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Abstract
Virtual democracy is an approach to automating
decisions, by learning models of the preferences
of individual people, and, at runtime, aggregat-
ing the predicted preferences of those people on
the dilemma at hand. One of the key questions
is which aggregation method — or voting rule —
to use; we offer a novel statistical viewpoint that
provides guidance. Specifically, we seek voting
rules that are robust to prediction errors, in that
their output on people’s true preferences is likely
to coincide with their output on noisy estimates
thereof. We prove that the classic Borda count
rule is robust in this sense, whereas any voting
rule belonging to the wide family of pairwise-
majority consistent rules is not. Our empirical
results further support, and more precisely mea-
sure, the robustness of Borda count.

1. Introduction
One of the most basic ideas underlying democracy is that
complicated decisions can be made by asking a group of peo-
ple to vote on the alternatives at hand. As a decision-making
framework, this paradigm is versatile, because people can
express a sensible opinion about a wide range of issues.
One of its seemingly inherent shortcomings, though, is that
voters must take the time to cast a vote — hopefully an
informed one — every time a new dilemma arises.

But what if we could predict the preferences of voters —
instead of explicitly asking them each time — and then ag-
gregate those predicted preferences to arrive at a decision?
This is exactly the idea behind the work of Noothigattu et al.
(2018), who are motivated by the challenge of automating
ethical decisions. Specifically, their approach consists of
three1 steps: first, collect preferences from voters on exam-
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ple dilemmas; second, learn models of their preferences,
which generalize to any (previously unseen) dilemma; and
third, at runtime, use those models to predict the voters’
preferences on the current dilemma, and aggregate the pre-
dicted preferences to reach a decision. The idea is that we
would ideally like to consult the voters on each decision,
but in order to automate those decisions we instead use the
models that we have learned as a proxy for the flesh and
blood voters. In other words, the models serve as virtual
voters, which is why we refer to this paradigm as virtual
democracy.

Since 2017, we have been building on this approach in a
collaboration with a non-profit that provides on-demand
food donation distribution services. The goal is to design
and deploy an algorithm that would automatically make the
decisions they most frequently face: given an incoming food
donation, which recipient organization (such as a housing
authority or food pantry) should receive it? The voters in
our implementation are stakeholders: donors, recipients,
volunteers (who pick up the food from the donor and de-
liver it to the recipient), and employees. We have collected
roughly 100 pairwise comparisons from each voter, where
in each comparison, the voter is provided information about
the type of donation, as well as seven relevant features of
the two alternatives that are being compared, e.g., the dis-
tance between donor and recipient, and when the recipient
last received a donation. Using this data, we have learned
a model of the preferences of each voter, which allows us
to predict the voter’s preference ranking over hundreds of
recipients. And given a predicted ranking for each voter, we
map them into a ranking over the alternatives by applying a
voting rule.

While this implementation sounds simple enough, the choice
of voting rule can have a major impact on the efficacy of
the system. In fact, the question of which voting rule to
employ is one of the central questions in computational so-
cial choice (Brandt et al., 2016), and in social choice theory
more broadly. A long tradition of impossibility results estab-
lishes that there are no perfect voting rules (Arrow, 1951),
so the answer, such as it is, is often context-dependent.

The central premise of this paper is that, in the context of
virtual democracy, certain statistical considerations should
guide the choice of voting rule. Indeed, the voting rule
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inherently operates on noisy predictions of the voters’ true
preferences, yet one might hope that it would still output
the same ranking as it would in the ‘real’ election based on
the voters’ true preferences (after all, this is the ideal that
virtual democracy is trying to approximate). Our research
question, therefore, is

... which voting rules have the property that their
output on the true preferences is likely to coincide
with their output on noisy estimates thereof?

1.1. Our Approach and Results

Our technical approach relies on the observation that the
classic Mallows (1957) model is an unusually good fit with
our problem. Typically the Mallows model describes situ-
ations where there is a true ranking of the alternatives σ∗.
The probability that voter i would be associated with a given
ranking σi decreases exponentially with the number of pairs
of alternatives on which σi and σ∗ disagree (formally known
as the Kendall tau distance). The model is parameterized
by a parameter φ ∈ (0, 1], which is directly related to the
probability that σi agrees with σ∗ on any particular pair of al-
ternatives. This model is very well studied (see Section 1.2),
but, even in situations where there is a ground-truth ranking,
the Mallows model may not be an accurate representation
of reality (Mao et al., 2013). This observation has motivated
a body of work on generalized (Caragiannis et al., 2016;
2014) and adversarial (Procaccia et al., 2016; Benade et al.,
2017) noise models.

In our setting each voter has a (possibly different) true rank-
ing σ∗i , and the voter’s predicted ranking σi is drawn from a
Mallows distribution around σ∗i . Crucially, since the learn-
ing algorithm is, in fact, trying to predict pairwise compar-
isons (which make up the training set), the accuracy of the
predictor can be directly mapped to the Mallows parameter
φ. In other words, instead of making the classic assumption
that voters may fail to identify the ordering of some pairs of
alternatives with some probability, we are essentially observ-
ing that the machine learning algorithm fails to accurately
predict some of the pairwise comparisons, and mapping that
to a separate Mallows model for each voter. To drive the
point home, although the Mallows model is widely believed
to be a tenuous fit with previously studied applications (as
discussed earlier), it is intuitively the correct way of rea-
soning about the errors that arise when machine learning
algorithms predict rankings based on pairwise comparisons.
This insight is a key part of our conceptual contribution.

Our main positive result (Theorem 1) is that the classic
Borda count rule is robust to random noise, that is, it satis-
fies the property stated earlier, in a precise sense. Specifi-
cally, we establish an upper bound on the probability that
two alternatives are ranked differently when Borda count is
applied to the true preferences and to their noisy estimates.

The bound depends on the parameters of the model, as well
as on the difference between the scores of the two alterna-
tives in the true profile. On a high level, the theorem implies
that if one alternative is stronger than another by a moderate
margin under the true profile, Borda count is highly unlikely
to swap the two when given noisy preferences.

