

Our results highlight a key insight: the victim, when placed
onto different cores, experiences different levels of vulnerabil-
ity. For example, when placing the victim on the cores in the
first row of the mesh, the vulnerability scores are consistently
high, either 32 or 31, indicating that the attacker is able to
find a placement with high levels of observable contention.
However, if the victim is on Core (2,1) or Core (2,4), the
vulnerability score is 13, meaning that the attacker can only
observe much less contention even when placed optimally.

Model Validation We validate our analytical model by com-
puting the single-bit classification accuracy for the attack on
different placements. We pin the victim process to Core (0,0),
and for every possible attacker core, we use our model to find
the optimal attacker slice and run the attack using this place-
ment. To compare the vulnerability scores to the observed
classification accuracies, we standardize both values by sub-
tracting the mean and dividing by the standard deviation.
Figure 13 shows the strong correlation between the scores
and the attack accuracies, demonstrating that our analytical
model effectively predicts leakage. For example, placing the
attacker on Core (0,2), the predicted best attacker core for a
victim at (0,0), results in an accuracy of 87.4% on the RSA
victim and 75.8% on ECDSA. However, placing the attacker
on Core (2,1), the predicted worst attacker core for a victim
at (0,0), results in an accuracy of 65.4% on the RSA victim

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324
Number of reserved cores

0

10

20

30

Vu
ln

er
ab

ilit
y

sc
or

e

Mean vuln score

Figure 14: Effect of reserving cores on vulnerability scores.

and 61.5% on the ECDSA victim, much closer to random
guessing. We include the raw data in Appendix D.

9 Software-Based Mitigations

The reverse engineering results and the analytical model pro-
vide useful insights into designing software-based mitigations.
To start, as discussed in Section 8.5, the operating system or
hypervisor can schedule the victim to the least vulnerable
cores. For example, security-sensitive applications should run
on cores with lower scores such as 13 rather than 32. This
already makes the attacker suffer from a higher error rate.

In addition to the victim’s placement, our analytical model
suggests that the attacker’s placement also affects the attack
accuracy. Thus, the model can guide the design of an intel-
ligent scheduler that reduces leakage through interconnect
contention. Given a victim’s core location, the scheduler will
reserve the cores that contribute to the top k vulnerability
scores for applications that belong to the same security do-
main as the victim. This lightweight and practical mitigation
mechanism can significantly reduce the accuracy of the attack.

We evaluate this mitigation mechanism as follows. For
each victim placement, we reserve the k cores with the high-
est vulnerability scores by making them unavailable to the
attacker and re-calculate the vulnerability score. Figure 14
and Appendix E show how the scores change across all victim
placements with increasing k. The mean score decreases as we
reserve more cores. However, this mechanism affects different
victim placements differently. For example, the mitigation is
highly effective for victim placements such as (2,0) and (2,5),
where the vulnerability score is reduced from 29 to 4 after
reserving only 4 cores. However, the mitigation is less effec-
tive for victim placements such as (4,1) and (4,4), where the
score drops below 32 only after reserving 16 cores. These re-
sults highlight the importance of scheduling security-sensitive
software on cores where the mitigation is most effective.

Discussion The software-based mitigation above reduces
the efficacy of interconnect side-channel attacks but does not
fully close the channel. We discuss more extensive hardware
mechanisms to fully block interconnect leakage in Section 10.
Our mitigation aims to be non-invasive and flexible. Since it
only requires scheduler modifications, it can be more conve-
niently adopted on today’s systems. In addition, applications

12

can adjust their degree of isolation. Less sensitive applications
can reserve fewer cores to conserve resources.

Since our scheme reduces the flexibility of the scheduler, it
may negatively impact system performance. As we reserve
cores for a domain, other security domains need to compete
for unreserved cores, resulting in potential performance degra-
dation. Even intelligently scheduling a multi-threaded victim
(e.g., a VM) that runs on n cores may require reserving more
than n cores. In particular, selecting the minimal set of m≥ n
cores such that these m cores sufficiently reduce the victim’s
vulnerability score is a complex (and orthogonal) partitioning
problem. However, considering that modern cloud resources
are generally over-provisioned [14, 104], we believe that, in
practice, the performance impact of our scheme would be low.

10 Related Work

Attacks We provided a classification of microarchitectural
attacks in Section 2.3. We now discuss prior works that ex-
plored the security of on-chip CPU interconnects specifically.

Wang et al. [92] were the first to consider side-channel
attacks on the on-chip interconnect. However, their attack was
only demonstrated on a simplified architectural simulator.

Paccagnella et al. [74] described attacks exploiting con-
tention on the ring interconnect used by client-class Intel
processors. Our work builds on their techniques but is dif-
ferent in two main ways. First, we study a more complex,
2-dimensional interconnect with different traffic flows and
lane scheduling policies, as well as more complex priority
arbitration policies. Second, our work handles a much larger
number of placement options for the attacker. For example,
if we fix the victim’s core, there are 598 attacker placements
on our processor, as opposed to only 56 placements on an
8-core desktop processor. Hence, our work includes a novel
analytical model to find the optimal attacker placement.

Dutta et al. demonstrated a cross-component covert channel
that exploits contention on the ring interconnect [20]. There
are also works that used information about the on-chip in-
terconnect to improve cache side channels [18, 82]. These
works demonstrate additional benefits of reverse engineering
the interconnect to attackers. However, these attacks are fun-
damentally dependent on shared cache structures whereas our
work focuses on side channels outside the cache.

