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• First part based very loosely on [Abramson 63].

• Information theory usually formulated in terms of information

channels and coding — will not discuss those here.

1. Information

2. Entropy

3. Mutual Information

4. Cross Entropy and Learning
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Information

• information 6= knowledge

Concerned with abstract possibilities, not their meaning

• information: reduction in uncertainty

Imagine:

#1 you’re about to observe the outcome of a coin flip

#2 you’re about to observe the outcome of a die roll

There is more uncertainty in #2

Next:

1. You observed outcome of #1 → uncertainty reduced to zero.

2. You observed outcome of #2 → uncertainty reduced to zero.

=⇒ more information was provided by the outcome in #2
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Definition of Information

(After [Abramson 63])

Let E be some event which occurs with probability

P(E). If we are told that E has occurred, then we

say that we have received

I(E) = log2
1

P(E)

bits of information.

• Base of log is unimportant — will only change the units

We’ll stick with bits, and always assume base 2

• Can also think of information as amount of ”surprise” in E

(e.g. P(E) = 1, P(E) = 0)

• Example: result of a fair coin flip (log2 2 = 1 bit)

• Example: result of a fair die roll (log2 6 ≈ 2.585 bits)
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Information is Additive

• I(k fair coin tosses) = log 1
1/2k = k bits

• So:

– random word from a 100,000 word vocabulary:

I(word) = log100,000 = 16.61 bits

– A 1000 word document from same source:

I(document) = 16,610 bits

– A 480x640 pixel, 16-greyscale video picture:

I(picture) = 307,200 · log 16 = 1,228,800 bits

• =⇒ A (VGA) picture is worth (a lot more than) a 1000 words!

• (In reality, both are gross overestimates.)

Carnegie
Mellon 5 IT tutorial, Roni Rosenfeld, 1999

Entropy

A Zero-memory information source S is a source that emits sym-

bols from an alphabet {s1, s2, . . . , sk} with probabilities {p1, p2, . . . , pk},

respectively, where the symbols emitted are statistically indepen-

dent.

What is the average amount of information in observing the

output of the source S?

Call this Entropy:

H(S) =
∑

i

pi · I(si) =
∑

i

pi · log
1

pi
= EP [ log

1

p(s)
]

*
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Alternative Explanations of Entropy

H(S) =
∑

i

pi · log
1

pi

1. avg amt of info provided per symbol

2. avg amount of surprise when observing a symbol

3. uncertainty an observer has before seeing the symbol

4. avg # of bits needed to communicate each symbol

(Shannon: there are codes that will communicate these sym-

bols with efficiency arbitrarily close to H(S) bits/symbol;

there are no codes that will do it with efficiency < H(S)

bits/symbol)
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Entropy as a Function of a Probability Distribution

Since the source S is fully characterized byP = {p1, . . . pk} (we

don’t care what the symbols si actually are, or what they stand

for), entropy can also be thought of as a property of a probability

distribution function P : the avg uncertainty in the distribution.

So we may also write:

H(S) = H(P) = H(p1, p2, . . . , pk) =
∑

i

pi log
1

pi

(Can be generalized to continuous distributions.)
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Properties of Entropy

H(P) =
∑

i

pi · log
1

pi

1. Non-negative: H(P) ≥ 0

2. Invariant wrt permutation of its inputs:

H(p1, p2, . . . , pk) = H(pτ(1), pτ(2), . . . , pτ(k))

3. For any other probability distribution {q1, q2, . . . , qk}:

H(P) =
∑

i

pi · log
1

pi
<

∑

i

pi · log
1

qi

4. H(P) ≤ log k, with equality iff pi = 1/k ∀i

5. The further P is from uniform, the lower the entropy.
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Special Case: k = 2

Flipping a coin with P(“head”)=p, P(“tail”)=1-p

H(p) = p · log
1

p
+ (1 − p) · log

1

1 − p

Notice:

• zero uncertainty/information/surprise at edges

• maximum info at 0.5 (1 bit)

• drops off quickly
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Special Case: k = 2 (cont.)

Relates to: ”20 questions” game strategy (halving the space).

So a sequence of (independent) 0’s-and-1’s can provide up to 1

bit of information per digit, provided the 0’s and 1’s are equally

likely at any point. If they are not equally likely, the sequence

provides less information and can be compressed.
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The Entropy of English

27 characters (A-Z, space).

100,000 words (avg 5.5 characters each)

• Assuming independence between successive characters:

– uniform character distribution: log27 = 4.75 bits/character

– true character distribution: 4.03 bits/character

• Assuming independence between successive words:

– unifrom word distribution: log100,000/6.5 ≈ 2.55 bits/character

– true word distribution: 9.45/6.5 ≈ 1.45 bits/character

• True Entropy of English is much lower!
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Two Sources

Temperature T : a random variable taking on values t

P(T=hot)=0.3

P(T=mild)=0.5

P(T=cold)=0.2

=⇒ H(T)=H(0.3, 0.5, 0.2) = 1.48548

huMidity M : a random variable, taking on values m

P(M=low)=0.6

P(M=high)=0.4

=⇒ H(M) = H(0.6,0.4) = 0.970951

T, M not independent: P(T = t, M = m) 6= P(T = t) ·P(M = m)
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Joint Probability, Joint Entropy

cold mild hot

low 0.1 0.4 0.1 0.6
high 0.2 0.1 0.1 0.4

0.3 0.5 0.2 1.0

• H(T) = H(0.3,0.5,0.2) = 1.48548

• H(M) = H(0.6,0.4) = 0.970951

• H(T) + H(M) = 2.456431

• Joint Entropy: consider the space of (t, m) events H(T, M) =
∑

t,m P(T = t, M = m) · log 1
P (T=t,M=m)