By contrast, we show that voting rules belonging to the wide
family of pairwise-majority consistent rules are not robust
(Theorem 2). We do this by constructing an instance where
there are significant margins between alternatives, yet any
voting rule belonging to this family is likely to flip a pair of
alternatives.

Finally, we provide empirical results that further strengthen
our case for the robustness of Borda count. Specifically,
these results suggest that the probability of making a mis-
take on a pair of alternatives decreases very quickly with
their average Borda score difference, independently of the
distribution used to generate the underlying true preferences.

1.2. Related Work

A number of recent papers have explored the idea of au-
tomating ethical decisions via machine learning and social
choice (Conitzer et al., 2017; Freedman et al., 2018; Nooth-
igattu et al., 2018). As mentioned above, our work builds
on the framework proposed by Noothigattu et al. (2018).
However, it is important to clarify why the questions we
explore here do not arise in their work. Since they deal
with 1.3 million voters, and split-second decisions (what
should a self-driving car do in an emergency?), they can-
not afford to consult the individual voter models at runtime.
Hence, they have added an additional summarization step,
whereby the individual voter models are summarized as a
single, concise model of societal preferences (with possibly
significant loss to accuracy). The structure of the summary
model is such that, for any given set of alternatives, almost
all reasonable voting rules agree on the outcome (this is
their main theoretical result), hence the choice of voting
rule is a nonissue under that particular implementation. By
contrast, our work is motivated by the food bank application
of the virtual democracy framework, where the number of
voters is small and speed is not of the essence, hence we
predict the preferences of individual voters at runtime.

It is worth mentioning that another prominent approach to
the allocation of food donations is based on (online) fair
division (Aleksandrov et al., 2015). That said, it is important
to emphasize that we study a general question about the
foundations of the virtual democracy paradigm, that is, our
work is not technically tied to any particular application.

Finally, the Mallows model underlies a large body of work
in computational social choice (Conitzer & Sandholm, 2005;
Conitzer et al., 2009; Elkind et al., 2010; Elkind & Shah,
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2014; Xia et al., 2010; Xia & Conitzer, 2011; Lu & Boutilier,
2011; Procaccia et al., 2012; Jiang et al., 2014; Azari Soufi-
ani et al., 2012; 2013; 2014; Mao et al., 2013; Caragiannis
et al., 2014; 2016; Xia, 2016). Our model is loosely related
to that of Jiang et al. (2014), where individual rankings are
derived from a single ground truth ranking via a Mallows
model, and then a second Mallows model is applied to ob-
tain a noisy version of each voter’s ranking. Our technical
question is completely different from theirs.

2. Preliminaries
We deal with a set of alternatives A such that |A| = m.
Preferences over A are represented via a ranking σ ∈ L,
where L = L(A) is the set of rankings (or permutations)
overA. We denote by σ(j) the alternative ranked in position
j in σ, where position 1 is the highest, and m the lowest.
We denote by σ−1(x) the position in which x ∈ A is ranked.
We use x �σ y to denote that x is preferred to y according
to σ, i.e., that σ−1(x) < σ−1(y).

The setting also includes a set of voters N = {1, . . . , n}.
Each voter i ∈ N is associated with a ranking σi ∈ L. The
preferences of N are represented as a preference profile
σ = (σ1, . . . , σn) ∈ Ln.

Given a preference profile σ ∈ Ln, we say that x ∈ A beats
y ∈ A in a pairwise comparison if a majority of voters
prefer x to y, that is,

|{i ∈ N : x �σi y}| > n/2.

The profile σ induces a weighted pairwise majority graph
Γ(σ), where we have a vertex for each alternative in A. For
each x ∈ A and y ∈ A \ {x}, there is an edge from x to y if
x beats y in a pairwise comparison; the weight on this edge
is

w(x,y)(σ) , |{i ∈ N : x �σi y}| − |{i ∈ N : y �σi x}|.

2.1. Voting Rules

A voting rule (formally known as a social welfare function)
is a function f : Ln → L, which receives a preference
profile as input, and returns a ‘consensus’ ranking of the
alternatives. We are especially interested in two families of
voting rules.

• Positional scoring rules. Each such rule is defined by a
score vector (α1, . . . , αm). Given a preference profile
σ, the score of alternative x is

n∑
i=1

ασ−1
i (x).

In words, each voter who ranks x in position p gives
αp points to x. The positional scoring rule returns

a ranking of the alternatives by non-increasing score,
with ties broken arbitrarily.

Our main positive result pertains to the classic Borda
count voting rule, which is the positional scoring rule
defined by the score vector (m − 1,m − 2, . . . , 0).
Denote the Borda count score of x ∈ A in σ ∈ Ln by

B(x,σ) ,
n∑
i=1

(
m− σ−1i (x)

)
.

• Pairwise-majority consistent (PMC) rules (Caragiannis
et al., 2016): These rules satisfy a fairly weak require-
ment that extends the classic notion of Condorcet con-
sistent social choice functions: Given a profile σ, if the
pairwise majority graph Γ(σ) = (A,E) is such that for
all x ∈ A, y ∈ A\{x}, either (x, y) ∈ E or (y, x) ∈ E
(i.e., it is a tournament), and, moreover, Γ is acyclic,
then f(σ) = τ for the unique ranking τ induced by
Γ(σ). Caragiannis et al. (2016) give many examples
of prominent voting rules that are PMC, including the
Kemeny rule, the Slater rule, the ranked pairs method,
Copeland’s method, and Schulze’s method.

2.2. The Mallows Model

Let the Kendall tau distance between two rankings σ, σ′ ∈ L
be

dKT(σ, σ′) , |{(x, y) ∈ A2 : x �σ y ∧ y �σ′ x}|.

In words, it is the number of pairs of alternatives on which
σ and σ′ disagree. For example, if σ = (a, b, c, d), and
σ′ = (a, c, d, b), then dKT(σ, σ′) = 2.

In the Mallows (1957) model, there is a ground truth ranking
σ?, which induces a probability distribution over perceived
rankings. Specifically, the probability of a ranking σ, given
the ground truth ranking σ?, is given by

Pr[σ | σ?] , φdKT(σ,σ
?)