Most recently, concurrent work from Wan et al. [90] de-
scribed a side-channel attack that also targets Intel’s mesh in-
terconnect. However, their work does not include lane schedul-
ing and priority arbitration policy details. Further, given the
large delays (up to 1000 cycles) they report and the significant
memory footprint of their victim, it is unclear whether their
attack works due to contention on the interconnect or on other
shared structures, e.g., shared cache directories or slice ports,
both of which are not partitioned by Intel CAT [70]. In con-
trast, our work establishes the precise conditions for creating

contention on the mesh interconnect, and our experiments are
carefully designed to rule out other contention sources.

Mitigations Existing mitigations to our attack can be classi-
fied into software and hardware mitigations. Among software
mitigations, the recommended strategy is to use constant-time
cryptographic implementations [46]. Mitigations at the hard-
ware level that separate the traffic flows of different security
domains have also been proposed. Wang and Suh investigated
domain-aware priority arbitration policies which give low-
security traffic precedence over high-security traffic at the
router [92]. Wassel et al. propose a time-multiplexed schedul-
ing policy in which network links may only carry traffic from a
predefined security domain at each instant in time [94]. While
effective, these approaches require hardware modifications to
the interconnect and cannot be adjusted to accommodate more
security domains once deployed. In contrast, our proposed
mitigation is non-intrusive and does not require hardware
changes. Alternatively, a limited form of spatial partitioning
may be accomplished using Intel’s Sub-NUMA Clustering
(SNC), which splits the LLC slices into two disjoint clusters,
each bound to a single memory controller [48]. However,
SNC only focuses on memory mappings, so while it may
reduce interconnect contention in particular cases, it makes
no guarantees about isolating interconnect traffic in general.
Further, it only supports two domains.

11 Conclusion

In this paper, we reverse engineered the lane scheduling and
priority arbitration policies used by Intel’s mesh interconnect.
We demonstrated covert channel and side-channel attacks that
exploit contention on the mesh interconnect. We then used
an analytical model to quantify the vulnerability of different
cores and proposed a non-invasive software mitigation.

Our results underscore that, though difficult to exploit, on-
chip interconnects remain an overlooked microarchitectural
attack surface and that additional work is necessary to enforce
security-by-design against these attacks in future server pro-
cessors. We made a first step towards this goal by introducing
a non-invasive mitigation to interconnect side channels. Going
forward, we expect that our work will facilitate future research
into the security of on-chip interconnects. More broadly, we
hope that our findings motivate the development of princi-
pled, holistic mitigations against microarchitectural attacks,
as opposed to the current per-resource, “spot” mitigations.

Acknowledgments

We thank our shepherd Michael Schwarz and the anony-
mous reviewers for their valuable feedback. This work was
funded in part through NSF grants 2046359 and 1954521, and
AFOSR grant FA9550-20-1-0402.

13

References
[1] Onur Aciiçmez. Yet another microarchitectural attack: Exploiting

i-cache. In CSAW, 2007.

[2] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. Predicting
secret keys via branch prediction. In CT-RSA, 2007.

[3] Onur Acıiçmez and Werner Schindler. A vulnerability in RSA imple-
mentations due to instruction cache analysis and its demonstration on
OpenSSL. In CT-RSA, 2008.

[4] Onur Acıiçmez and Jean-Pierre Seifert. Cheap hardware parallelism
implies cheap security. In FDTC, 2007.

[5] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan,
Cesar Pereida García, and Nicola Tuveri. Port contention for fun and
profit. In S&P, 2019.

[6] Diego F Aranha, Felipe Rodrigues Novaes, Akira Takahashi, Mehdi
Tibouchi, and Yuval Yarom. LadderLeak: Breaking ECDSA with less
than one bit of nonce leakage. In CCS, 2020.

[7] Lucian Armasu. OpenBSD will disable Intel Hyper-Threading to
avoid Spectre-like exploits (updated). https://www.tomshardware
.com/news/openbsd-disables-intel-hyper-threading-spect
re,37332.html. Accessed on Jun 12, 2022.

[8] C Ashokkumar, Ravi Prakash Giri, and Bernard Menezes. Highly
efficient algorithms for AES key retrieval in cache access attacks. In
EuroS&P, 2016.

[9] Naomi Benger, Joop Van de Pol, Nigel P Smart, and Yuval Yarom.
“Ooh aah... just a little bit”: A small amount of side channel can go a
long way. In CHES, 2014.

[10] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandt-
ner, Alessandro Sorniotti, Babak Falsafi, Mathias Payer, and Anil
Kurmus. SMoTherSpectre: Exploiting speculative execution through
port contention. In CCS, 2019.

[11] Thomas Bourgeat, Ilia Lebedev, Andrew Wright, Sizhuo Zhang, and
Srinivas Devadas. MI6: Secure enclaves in a speculative out-of-order
processor. In MICRO, 2019.

[12] Benjamin A Braun, Suman Jana, and Dan Boneh. Robust and ef-
ficient elimination of cache and timing side channels. Preprint,
arXiv:1506.00189 [cs.CR], 2015.

[13] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz
Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael
Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom. Fallout: Leak-
ing data on Meltdown-resistant CPUs. In CCS, 2019.