H(0.1,0.4,0.1,0.2,0.1,0.1) = 2.32193

Notice that H(T, M) < H(T) + H(M) !!!
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Conditional Probability, Conditional Entropy

P(T = t|M = m)

cold mild hot

low 1/6 4/6 1/6 1.0
high 2/4 1/4 1/4 1.0

Conditional Entropy:

• H(T |M = low) = H(1/6,4/6,1/6) = 1.25163

• H(T |M = high) = H(2/4,1/4,1/4) = 1.5

• Average Conditional Entropy (aka equivocation):

H(T/M) =
∑

m P(M = m) · H(T |M = m) =

0.6 · H(T |M = low) + 0.4 · H(T |M = high) = 1.350978

How much is M telling us on average about T?

H(T) − H(T |M) = 1.48548 − 1.350978 ≈ 0.1345 bits
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Conditional Probability, Conditional Entropy

P(M = m|T = t)

cold mild hot

low 1/3 4/5 1/2
high 2/3 1/5 1/2

1.0 1.0 1.0

Conditional Entropy:

• H(M |T = cold) = H(1/3,2/3) = 0.918296

• H(M |T = mild) = H(4/5,1/5) = 0.721928

• H(M |T = hot) = H(1/2,1/2) = 1.0

• Average Conditional Entropy (aka Equivocation):

H(M/T) =
∑

t P(T = t) · H(M |T = t) =

0.3 · H(M |T = cold) + 0.5 · H(M |T = mild) + 0.2 · H(M |T =

hot) = 0.8364528

How much is T telling us on average about M?

H(M) − H(M |T) = 0.970951 − 0.8364528 ≈ 0.1345 bits
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Average Mutual Information

I(X;Y ) = H(X) − H(X/Y )

=
∑

x
P(x) · log

1

P(x)
−

∑

x,y
P(x, y) · log

1

P(x|y)

=
∑

x,y
P(x, y) · log

P(x|y)

P(x)

=
∑

x,y
P(x, y) · log

P(x, y)

P(x)P(y)

Properties of Average Mutual Information:

• Symmetric (but H(X) 6= H(Y ) and H(X/Y ) 6= H(Y/X))

• Non-negative (but H(X) − H(X/y) may be negative!)

• Zero iff X, Y independent

• Additive (see next slide)
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Mutual Information Visualized

H(X, Y ) = H(X) + H(Y ) − I(X; Y )
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Three Sources

From Blachman:

(”/” means ”given”. ”;” means ”between”. ”,” means ”and”.)

• H(X, Y/Z) = H({X, Y } / Z)

• H(X/Y, Z) = H(X / {Y, Z})

• I(X; Y/Z) = H(X/Z) − H(X/Y, Z)

•

I(X; Y ;Z) = I(X; Y ) − I(X;Y/Z)

= H(X, Y, Z) − H(X, Y ) − H(X, Z) − H(Y, Z) + H(X) + H(Y ) + H

=⇒ Can be negative!

• I(X; Y, Z) = I(X; Y ) + I(X;Z/Y ) (additivity)

• But: I(X;Y ) = 0,I(X;Z) = 0 doesn’t mean I(X;Y, Z) = 0!!!
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A Markov Source

Order-k Markov Source: A source that ”remembers” the last k

symbols emitted.

Ie, the probability of emitting any symbol depends on the last k

emitted symbols: P(sT=t|sT=t−1, sT=t−2, . . . , sT=t−k)

So the last k emitted symbols define a state, and there are qk

states.

First-order markov source: defined by qXq matrix: P(si|sj)

Example: ST=t is position after t random steps
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Approximating with a Markov Source

A non-Markovian source can still be approximated by one.

Examples: English characters: C = {c1, c2, . . .}

1. Uniform: H(C) = log27 = 4.75 bits/char

2. Assuming 0 memory: H(C) = H(0.186, 0.064,0.0127, . . .) =

4.03 bits/char

3. Assuming 1st order: H(C) = H(ci/ci−1) = 3.32 bits/char

4. Assuming 2nd order: H(C) = H(ci/ci−1, ci−2) = 3.1 bits/char

5. Assuming large order: Shannon got down to ≈ 1 bit/char
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Modeling an Arbitrary Source

Source D(Y ) with unknown distribution PD(Y )

(recall H(PD) = EPD
[log 1

PD(Y )
] )

Goal: Model (approximate) with learned distribution PM(Y )

What’s a good model PM(Y )?

1. RMS error over D’s parameters ⇒ but D is unknown!

2. Predictive Probability: Maximize the expected log-likelihood

the model assigns to future data from D
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Cross Entropy

M∗ = argmax
M

ED[logPM(Y )]

= argmin
M

ED[log
1

PM(Y )
]

= CH(PD;PM) ⇐= Cross Entropy

The following are equivalent:

1. Maximize Predictive Probability of PM

2. Minimize Cross Entropy CH(PD;PM)

3. Minimize the difference between PD and PM (in what sense?)
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A Distance Measure Between Distributions

Kullback-Liebler distance:

KL(PD;PM) = CH(PD;PM) − H(PD)

= EPD
[log

PD(Y )

PM(Y )
]

Properties of KL distance:

1. Non-negative. KL(PD;PM) = 0 ⇐⇒ PD = PM

2. Generally non-symmetric

The following are equivalent:

1. Maximize Predictive Probability of PM for distribution D

2. Minimize Cross Entropy CH(PD;PM)

3. Minimize the distance KL(PD;PM)
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