Z
,

where φ ∈ (0, 1] is a parameter, and

Z ,
∑
σ′∈L

φdKT(σ
′,σ?)

is a normalization constant. Note that for φ = 1 this is a
uniform distribution, whereas the probability of σ? goes to
1 as φ goes to 0. In the rest of the paper we assume that
φ < 1 for ease of exposition.

The repeated insertion model (Doignon et al., 2004) pro-
vides a convenient alternative way of reasoning about the
Mallows model. In the former model, alternatives are se-
quentially inserted into a partial ranking, until all alter-
natives have been ranked. Specifically, after alternatives
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σ?(1), . . . , σ?(` − 1) have been inserted, the alternative
σ?(`) is inserted into the first position with probability P `1 ,
into the second with probability P `2 , and so on until P `` . The
following lemma connects the parameters of the random
insertion model with the parameter φ of the Mallows model.

Lemma 1 (Doignon et al. 2004). The Mallows model with
parameter φ ∈ (0, 1) induces the same distribution over
rankings as the random insertion model with parameters

P `i = φ`−i · 1− φ
1− φ`

.

We also require a lemma that gives bounds on the probability
that the position of an element x in a ranking sampled from
the Mallows model with parameter φ is far from its position
in the true ranking.

Lemma 2 (Braverman & Mossel 2009). Let σ be sampled
from a Mallows model with parameter φ and true ranking
σ?. Then for all alternatives x ∈ A and all s ≥ 0,

Pr[σ−1(x) ≤ (σ?)−1(x)− s] ≤ φs

1− φ

Pr[σ−1(x) ≥ (σ?)−1(x) + s] ≤ φs

1− φ
.

3. From Predictions to Mallows
In the virtual democracy framework, we are faced at runtime
with a dilemma that induces a set of alternatives A. For
example, when a food bank receives a donation, the set of
alternatives is the current set of recipient organizations, each
associated with information specific to the current donation,
such as the distance between the donor and the recipient.
Each voter i ∈ N has a ranking σ?i ∈ L over the given set
of alternatives; together these rankings comprise the true
preference profile σ?.

One of the novel components of this paper is the assumption
that, for each voter i ∈ N , we obtain a predicted ranking
σi drawn from a Mallows distribution with parameter φ and
true ranking σ?i . We emphasize that, in contrast to almost
all work on the Mallows Model, in our setting each voter
has her own true ranking.

Why is the Mallows Model a good choice here? Recall that
we are building preference models using pairwise compar-
isons as training data. When validating a model, we there-
fore test its accuracy on pairwise comparisons. And the
Mallows model itself, because it is defined via the Kendall
tau distance, is essentially determined by pairwise compar-
isons. In fact, the Mallows model (with parameter φ and true
ranking σ?) is equivalent to the following generative pro-
cess: for each pair of alternatives x and y such that x �σ? y,
x is preferred to y with probability 1/(1 + φ), and y is pre-
ferred to x with probability φ/(1 + φ); if this preference

relation corresponds to a ranking (i.e., it is transitive), return
that ranking, otherwise restart.

In more detail, let β be the average probability that we
predict a pairwise comparison correctly; in our food bank
implementation, β ≈ 0.9. Based on the preceding discus-
sion, one might be tempted to set β = 1/(1 + φ), i.e., set
β to be the probability of getting the relative ordering of
two adjacent alternatives correctly. While this is not un-
reasonable (and would have been very convenient for us),
for β ≈ 0.9 it would lead to extremely high probability
of correctly ranking alternatives that are, say, 30 positions
apart in the ground truth ranking. In order to moderate this
effect, we define another parameter κ ∈ {2, . . . ,m}, and
assume that our observed pairwise comparisons are between
σ?i (1) (the top-ranked alternative in the true ranking of i)
and σ?i (κ) (the alternative ranked in position κ). Formally,
the parameters β and κ are such that, for the ranking σi
sampled from a Mallows Model with φ and σ?i ,

Pr [σ?i (1) �σi σ?i (κ)] = β. (1)

It is worth noting that the implicit assumption that we are
observing comparisons between σ?i (1) and σ?i (κ) specifi-
cally is not meant to be realistic. Rather, the idea is that
there is some appropriate value of κ such that the observed
accuracy β can be related to the underlying Mallows model
through Equation (1), and, if we can establish results that
are general with respect to the choice of κ, they would carry
over to the real world.

Moving from conceptual issues to novel technical results,
we start with the following lemma, which expresses the
probability on the right hand side of Equation (1) in terms
of the Mallows parameter φ.

Lemma 3. Let σi be sampled from a Mallows Model with
parameter φ and true ranking σ?i . Then

Pr [σ?i (1) �σi σ?i (κ)] =
κ

1− φκ
− κ− 1

1− φκ−1
.

Equation (1) and Lemma 3 imply that

β =
κ

1− φκ
− κ− 1

1− φκ−1
,

but for subsequent results we need to express φ in terms of
β and κ, and it is unclear whether this can be done in closed
form. Nevertheless, we are are able to derive a bound that
suffices for our purposes.

Lemma 4. For β and κ defined as in Equation (1), it holds
that

φ ≤
(

1− β
β

) 1
2κ−1

.

We relegate the proofs of both lemmas to Appendix A. Note
that Lemma 3 can be proved via a theorem of Désir et al.
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(2018). Their theorem gives a closed form for the proba-
bility that an alternative x is ranked first out of a subset of
alternatives S. This closed form is complex, and requires
quite a bit of additional notation, so we instead derive the
probability we are interested in, i.e., the probability that
σ?i (κ) is ranked above σ?i (1), from scratch.

4. Robustness of Borda Count
In this section, we rigorously establish the robustness of
Borda count to prediction error by showing that it satisfies a
formal version of the desired property stated in Section 1.
We do this by building on the machinery developed in Sec-
tion 3, as well as additional lemmas that we will state and
prove momentarily.