[14] Sivadon Chaisiri, Bu-Sung Lee, and Dusit Niyato. Optimization of
resource provisioning cost in cloud computing. IEEE transactions on
services Computing, 5(2):164–177, 2011.

[15] Mainak Chaudhuri. Zero directory eviction victim: Unbounded co-
herence directory and core cache isolation. In HPCA, 2021.

[16] Thomas Claburn. RIP Hyper-Threading? ChromeOS axes key Intel
CPU feature over data-leak flaws – Microsoft, Apple suggest snub.
https://www.theregister.co.uk/2019/05/14/intel_hyper_t
hreading_mitigations/. Accessed on Jun 12, 2022.

[17] Shaanan Cohney, Andrew Kwong, Shahar Paz, Daniel Genkin, Nadia
Heninger, Eyal Ronen, and Yuval Yarom. Pseudorandom black swans:
Cache attacks on CTR DRBG. In S&P, 2020.

[18] Guillaume Didier and Clémentine Maurice. Calibration done right:
Noiseless Flush+Flush attacks. In DIMVA, 2021.

[19] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen.
Prime+Abort: A Timer-Free High-Precision L3 cache attack using
Intel TSX. In USENIX Security, 2017.

[20] Sankha Baran Dutta, Hoda Naghibijouybari, Nael Abu-Ghazaleh, An-
dres Marquez, and Kevin Barker. Leaky buddies: Cross-component
covert channels on integrated CPU-GPU systems. In ISCA, 2021.

[21] Dmitry Evtyushkin and Dmitry Ponomarev. Covert channels through
random number generator: Mechanisms, capacity estimation and miti-
gations. In CCS, 2016.

[22] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh.
Jump over ASLR: Attacking branch predictors to bypass ASLR. In
MICRO, 2016.

[23] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. Un-
derstanding and mitigating covert channels through branch predictors.
TACO, 13(1), 2016.

[24] Dmitry Evtyushkin, Ryan Riley, Nael Abu-Ghazaleh, and Dmitry
Ponomarev. BranchScope: A new side-channel attack on directional
branch predictor. In ASPLOS, 2018.

[25] Andrew Ferraiuolo, Mark Zhao, Andrew C Myers, and G Edward Suh.
HyperFlow: A processor architecture for nonmalleable, timing-safe
information flow security. In CCS, 2018.

[26] FPSG-UIUC. lotr. https://github.com/FPSG-UIUC/lotr, 2021.
Accessed on Jun 12, 2022.

[27] Janosch Frank. The common challenges of secure VMs. https:
//static.sched.com/hosted_files/kvmforum2020/a3/Janos
ch%20Frank.pdf, 2020. Accessed on Jun 12, 2022.

[28] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A survey of
microarchitectural timing attacks and countermeasures on contempo-
rary hardware. JCEN, 8(1), 2018.

[29] Qian Ge, Yuval Yarom, and Gernot Heiser. No security without time
protection: We need a new hardware-software contract. In APSys,
2018.

[30] Daniel Genkin, Luke Valenta, and Yuval Yarom. May the fourth be
with you: A microarchitectural side channel attack on several real-
world applications of Curve25519. In CCS, 2017.

[31] GnuPG. Libgcrypt. https://gnupg.org/software/libgcrypt/i
ndex.html, 2021. Accessed on Jun 12, 2022.

[32] Michael Godfrey and Mohammad Zulkernine. A server-side solution
to cache-based side-channel attacks in the cloud. In CLOUD, 2013.

[33] Ben Gras, Cristiano Giuffrida, Michael Kurth, Herbert Bos, and Kaveh
Razavi. ABSynthe: Automatic blackbox side-channel synthesis on
commodity microarchitectures. In NDSS, 2020.

[34] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Trans-
lation Leak-aside Buffer: Defeating cache side-channel protections
with TLB attacks. In USENIX Security, 2018.

[35] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano
Giuffrida. ASLR on the line: Practical cache attacks on the MMU. In
NDSS, 2017.

[36] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval
Yarom. Flush, Gauss, and Reload – A Cache Attack on the BLISS
Lattice-Based Signature Scheme. In CHES, 2016.

[37] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Man-
gard. Flush+Flush: A fast and stealthy cache attack. In DIMVA,
2016.

[38] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache template
attacks: Automating attacks on inclusive last-level caches. In USENIX
Security, 2015.

[39] Roberto Guanciale, Hamed Nemati, Christoph Baumann, and Mads
Dam. Cache storage channels: Alias-driven attacks and verified
countermeasures. In S&P, 2016.

[40] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache games -
bringing access-based cache attacks on AES to practice. In S&P,
2011.

[41] Berk Gulmezoglu, Andreas Zankl, M Caner Tol, Saad Islam, Thomas
Eisenbarth, and Berk Sunar. Undermining user privacy on mobile
devices using AI. In CCS, 2019.