As we have already discussed, we do not have access to the
Mallows parameter φ. Instead, we can measure β, the prob-
ability that we correctly predict a pairwise comparison of
alternatives that are κ positions apart. On a very high level,
the theorem bounds the probability that the noisy Borda
ranking (based on the sampled profile) would disagree with
the true Borda ranking (based on the true profile) on a given
pair of alternatives.

Theorem 1. For any β > 1/2 and ε > 0 there exists a
universal constant T = T (β, ε) such that for all n,m, κ ∈
N such that n,m ≥ 2, for all s ≥ Tκ log κ, for all σ? ∈ Ln,
and for all x, x′ ∈ A such that 1

nB(x,σ?) ≥ 1
nB(x′,σ?)+

2s, it holds that

Pr

[
1

n
B(x,σ) >

1

n
B(x′,σ)

]
≥ 1− εn,

where the probability is taken over the sampling of σ.

Let us discuss the statement of the theorem. First, note that
the probability of mistake, εn, converges to 0 exponentially
fast as n grows, so the theorem immediately implies a “with
high probability” statement. Moreover, one can easily de-
rive such a statement with respect to all pairs of alternatives
(whose Borda scores are sufficiently separated) simultane-
ously, using a direct application of the union bound. Second,
it is intuitive that the separation in Borda scores has to de-
pend on κ, but it is encouraging (and, to us, surprising) that
this dependence is almost linear. In particular, even if κ
is almost linear in m, i.e., κ ∈ o(m/ logm), the theorem
implies that our noisy Borda ranking is highly unlikely to
make mistakes on pairs of alternatives whose average score
difference is linear in m.

Turning to the proof, we start by bounding the probability
that the Borda count score B(x,σ) of an alternative x ∈ A
in the observed profile σ is far from the Borda count score
B(x,σ?) in the true profile σ?. The proof of the following
lemma adapts that of a lemma of (Braverman & Mossel,
2009), which deals with average rank (instead of average

Borda count score), but in the case of a single true ranking,
i.e., σ?i = σ?j , for all i, j.

Lemma 5. For all alternatives x ∈ A, and all s ≥ 0

Pr

[
1

n
B(x,σ) ≤ 1

n
B(x,σ?)− s

]
≤
(

2e(n+ ns− 1)

n− 1
· φs

1− φ

)n
,

Pr

[
1

n
B(x,σ) ≥ 1

n
B(x,σ?) + s

]
≤
(

2e(n+ ns− 1)

n− 1
· φs

1− φ

)n
.

Proof. We prove the first inequality; the proof of the second
is analogous. Given a subset of voters S ⊆ N and a non-
negative vector b = (bi)i∈S ∈ N|S|, let ES,b be the event
that

B(x, σi) ≤ B(x, σ?i )− bi
for all voters i ∈ S, where we abuse notation by using

B(x, σi) , m− σ−1i (x)

to denote the Borda count score of alternative x in the rank-
ing σi. Lemma 2 implies that for all s ≥ 0,

Pr[B(x, σi) ≤ B(x, σ?i )− s] ≤ φs

1− φ
. (2)

Therefore,

Pr[ES,b] =
∏
i∈S

Pr[B(x, σi) ≤ B(x, σ?i )− bi]

≤
∏
i∈S

φbi

1− φ
=

φ
∑
i∈S bi

(1− φ)|S|
,

where the inequality follows from Equation (2).

Let E be the event that 1
nB(x,σ) ≤ 1

nB(x,σ?)−s. Notice
that

E ⊂
⋃

S⊆N,b∈N|S|:
∑
i∈S bi=ns

ES,b,

as there must exist a subset of voters who contribute suffi-
ciently to the difference in Borda scores. Moreover, for
a fixed S, the number of vectors b ∈ N|S| such that∑
i∈S bi = ns is exactly

(|S|+ns−1
|S|−1

)
. Therefore,

Pr[E ] ≤
∑
S⊆N

∣∣∣∣∣
{
b ∈ N|S| :

n∑
i=1

bi = ns

}∣∣∣∣∣ · φns

(1− φ)|S|

≤ 2n ·
(
n+ ns− 1

n− 1

)
· φns

(1− φ)n

≤ 2n ·
(
e(n+ ns− 1)

n− 1

)n−1
·
(

φs

1− φ

)n
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≤
(

2e(n+ ns− 1)

n− 1
· φs

1− φ

)n
,

where we used the fact that
(
n
t

)
≤ ( ent )t.

Using Lemma 5 we can bound, given the Mallows parameter
φ, the probability that two alternatives, whose Borda count
scores in the true profile σ? are sufficiently far apart, are
ranked by the Borda count voting rule in the correct order
(in the sampled profile σ).

Lemma 6. Let x, x′ ∈ A such that 1
nB(x,σ?) ≥

1
nB(x′,σ?) + 2s. Then

Pr

[
1

n
B(x,σ) >

1

n
B(x′,σ)

]
≥ 1− 2

(
2e(n+ ns− 1)

n− 1
· φs

1− φ

)n
.

Proof. Let E1 be the event that

1

n
B(x,σ) ≤ 1

n
B(x,σ?)− s,

and E2 be the event that

1

n
B(x′,σ) ≥ 1

n
B(x′,σ?) + s.

By Lemma 5 and a union bound we have that

Pr [E1 ∪ E2] ≤ 2

(
2e(n+ ns− 1)

n− 1
· φs

1− φ

)n
.

Next, notice that every time the Borda count scores of x and
x′ in the sampled preference profile are in the wrong order
(or tied), then at least one of E1, E2 occurred, i.e.,

Pr

[
1

n
B(x,σ) ≤ 1

n
B(x′,σ)

]
≤ Pr[E1 ∪ E2].

The lemma directly follows.

Recall that Lemma 4 gives an upper bound on φ as a function
of β and κ. Combining with Lemma 6, we can bound the
probability of getting the correct ranking as a function of β
and κ, and prove our main result.

Proof of Theorem 1. By Lemma 6,

Pr

[
1

n
B(x,σ) >

1

n
B(x′,σ)

]
≥ 1− 2

(
2e(n+ ns− 1)

n− 1
· φs

1− φ

)n
≥ 1− 2

(
4en

n− 1
· sφ

s

1− φ

)n

≥ 1− 2

(
8e · sφ

s

1− φ

)n
.

It suffices to give a bound on s such that

sφs

1− φ
≤ ε

16e
. (3)

By Lemma 4,

φ ≤
(

1− β
β

) 1
2κ−1

.

Since β > 1/2, there is a universal constant c > 1 such that
1−β
β = 1

c . Therefore,

sφs

1− φ
≤ s ·

(
1−β
β

) s
2κ−1

1−
(

1−β
β

) 1
2κ−1

= s · c−
s

2κ−1

1− c−
1

2κ−1

=
s

c
s

2κ−1 − c
s−1
2κ−1

=
s

c
s−1
2κ−1

(
c

1
2κ−1 − 1

)
≤ s

c
s−1
2κ−1 · c

1
2κ−1 (c−1)
c(2κ−1)

≤ c

c− 1
· s(2κ− 1)

c
s

2κ−1
,

where for the penultimate inequality we use the inequality

rz(z1/r − 1) > z1/r(z − 1),

which holds for all z, r ≥ 1,2 with z = c and r = 2κ− 1. It
is now easy to verify that there is a universal constant T > 0
such that if s ≥ Tκ log κ then Equation (3) holds.

It is important to note that it should be possible to extend
Theorem 1 to other positional scoring rules defined by a
score vector (α1, . . . , αm) where αj > αj+1 for all j =
1, . . . ,m− 1. However, Borda count is especially practical
and easy to explain (see Section 7 for more on this), which
is why we focus on it for our positive result.

2To see this, let

f(z, r) ,
rz(z1/r − 1)− z1/r(z − 1)

z

= (r − 1)z1/r + z1/r−1 − r.

Taking the partial derivative with respect to z, we have

∂

∂z
f(z, r) =

(r − 1)(z − 1)z1/r−2

r
,

which is clearly non-negative for z, r ≥ 1. Also, f(1, r) = 0. So,
we have shown that f(z, r) ≥ 0 for all z, r ≥ 1, which implies
the claim.
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5. Non-Robustness of PMC Rules
Theorem 1 shows that Borda count is robust against noisy
perturbations of the preference profile. It is natural to ask
whether ‘many’ voting rules satisfy a similar property. In
this section we answer this question in the negative, by
proving that any voting rule that belongs to the important
family of PMC rules is not robust in a similar sense.

Specifically, recall that under a PMC rule, when the
weighted pairwise majority graph is acyclic, the output
ranking is the topological ordering of the pairwise major-
ity graph. We show that there exist profiles in which the
pairwise majority graph is acyclic and all edge weights are
large, but, with high probability, the noisy profile also has
an acyclic pairwise majority graph which induces a differ-
ent ranking. This means that any PMC rule would return
different rankings when applied to the true profile and the
noisy profile.

Theorem 2. For all δ > 0, φ ∈ (0, 1), and m ∈ N such
that m ≥ 3, there exists n0 ∈ N such that for all n ≥ n0,
there exists a profile σ? ∈ Ln such that Γ(σ?) is acyclic
and all edges have weight Ω(n), but with probability at
least 1−δ Γ(σ) is acyclic and there is a pair of alternatives
on which the unique rankings induced by Γ(σ?) and Γ(σ)
disagree, where the probability is taken over the sampling
of σ.

It is instructive to contrast our positive result, Theorem 1,
with this negative result. On a very high level, the former
result asserts that “if Borda count says that the gaps between
alternatives are significant, then the alternatives will not flip
under Borda count,” whereas the latter says “even if a PMC
rule says that the gaps between alternatives are very signifi-
cant, some alternatives are likely to flip under that rule.” On
a technical level, a subtle difference is that Theorem 1 is
stated for β and κ, whereas Theorem 2 is stated directly for
φ. This actually strengthens the negative result, because a
constant β and κ ∈ ω(1) lead to φ = 1 − o(1), i.e., very
noisy distributions — and still the positive result of Theo-
rem 1 holds. By contrast, the negative result of Theorem 2
is true even when φ is constant, i.e., for settings that are not
nearly as noisy. That said, the two results are not directly
comparable, as Borda count and PMC rules deal with very
different notions of score or weight. Nevertheless, the take-
home message is that the notion of score that defines Borda
count is inherently more robust to random perturbations of
the preference profile.

The proof of Theorem 2 is rather technical, and is relegated
to Appendix B. In a nutshell, we construct a preference
profile σ? with αn voters whose preferences are x? � x1 �
· · · , and (1−α)n voters whose preferences are x1 � · · · �
x?, for α > 1/2. This profile induces a ranking where x? is
first and x1 is second. However, it can be seen that, in the

sampled profile σ, many voters from the first group would
flip x? and x1, leading to a majority who prefer x1 to x?.
Furthermore, we prove the nontrivial claim that Γ(σ) is
likely to be acyclic (‘nontrivial’ because it is unclear there
would not be a cycle involving x?), which completes the
argument.

6. Empirical Results
In Section 4 we have established that Borda count is robust
to prediction error. However, our positive theoretical result,
Theorem 1, only provides asymptotic guarantees. In this sec-
tion, we evaluate the performance of Borda count on profiles
of size that is more representative of real-world instances.
For our evaluation metric, we consider the probability of the
rule flipping alternatives when aggregating noisy rankings
against their difference in Borda score in the underlying true
profile.

All of our code is included as part of the supplementary
material.

6.1. Methodology

Given n voters, m alternatives, a Mallows parameter φ ∈
(0, 1), and a probability p ∈ [0, 1], we generate a true profile
σ? = (σ?1 , . . . , σ

?
n) from a mixture of Mallows models.

Specifically, each ranking is drawn with probability p from
a Mallows model with base ranking x1 � x2 � · · · � xm
and parameter φ, and with probability 1−p from a Mallows
model with base ranking xm � xm−1 � · · · � x1 and
parameter φ.