14

https://www.tomshardware.com/news/openbsd-disables-intel-hyper-threading-spectre,37332.html
https://www.tomshardware.com/news/openbsd-disables-intel-hyper-threading-spectre,37332.html
https://www.tomshardware.com/news/openbsd-disables-intel-hyper-threading-spectre,37332.html
https://www.theregister.co.uk/2019/05/14/intel_hyper_threading_mitigations/
https://www.theregister.co.uk/2019/05/14/intel_hyper_threading_mitigations/
https://github.com/FPSG-UIUC/lotr
https://static.sched.com/hosted_files/kvmforum2020/a3/Janosch%20Frank.pdf
https://static.sched.com/hosted_files/kvmforum2020/a3/Janosch%20Frank.pdf
https://static.sched.com/hosted_files/kvmforum2020/a3/Janosch%20Frank.pdf
https://gnupg.org/software/libgcrypt/index.html
https://gnupg.org/software/libgcrypt/index.html

[42] Marcos Horro, Mahmut T Kandemir, Louis-Noël Pouchet, Gabriel
Rodríguez, and Juan Touriño. Effect of distributed directories in mesh
interconnects. In DAC, 2019.

[43] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical timing side
channel attacks against kernel space ASLR. In S&P, 2013.

[44] Mehmet Sinan Inci, Berk Gülmezoglu, Gorka Irazoqui Apecechea,
Thomas Eisenbarth, and Berk Sunar. Seriously, get off my cloud!
Cross-VM RSA key recovery in a public cloud. Cryptology ePrint
Archive, Report 2015/898, 2015.

[45] Intel. Disclosure of hardware prefetcher control on some Intel pro-
cessors. https://software.intel.com/content/www/us/en/d
evelop/articles/disclosure-of-hw-prefetcher-control-on
-some-intel-processors.html. Accessed on Jun 8, 2021.

[46] Intel. Guidelines for mitigating timing side channels against crypto-
graphic implementations. https://www.intel.com/content/www/
us/en/developer/articles/technical/software-security-g
uidance/secure-coding/mitigate-timing-side-channel-cry
pto-implementation.html. Accessed on May 27, 2022.

[47] Intel. Intel Xeon Processor Scalable Memory Family Uncore Perfor-
mance Monitoring, July 2017.

[48] Intel. Intel 64 and IA-32 Architectures Optimization Reference Man-
ual, May 2020.

[49] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. S$A: A shared
cache attack that works across cores and defies VM sandboxing – and
its application to AES. In S&P, 2015.

[50] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Systematic
reverse engineering of cache slice selection in Intel processors. In
DSD, 2015.

[51] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Cross processor
cache attacks. In ASIACCS, 2016.

[52] Mehmet Kayaalp, Nael Abu-Ghazaleh, Dmitry Ponomarev, and Aamer
Jaleel. A high-resolution side-channel attack on the last level cache.
In DAC, 2016.

[53] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. StealthMem:
System-level protection against cache-based side channel attacks in
the cloud. In USENIX Security, 2012.

[54] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Ex-
ploiting speculative execution. In S&P, 2019.

[55] Steve Kommrusch, Marcos Horro, Louis-Noël Pouchet, Gabriel Ro-
dríguez, and Juan Touriño. Optimizing coherence traffic in manycore
processors using closed-form caching/home agent mappings. IEEE
Access, 9:28930–28945, 2021.

[56] Michael Kurth, Ben Gras, Dennis Andriesse, Cristiano Giuffrida, Her-
bert Bos, and Kaveh Razavi. NetCAT: Practical cache attacks from
the network. In S&P, 2020.

[57] Moritz Lipp, Daniel Gruss, Michael Schwarz, David Bidner, Clémen-
tine Maurice, and Stefan Mangard. Practical keystroke timing attacks
in sandboxed JavaScript. In ESORICS, 2017.

[58] Moritz Lipp, Vedad Hadžić, Michael Schwarz, Arthur Perais, Clémen-
tine Maurice, and Daniel Gruss. Take a way: Exploring the security
implications of AMD’s cache way predictors. In ASIACCS, 2020.

[59] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher,
Daniel Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Read-
ing kernel memory from user space. In USENIX Security, 2018.

[60] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas,
Gernot Heiser, and Ruby B Lee. CATalyst: Defeating last-level cache
side channel attacks in cloud computing. In HPCA, 2016.

[61] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee.
Last-level cache side-channel attacks are practical. In S&P, 2015.

[62] Yen-Cheng Liu, Jason W Horihan, Krishnakumar Ganapathy, Umit Y
Ogras, Allen W Chu, and Ganapati N Srinivasa. On-chip mesh inter-
connect, Patent US20150006776A1, 2013.

[63] Andrew Marshall, Michael Howard, Grant Bugher, and Brian Harden.
Security Best Practices For Developing Windows Azure Applications.
Microsoft, June 2010.

[64] Clémentine Maurice, Nicolas Le Scouarnec, Christoph Neumann,
Olivier Heen, and Aurélien Francillon. Reverse engineering Intel
last-level cache complex addressing using performance counters. In
RAID, 2015.

[65] Clémentine Maurice, Christoph Neumann, Olivier Heen, and Aurélien
Francillon. C5: Cross-cores cache covert channel. In DIMVA, 2015.

[66] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner,
Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, and Kay Römer.
Hello from the other side: SSH over robust cache covert channels in
the cloud. In NDSS, 2017.

[67] John D. McCalpin. Address hashing in Intel processors. In IXPUG,
2018.

[68] John D. McCalpin. Mapping core and L3 slice numbering to die
location in Intel Xeon Scalable processors. Technical report, Texas
Advanced Computing Center (TACC), 2020.