We then repeatedly generate noisy profiles σ =
(σ1, . . . , σn) where each σi is generated by a Mallows
model centered at σ?i with parameter φ. For every pair
of alternatives (xi, xj) such that B(xi,σ

?) > B(xj ,σ
?)

— that is, xi beat xj when Borda count was applied to the
true profile — we calculate the percentage of noisy pro-
files that flipped the order of xi and xj , i.e., those where
B(xj ,σ) > B(xi,σ). Based on the true difference in
Borda scores B(xi,σ

?) − B(xj ,σ
?), we place this data

point in the appropriate bucket, where the width of each
bucket corresponds to an average Borda score difference of
1. This way we can relate the Borda score difference to the
probability of making a pairwise prediction error. Note that
starting from a mixture of ‘opposite’ ranking models allows
us to vary the distribution over score differences in σ? by
varying p.

6.2. Results

Throughout our experiments, we let n = 100, m = 40,
φ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, and p ∈
{1, 0.7, 0.5}. Our results for p = 1, shown in Figure 1,
plot the average probability of flipping the order of alterna-
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(a) φ = 0.4
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(b) φ = 0.5
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(c) φ = 0.6

0 5 10 15 20 25 30 35 40
Average Borda score difference

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Av
er

ag
e 

er
ro

r p
ro

ba
bi

lit
y

(d) φ = 0.7
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(e) φ = 0.8
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(f) φ = 0.9

Figure 1. p = 1 mixture of Mallows, n = 100 voters, m = 40 alternatives

tives as a function of the difference in average Borda scores
of the alternatives, where comparisons are bucketed by the
difference in average Borda score. For φ ∈ {0.1, 0.2, 0.3},
the observed probability of flipping any two alternatives,
regardless of average Borda score difference, is 0; i.e., there
are no mistakes.

At a high level, error rate decreases with true average Borda
score distance in all experiments. Note that the maximum
observed error rate increases with the Mallows parameter φ,
which is intuitive because higher values of φ imply noisier
(more uniformly random) rankings, so the probability of
swapping alternatives should increase. However, for all
values of φ and under all methods of generating profiles, the
probability of making errors quickly decreases with average
Borda score difference in the true profile.

Similar plots for p = 0.7 and p = 0.5 are included in
Appendix C; these plots support the observation that the
probability of making a mistake depends on the average
Borda score difference, and not on the particular methods
used to sample the underlying true profile.

7. Discussion
Our theoretical and empirical results identify Borda count
as an especially attractive voting rule for virtual democracy,
from a statistical viewpoint. However, Borda count is also

compelling in terms of usability and explainability.

In more detail, in our implemented donor-recipient match-
ing system, clicking on a recommended alternative displays
an explanation for why it was ranked highly by Borda count,
which consists of two components. First, we show the av-
erage position in which the alternative was ranked in the
predicted preferences of each of the four stakeholder groups
(donors, recipients, volunteers, and employees). Note that
it is possible to derive the Borda score of the alternative
from this information, given the weight of each stakeholder
group.3 Second — this is the more novel component —
we show specific features in which the recommended al-
ternative stands out. For example, we might say that the
recommended alternative is ranked 8th in terms of driving
distance. This is interesting because classic social choice
theory does not have features for alternatives, and we are
able to give this type of explanation precisely because our
alternatives are represented as vectors of features (which is
crucial for the application of learning-to-rank algorithms).

Based on the results presented in this paper, as well as
these additional insights, we are using Borda count in our
implemented virtual-democracy-based system.

3These weights were decided by the stakeholders themselves.
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Appendix

A. Omitted Proofs from Section 3
A.1. Proof of Lemma 3

We first compute the probability that the alternative in the first position remains in the first position, i.e., σ?i (1) = σi(1).
Recalling the equivalence between Mallows and the repeated insertion model, the event that σ?i (1) = σi(1) occurs exactly
when no alternative is inserted into the first position during the m− 1 insertions following the very first. By Lemma 1, the
probability that σ?i (j) is inserted into the first position is P j1 = φj−1 · 1−φ

1−φj , and therefore

Pr[σ?i (1) = σi(1)] =

m∏
j=2

(1− P j1 )

=

m∏
j=2

(
1− φj−1 · 1− φ

1− φj

)

=

m∏
j=2

1− φj−1

1− φj
=

1− φ
1− φm

,

(4)

where the last equality holds because the product is telescoping.

Let Lj ⊂ L denote the subset of rankings where alternative σ?i (1) is in position j in σi, i.e., σi ∈ Lj if and only if
σ−1i (σ?i (1)) = j. We analyze the probability qj that σ?i (1) is in position exactly j. This probability can be written as

qj =

∑
σ∈Lj φ

dKT(σ,σ
?)∑

σ′∈L φ
dKT(σ′,σ?)

.

Consider the following bijection between Lj and L1. Starting from a ranking σ ∈ Lj , remove σ?i (1) from the j-th position
and insert it into the first position. This gives a ranking σ′ ∈ L1. The key observation is that dKT(σ, σ?) = dKT(σ′, σ?)+j−1.
This observation lets us simplify qj as follows:

qj =

∑
σ∈Lj φ

dKT(σ,σ
?)∑

σ′∈L φ
dKT(σ′,σ?)

=

∑
σ′∈L1

φdKT(σ
′,σ?)+j−1∑

σ′∈L φ
dKT(σ′,σ?)

= φj−1q1 = φj−1
1− φ

1− φm
,

where the last equality follows from Equation (4). This allows us to directly compute the probability that σ?i (1) is in the top
` positions of σi, by summing up the qj’s:

Pr[σ−1i (σ?i (1)) ≤ `] =
∑̀
j=1

φj−1
1− φ

1− φm

=
1− φ`

1− φ
· 1− φ

1− φm
=

1− φ`

1− φm
.

(5)

Now, let E be the event that σ?i (κ) �σi σ?i (1) . We break E into κ− 1 disjoint events E`, for ` = 1, . . . , κ− 1. In the `-th
event σ?i (κ) is inserted exactly into position ` (under the random insertion model), and σ?i (1) is not in the first `− 1 (out of
κ− 1) positions in the sub-ranking of alternatives {σ?i (1), . . . , σ?i (κ− 1)}. Note that subsequent insertions do not affect the
order between σ?i (1) and σ?i (κ). Therefore,

Pr[E`] = Pκ` ·
(
1− Pr

[
σ−1i (σ?i (1)) ≤ `− 1

])
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= φκ−`
1− φ
1− φκ

·
(

1− 1− φ`−1

1− φκ−1

)
= φκ−`

1− φ
1− φκ

· φ
`−1 − φκ−1

1− φκ−1

= φκ−1
1− φ
1− φκ

· 1− φκ−`

1− φκ−1
,

where the second equality follows from Equation (5). It remains to sum up over all the events:

Pr[E ] =

κ−1∑
`=1

φκ−1
1− φ
1− φκ

· 1− φκ−`

1− φκ−1

= φκ−1
1− φ

(1− φκ)(1− φκ−1)
·
κ−1∑
`=1

(1− φκ−`)

= φκ−1 · 1− φ
(1− φκ)(1− φκ−1)

·
κ−1∑
r=1

(1− φr)

= φκ−1 · 1− φ
(1− φκ)(1− φκ−1)

·
(
φκ + κ(1− φ)− 1

1− φ

)
= φκ−1 · φ

κ + κ(1− φ)− 1

(1− φκ)(1− φκ−1)

= 1 +
κ− 1

1− φκ−1
− κ

1− φκ
.

The probability we are interested in is 1− Pr[E ].

A.2. Proof of Lemma 4

By Lemma 3, β = κ
1−φκ −

κ−1
1−φκ−1 . Simple algebra gives the following.

β =
κ

1− φκ
− κ− 1

1− φκ−1
=
κ− κφκ−1 − (κ− 1)(1− φκ)

(1− φκ−1)(1− φκ)
=

(κ− 1)φκ − κφκ−1 + 1

(1− φκ−1)(1− φκ)
=

(κ− 1)φκ − κφκ−1 + 1

1− φκ−1 − φκ + φ2κ−1
,

or equivalently
β · (1− φκ−1 − φκ + φ2κ−1) = (κ− 1)φκ − κφκ−1 + 1.

Therefore
β · φ2κ−1 − (κ− 1 + β)φκ + (κ− β)φκ−1 − 1 + β = 0. (6)

Let
Qκ,β(x) , β · x2κ−1 − (κ− 1 + β)xκ + (κ− β)xκ−1 + β − 1

be the polynomial above. The Mallows parameter φ is a root of this polynomial, i.e., Qκ,β(φ) = 0. The next claim gives a
rough upper bound on φ.

Claim 1. Qκ,β has a root in (0, κ−β
κ+β−1 ].

Proof. Notice that Qκ,β(0) = β − 1 < 0. Showing that Qκ,β( κ−β
κ+β−1 ) ≥ 0 proves the claim: Qκ,β(x) is a continuous

function and therefore there must be a root in the interval (0, κ−β
κ+β−1 ] by the intermediate value theorem.

To this end, first notice that

Qκ,β

(
κ− β

κ+ β − 1

)
= β ·

(
κ− β

κ+ β − 1

)2κ−1

− 1 + β,
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since

−(κ− 1 + β)

(
κ− β

κ+ β − 1

)κ
+ (κ− β)

(
κ− β

κ+ β − 1

)k−1
= 0.

It remains to show that ( κ−β
κ+β−1 )2κ−1 ≥ 1−β

β .

Let

f(κ, β) ,

(
κ− β

κ+ β − 1

)2κ−1

− 1− β
β

.

First, it is easy to see that f(1, β) and f(2, β) are non-negative. Specifically, for κ = 2 we have that

f(2, β) =

(
2− β
1 + β

)3

− 1− β
β

=
(2β − 1)3

β(1 + β)3
,

which is clearly non-negative.

Next, we compute the derivative with respect to κ:

∂

∂κ
f(κ, β) =

(
κ−β
κ+β−1

)2κ
(κ− β)2

(
(2β − 1)(2κ− 1)− 2(κ− β)(κ+ β − 1) log

(
κ+ β − 1

κ− β

))
.

Showing that this derivative is non-negative for all β ∈ (0.5, 1] and κ ≥ 2 implies that f(κ, β) > 0, which completes the
claim. The first factor ( κ−β

κ+β−1 )2κ/(κ− β)2 is clearly non-negative, so we focus on the second factor.

First,

log

(
κ+ β − 1

κ− β

)
= log

(
1 +

2β − 1

κ− β

)
.

Second, log(1 + x) ≤ x√
1+x

for x ≥ 0. Thus, the second term is at most

2(κ− β)(κ+ β − 1)

2β−1
κ−β√
κ+β−1
κ−β

.

Therefore, showing ∂
∂κf(κ, β) ≥ 0 is equivalent to:

2(κ− β)(κ+ β − 1)

2β−1
κ−β√
κ+β−1
κ−β

≤ (2β − 1)(2κ− 1)

2(κ+ β − 1) ≤ (2κ− 1)

√
κ+ β − 1

κ− β

4(κ+ β − 1)2 ≤ (2κ− 1)2
κ+ β − 1

κ− β
4(κ+ β − 1)(κ− β) ≤ (2κ− 1)2

4(κ2 − κβ + κβ − β2 − κ+ β) ≤ 4κ2 + 1− 4κ

−β2 + β ≤ 1

4
,

which is true for all β ∈ (0.5, 1): the function x2 − x + 1
4 has a unique double root at x = 1

2 , and is positive for x > 1
2 .

This completes the proof of Claim 1.

By Claim 1, the Mallows parameter φ, which is a root of Qκ,β , is at most κ−β
κ+β−1 . Using this fact we can further amplify the

bound on φ. By noticing that −(κ− 1 + β)φκ + (κ− β)φκ−1 ≥ 0, we have that

β · φ2κ−1 − (κ− 1 + β)φκ + (κ− β)φκ−1 − 1 + β ≥ β · φ2κ−1 − 1 + β.
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The left hand side is equal to zero (Equation 6), therefore

φ ≤
(

1− β
β

) 1
2κ−1

.