[69] Michael Neve and Jean-Pierre Seifert. Advances on access-driven
cache attacks on AES. In SAC, 2006.

[70] Khang T Nguyen. Introduction to cache allocation technology in the
Intel Xeon processor E5 v4 family. https://software.intel.com
/content/www/us/en/develop/articles/introduction-to-ca
che-allocation-technology.html. Accessed on Jun 12, 2022.

[71] Hamed Okhravi, Stanley Bak, and Samuel T King. Design, imple-
mentation and evaluation of covert channel attacks. In HST, 2010.

[72] Yossef Oren, Vasileios P Kemerlis, Simha Sethumadhavan, and Ange-
los D Keromytis. The spy in the sandbox: Practical cache attacks in
JavaScript and their implications. In CCS, 2015.

[73] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and
countermeasures: the case of AES. In CT-RSA, 2006.

[74] Riccardo Paccagnella, Licheng Luo, and Christopher W. Fletcher.
Lord of the ring(s): Side channel attacks on the CPU on-chip ring
interconnect are practical. In USENIX Security, 2021.

[75] Colin Percival. Cache missing for fun and profit. In BSDCan, 2005.

[76] Cesar Pereida García, Billy Bob Brumley, and Yuval Yarom. Make
sure DSA signing exponentiations really are constant-time. In CCS,
2016.

[77] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz,
and Stefan Mangard. DRAMA: Exploiting DRAM addressing for
cross-CPU attacks. In USENIX Security, 2016.

[78] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage.
Hey, you, get off of my cloud: Exploring information leakage in third-
party compute clouds. In CCS, 2009.

[79] Bholanath Roy, Ravi Prakash Giri, C Ashokkumar, and Bernard
Menezes. Design and implementation of an espionage network for
cache-based side channel attacks on AES. In ICETE, 2015.

[80] Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel Weiser, Clé-
mentine Maurice, Raphael Spreitzer, and Stefan Mangard. Keydrown:
Eliminating software-based keystroke timing side-channel attacks. In
NDSS, 2018.

[81] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian
Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad: Cross-
privilege-boundary data sampling. In CCS, 2019.

15

https://software.intel.com/content/www/us/en/develop/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors.html
https://software.intel.com/content/www/us/en/develop/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors.html
https://software.intel.com/content/www/us/en/develop/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-cache-allocation-technology.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-cache-allocation-technology.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-cache-allocation-technology.html

[82] Johanna Sepúlveda, Mathieu Gross, Andreas Zankl, and Georg Sigl.
Beyond cache attacks: Exploiting the bus-based communication struc-
ture for powerful on-chip microarchitectural attacks. TECS, 20(2),
2021.

[83] Anatoly Shusterman, Ayush Agarwal, Sioli O’Connell, Daniel Genkin,
Yossi Oren, and Yuval Yarom. Prime+Probe 1, JavaScript 0: Over-
coming browser-based side-channel defenses. In USENIX Security,
2021.

[84] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser,
Prateek Mittal, Yossi Oren, and Yuval Yarom. Robust website finger-
printing through the cache occupancy channel. In USENIX Security,
2019.

[85] Read Sprabery, Konstantin Evchenko, Abhilash Raj, Rakesh B Bobba,
Sibin Mohan, and Roy Campbell. Scheduling, isolation, and cache
allocation: A side-channel defense. In IC2E, 2018.

[86] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval
Yarom, and Raoul Strackx. Foreshadow: Extracting the keys to the
Intel SGX kingdom with transient out-of-order execution. In USENIX
Security, 2018.

[87] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lippi, Ma-
rina Minkin, Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss,
and Frank Piessens. LVI: Hijacking transient execution through mi-
croarchitectural load value injection. In S&P, 2020.

[88] Venkatanathan Varadarajan, Thomas Ristenpart, and Michael Swift.
Scheduler-based defenses against cross-VM side-channels. In
USENIX Security, 2014.

[89] VMware Knowledge Base. Security considerations and disallowing
inter-virtual machine transparent page sharing (2080735). https:
//kb.vmware.com/s/article/2080735. Accessed on Jun 12, 2022.

[90] Junpeng Wan, Yanxiang Bi, Zhe Zhou, and Zhou Li. MeshUp: State-
less cache side-channel attack on CPU mesh. In S&P, 2022.

[91] Daimeng Wang, Zhiyun Qian, Nael Abu-Ghazaleh, and Srikanth V Kr-
ishnamurthy. PAPP: Prefetcher-aware prime and probe side-channel
attack. In DAC, 2019.

[92] Yao Wang and G Edward Suh. Efficient timing channel protection for
on-chip networks. In NOCS, 2012.

[93] Zhenghong Wang and Ruby B Lee. Covert and side channels due to
processor architecture. In ACSAC, 2006.

[94] Hassan MG Wassel, Ying Gao, Jason K Oberg, Ted Huffmire, Ryan
Kastner, Frederic T Chong, and Timothy Sherwood. SurfNoC: A low
latency and provably non-interfering approach to secure networks-on-
chip. ACM SIGARCH Computer Architecture News, 41(3), 2013.

[95] WikiChip. Cascade Lake - microarchitectures - Intel. https://en.w
ikichip.org/wiki/intel/microarchitectures/cascade_lake.
Accessed on Jun 12, 2022.

[96] WikiChip. Mesh interconnect architecture - Intel. https://en.w
ikichip.org/wiki/intel/mesh_interconnect_architecture.
Accessed on Jun 12, 2022.

[97] Zhenyu Wu, Zhang Xu, and Haining Wang. Whispers in the Hyper-
space: High-speed covert channel attacks in the cloud. In USENIX
Security, 2012.

[98] Mengjia Yan, Christopher W Fletcher, and Josep Torrellas. Cache
telepathy: Leveraging shared resource attacks to learn DNN architec-
tures. In USENIX Security, 2020.

[99] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher
Fletcher, Roy Campbell, and Josep Torrellas. Attack directories, not
caches: Side channel attacks in a non-inclusive world. In S&P, 2019.

[100] Mengjia Yan, Jen-Yang Wen, Christopher W Fletcher, and Josep Tor-
rellas. SecDir: A secure directory to defeat directory side-channel
attacks. In ISCA, 2019.

[101] Yuval Yarom and Katrina Falkner. Flush+Reload: a high resolution,
low noise, L3 cache side-channel attack. In USENIX Security, 2014.

[102] Yuval Yarom, Qian Ge, Fangfei Liu, Ruby B. Lee, and Gernot Heiser.
Mapping the Intel last-level cache. Cryptology ePrint Archive, Report
2015/905, 2015.

[103] Yuval Yarom, Daniel Genkin, and Nadia Heninger. CacheBleed: A
timing attack on OpenSSL constant time RSA. JCEN, 7(2), 2017.

[104] Zhi-Hui Zhan, Xiao-Fang Liu, Yue-Jiao Gong, Jun Zhang, Henry Shu-
Hung Chung, and Yun Li. Cloud computing resource scheduling and
a survey of its evolutionary approaches. ACM Computing Surveys
(CSUR), 47(4):1–33, 2015.

[105] Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.
Cross-VM side channels and their use to extract private keys. In CCS,
2012.

[106] Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.
Cross-tenant side-channel attacks in PaaS clouds. In CCS, 2014.

[107] Yinqian Zhang and Michael K Reiter. Düppel: Retrofitting commodity
operating systems to mitigate cache side channels in the cloud. In
CCS, 2013.

[108] Ziqiao Zhou, Michael K Reiter, and Yinqian Zhang. A software
approach to defeating side channels in last-level caches. In CCS,
2016.

Appendix

A Determining Address Mapping

When designing the transmitter and receiver, we need ad-
dresses that map to a given L2 set and LLC slice. To determine
the L2 set of a virtual address, we use 2MB hugepages, as
in [49,61]. To determine the LLC slice ID of a virtual address,
there exist two approaches. If the attacker has root privileges,
such as when reverse engineering a local machine, the attacker
can use Intel PMON counters, as in prior work [68]. Without
root privileges, the attacker can leverage timing information
to map addresses to LLC slices in a coarse-grained fashion.
For example, since accesses to the local slice are faster than
accesses to remote slices, the attacker can pin a program to
a core and find addresses that map to the local slice (as in
prior work [102]). On our 24-core and 26-slice processor, the
attacker will find 26 groups of addresses of which 24 map to
slices on active cores and 2 map to partially-disabled tiles. The
attacker then figures out the slice ID of each group based on
the tile-mapping information (as explained in Appendix B).

B Inferring Tile Layout and Mapping

We describe how we reverse-engineered the tile layout and
tile mapping of our Intel Xeon Gold 5220R processor shown
in Figure 2. Specifically, we want to obtain the following: 1)
the positions of disabled tiles; 2) the mapping from an LLC
slice ID to a tile; 3) the mapping from a core ID to a tile.

We start by obtaining basic processor information using the
lscpu command, which indicates that the chip has 24 cores.
Next, we find the number of LLC slices. As documented by
Intel [47], bits 27:0 in the CAPID6 register indicate the number

16

https://kb.vmware.com/s/article/2080735
https://kb.vmware.com/s/article/2080735
https://en.wikichip.org/wiki/intel/microarchitectures/cascade_lake
https://en.wikichip.org/wiki/intel/microarchitectures/cascade_lake
https://en.wikichip.org/wiki/intel/mesh_interconnect_architecture
https://en.wikichip.org/wiki/intel/mesh_interconnect_architecture

of LLC slices, which we find to be 26 on our setup. Our
processor uses an XCC configuration with 30 tiles, organized
into a 5× 6 grid. According to public information [95], an
XCC chip has 2 IMC tiles and 28 Core tiles. Therefore, we
infer that there are 4 disabled cores and 2 disabled LLC slices.

We first describe an approach to locate disabled tiles that
require privileged access to a machine and then describe al-
ternative approaches that do not require privileged access.

Locating Disabled Tiles Using the CAPID6 Register Prior
work found that each bit of the CAPID6 register corresponds
to a Core tile on the die [68]. The Core tiles are numbered
in column-major order from the top-left corner. Hence, by
querying the CAPID6 register, we learn which tiles are dis-
abled. For example, on our processor, the CAPID6 register
contains 0x0ffddfff, where bits 13 and 17 are unset, indi-
cating that tiles 13 and 17 are disabled. According to the
numbering mechanism above, tile 13 is located at (4,2) and
tile 17 is located in (3,3) in Figure 2.

Reverse Engineering Tile Mappings The LLC slice IDs
are kept internally by the hardware and are referred to as
CHA IDs by Intel. They are used by the PMON counters
and are very useful for our reverse engineering process. Mc-
Calpin [68] has verified that CHA IDs map to active Core
tiles in column-major order.

The last step is to figure out which tile each CPU ID maps
to. We use the approach in [68] as follows. Recall that CPU
IDs are used by the OS to schedule processes onto different
cores. We pin a program on a given CPU and repeatedly load
from DRAM (assisted by the clflush instruction) to generate
traffic to the two IMC tiles. We then use PMON counters to
monitor the data ring utilization on each tile. According to
the traffic flow analysis in Section 6.1, the only traffic on the
data ring is from the IMC to the tile that the logical CPU
maps to. With two IMC tiles and a Y-X routing policy, only
one tile observes 2 incoming traffic flows, and that is the tile
the logical CPU maps to. We repeat this approach for every
logical CPU to completely recover the mapping.

Locating Disabled Tiles With Unprivileged Access Prior
work has observed that the position of disabled tiles may vary
across different units of the same processor model [68]. An
unprivileged attacker may need to locate the disabled tiles on
the victim’s machine. We discuss two methods that do not
rely on privileged access, i.e., access to the CAPID6 register.

One method uses timing information by having the attacker
first profile the cache access latency for all core-slice pairs on
a local machine with privileged access. The attacker then ob-
tains the same profile on the victim’s machine. By analyzing
how the two profiles differ, the attacker can infer the locations
of the disabled tiles. An alternative method uses interconnect
contention. The attacker again profiles the interconnect con-
tention pattern (cf. Section 6) on both a local machine and the
victim’s machine. By analyzing how the contention pattern

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5)

(1, 0)

IMC 0

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5)

IMC 1

(2, 0) (2, 1) (2, 2) (2, 3) (2, 4) (2, 5)

(3, 0) (3, 1) (3, 2) (3, 3) (3, 4) (3, 5)

(4, 0) (4, 1) (4, 2) (4, 3) (4, 4) (4, 5)

Attacker's FlowVictim's Flow
(undetectable)

Victim's Flow
(detectable)

Victim's Core Attacker's Core and LLC Slice

Figure 15: Traffic flows on the data and acknowledge rings
when the transmitter executes on Core (0,0) and the attacker
monitors traffic between Core(0,2)↔ Slice(0,3).

on the victim’s machine deviates from the reference pattern,
the attacker can infer the locations of the disabled tiles.

C Side-Channel Attack Placement

Figure 15 explains why the attacker’s placement in Section 8.3
allows it to observe a moderate amount of network traffic by
showing the traffic flows on the data and acknowledge rings.
The victim has traffic flows from all 25 remote slices. The
attacker’s traffic uses the same lane as the victim’s horizontal
traffic (both use the white lane per Figure 4). Crucially, the
attacker’s traffic also has lower priority than the traffic from
the tiles in the two rightmost columns. Therefore, this attacker
can monitor the victim’s traffic flows from 9 out of 24 slices.

Note that while this attacker placement is effective, it is in
fact a suboptimal placement for a victim at (0,0). Placing the
receiver at Core(0,2)↔ Slice(0,3) results in a vulnerability
score of 29 whereas Core(0,2) ↔ Slice(2,3), the optimal
placement, has a vulnerability score of 32.

D Model Verification Data

Table 2 shows the results used to verify our analytical model
from Section 8.5. In general, higher vulnerability scores cor-
respond to better bit-classification accuracies. For example,
positioning the attacker on Core(0,2)↔ Slice(2,3) (vulnera-
bility score of 32) gives an 87.4% accuracy when leaking an
RSA key bit while positioning the attacker on Core(2,1)↔
Slice(4,5) (vulnerability score of 2) yields a 65.4% accuracy.

E Mitigation Evaluation Data

Table 3 shows the results used in the attack mitigation analysis
from Section 9. For every possible victim core location, we
compute the vulnerability score after reserving the cores that
contribute to the top k vulnerability scores.

17

Attacker Attacker Vuln RSA ECDSA

Core ID Slice ID Score Acc Prec Rec Acc Prec Rec

(2,0) (4,5) 10 77.2 76.0 60.2 68.7 71.0 62.9
(3,0) (2,0) 20 71.4 71.7 49.9 70.4 68.0 81.4
(0,1) (2,5) 5 69.1 65.2 51.6 58.7 57.5 60.4
(1,1) (2,5) 5 66.2 59.4 50.7 61.8 60.5 64.9
(2,1) (4,5) 2 65.4 56.8 52.3 61.5 60.8 62.8
(3,1) (2,0) 20 76.8 76.9 59.6 66.6 68.0 60.6
(4,1) (3,0) 10 66.2 62.0 47.1 69.0 71.7 65.8
(0,2) (2,3) 32 87.4 83.6 83.6 75.8 77.4 70.8
(1,2) (2,5) 5 68.1 59.0 48.8 65.5 65.0 69.2
(2,2) (4,1) 4 69.7 65.4 51.7 62.0 60.0 61.5
(3,2) (2,0) 20 79.0 75.4 65.7 75.1 81.6 66.8
(0,3) (2,1) 7 63.9 56.4 45.0 65.9 64.4 70.0
(1,3) (2,1) 7 64.9 61.0 42.3 63.6 64.8 63.9
(2,3) (4,1) 4 67.5 60.6 47.1 64.8 63.0 66.6
(4,3) (3,0) 10 68.4 77.9 32.3 63.0 61.0 68.2
(0,4) (1,2) 7 65.2 58.1 44.2 63.0 64.5 60.4
(1,4) (2,2) 5 66.4 59.0 50.7 62.7 61.1 70.2
(2,4) (3,2) 4 65.0 57.8 48.2 60.8 61.2 59.4
(3,4) (2,0) 20 74.2 74.0 57.1 72.5 74.2 67.5
(4,4) (3,0) 10 67.1 67.2 50.4 64.6 62.9 64.5
(0,5) (2,1) 7 63.7 53.0 44.6 61.9 62.0 62.4
(2,5) (4,1) 4 64.5 55.2 47.5 62.2 60.3 63.8
(3,5) (2,0) 20 74.5 71.6 58.4 67.2 73.2 58.4

Table 2: Classification percent accuracy (Acc), precision (Prec), and recall (Rec) for various optimal attacker placements. The
victim was pinned on (0,0).

Victim Core Number of reserved cores (k)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

(0,0) 32 20 20 20 20 20 10 10 10 10 7 7 7 7 5 5 5 5 4 4 4 4 2 0 0
(2,0) 29 10 10 10 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2 2 2 0 0 0 0
(3,0) 32 20 20 20 20 20 20 10 7 7 5 5 5 5 4 4 4 4 4 2 2 2 2 0 0
(0,1) 32 32 32 32 32 32 32 32 32 32 32 32 32 32 16 7 5 5 5 5 5 3 3 0 0
(1,1) 20 20 20 16 10 5 5 5 5 5 5 4 4 3 3 2 2 2 2 2 2 0 0 0 0
(2,1) 13 12 12 12 12 12 12 10 10 10 4 2 2 2 2 2 2 2 2 0 0 0 0 0 0
(3,1) 20 20 20 20 20 20 10 7 6 5 5 5 5 4 3 3 2 2 2 2 2 2 0 0 0
(4,1) 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 16 7 5 5 5 3 3 0 0
(0,2) 32 32 32 32 32 32 32 32 32 32 32 32 32 32 30 15 5 4 4 4 4 4 3 0 0
(1,2) 20 20 20 15 10 5 5 5 4 4 4 4 3 3 2 2 2 2 1 1 1 0 0 0 0
(2,2) 27 12 12 12 12 12 12 12 10 10 10 2 2 2 1 1 1 1 1 1 0 0 0 0 0
(3,2) 30 20 20 20 20 20 20 15 10 6 5 5 4 4 3 2 2 1 1 1 1 1 0 0 0
(0,3) 32 32 32 32 32 32 32 32 32 32 32 32 32 32 30 15 5 4 4 4 4 4 3 0 0
(1,3) 20 20 20 15 10 4 4 4 4 4 3 3 3 2 2 2 2 1 1 1 1 0 0 0 0
(2,3) 27 12 12 12 12 12 12 12 2 2 2 2 1 1 1 1 1 1 1 1 0 0 0 0 0
(4,3) 20 20 20 20 15 12 12 12 12 12 12 10 5 5 4 4 3 3 2 2 1 1 0 0 0
(0,4) 32 32 32 32 32 32 32 32 32 32 32 32 32 32 16 7 5 5 5 4 4 3 3 0 0
(1,4) 20 20 20 16 10 7 5 5 5 5 5 4 4 4 3 3 2 2 2 2 2 0 0 0 0
(2,4) 13 12 12 12 12 12 12 10 10 10 4 4 2 2 2 2 2 2 2 0 0 0 0 0 0
(3,4) 20 20 20 20 20 20 16 10 7 6 5 5 5 4 3 3 2 2 2 2 2 2 0 0 0
(4,4) 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 7 5 5 5 5 3 3 0 0
(0,5) 31 20 20 20 20 20 10 10 10 10 7 7 7 7 5 5 5 5 4 4 4 4 2 0 0
(2,5) 29 10 10 10 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2 2 2 0 0 0 0
(3,5) 20 20 20 20 20 20 10 7 5 5 5 5 5 5 4 4 4 4 4 2 2 2 2 0 0

Table 3: Vulnerability scores for each victim core for all numbers of reserved cores.

18

	Introduction
	Challenges of Exploiting Mesh Interconnects
	This Paper

	Background
	Cache Architecture
	On-chip Interconnect
	Microarchitectural Side Channels

	Target Architecture and Tile Layout
	Threat Model
	Designing Receivers and Transmitters
	Designing the Receiver
	Designing the Transmitter

	Reverse Engineering the Mesh Interconnect
	Traffic Flows
	Lane Scheduling Policy
	Priority Arbitration Policy
	Case Studies of Timing Measurement

	Interconnect Covert Channel Attacks
	Interconnect Side-Channel Attacks
	Victim Setup
	Attacker Setup
	Demonstrating Example of Leaking a Single Bit
	Full Key Recovery
	Impact of Attacker and Victim Placements

	Software-Based Mitigations
	Related Work
	Conclusion
	Determining Address Mapping
	Inferring Tile Layout and Mapping
	Side-Channel Attack Placement
	Model Verification Data
	Mitigation Evaluation Data