This concludes the proof of Lemma 4.

B. Proof of Theorem 2
We construct an explicit preference profile σ? ∈ Ln, and then show that with high probability (over the randomness of the
Mallows model) Γ(σ) will disagree with Γ(σ?) for any PMC rule Γ. Let σ? consist of αn Type 1 voters who have the
ranking x? � x1 � x2 � · · · � xm−1, and (1− α)n Type 2 voters who have the ranking x1 � x2 � · · · � xm−1 � x?,
where α > 1/2 will be defined later. Note that we are assuming for ease of exposition that αn is an integer. Since we have
some flexibility in the choice of α, it is easy to drop this assumption when n is large enough.

Now, since α > 1/2, the weighted pairwise majority graph of σ? is acyclic. Furthermore, all edges have weight Ω(n)
because the weight of any edge from xi to xj is n and the weight of any edge from x? to xi is n(2α− 1).

It suffices to bound the probability of the following three ‘bad’ events.

1. w(xj ,xi)(σ) > 0 for any i < j, i.e., the event that xj beats xi in a pairwise comparison in σ, for any i < j;

2. w(x?,xi)(σ) > 0 for all i, i.e., the event that x? is the top alternative in Γ(σ);

3. w(x?,xi)(σ) > 0 and w(xj ,x?)(σ) > 0 for any i < j, i.e., the event that xj beats x? but xi loses to x? when xi � xj
(in other words, x? creates a cycle in the pairwise majority graph).

If Event 2 doesn’t occur, then x? is not the top alternative, while if neither Event 1 nor Event 3 occurs the pairwise majority
graph is acyclic. In particular, the unique ranking induced by Γ(σ) places x1 and does not place x∗ first, implying that x1
and x∗ have been flipped.

Let
f(k) , 1 +

k − 1

1− φk−1
− k

1− φk

be the probability that a voter swaps the first and k-th alternatives (Lemma 3). Intuitively, it is clear that f(k) is a
strictly decreasing function of k; for completeness we show this in Lemma 10 at the end of this section. Therefore,
f(2) > f(m), for all m > 2. Note that 1 − f(2) = 1

1+φ is the probability that a Type 1 voter places x? above x1, and
f(m) = 1 + m−1

1−φm−1 − m
1−φm is the probability that a Type 2 voter places x? above x1.

Furthermore, let

α ,
1/2− f(m)− ε
1− f(2)− f(m)

,

where

ε ,
f(2)− f(m)

4
.

Since f(2) > f(m), ε > 0. We show that α > 1/2 in Lemma 11.

Event 1

Lemma 7. The probability that the majority of voters in σ ranks alternative xi below alternative xj , for any i < j, is at

most exp

(
−n2 ·

(
1−φ
1+φ

)2)
.

Proof. The probability that a voter ranks xi above xj increases as j increases, so it suffices to prove the statement for xi
and xi+1. Let X` be the indicator random variable for the event that some voter ` ranks xi+1 above xi in σ. We claim that
the probability that X` is equal to 1 does not depend on the type of voter `, and is equal to φ

1+φ .
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In order to see this, note that all voters agree on the relative order of x1 � x2 � · · · � xm−1, and that this portion
of the ranking is contiguous for all voters. For ease of exposition, consider only Type 1 voters with base ranking
σ = x∗ � x1 � · · · � xm−1 and construct a pairing off argument as follows. For any xi and xi+1, let the subset
of all permutations over x∗, x1, x2, . . . , xm−1 in which xi � xi+1 be S1, and let the subset of all permutations over
x∗, x1, x2, . . . , xm−1 in which xi+1 � xi be S2. Clearly |S1| = |S2|, and let f : S1 → S2 be the bijection that maps each
τ ∈ S1 to a unique τ ′ ∈ S2, where τ2 is obtained by swapping the places of xi and xi+1 in τ . Note that, for all τ and τ ′

such that f(τ) = τ ′, dKT (σ, τ) + 1 = dKT (σ, τ ′) because the relative order of all comparisons stays the same except for
the additional swap of xi and xi+1. Now, the probability of swapping xi and xi+1 is∑

τ ′∈S2
φdKT (σ,τ

′)∑
x∈S1∪S2

φdKT (σ,x)
=

∑
τ ′∈S2

φdKT (σ,τ
′)∑

τ ′∈S2
φdKT (σ,τ ′) +

∑
τ∈S1

φdKT (σ,τ)

=

∑
τ ′∈S2

φdKT (σ,τ
′)∑

τ ′∈S2
φdKT (σ,τ ′) +

∑
τ ′∈S2

φdKT (σ,τ)−1

=

∑
τ ′∈S2

φdKT (σ,τ
′)∑

τ ′∈S2
φdKT (σ,τ ′) + (1/φ)

∑
τ ′∈S2

φdKT (σ,τ)

=
1

1 + 1/φ
=

φ

1 + φ
,

where the second transition follows from the bijection f . An analogous argument holds for Type 2 voters.

Let X =
∑n
`=1X` be the random variable for the number of voters that rank xi+1 above xi. Clearly, E[X`] = φ

1+φ and

E[X] = nφ
1+φ . By Hoeffding’s inequality,

Pr [X ≥ n/2] = Pr [X − E[X] ≥ n/2− E[X]] ≤ exp

(
−2 (n/2− E[X])

2

n

)
= exp

(
−n

2
· (1− φ)2

(1 + φ)2

)
.

Event 2

Lemma 8. The probability that x? is the top alternative in Γ(σ) is at most exp
(
−2ε2n

)
.

Proof. Let X` be the indicator random variable for the event that x? is ranked above x1 for voter ` in σ. For type 1 voters
Pr[X` = 1] = Pr[σ−1` (x?) > σ−1` (x1)] = 1

1+φ = 1−f(2). For type 2 voters Pr[X` = 1] = 1+ m−1
1−φm−1 − m

1−φm = f(m).
Using Hoeffding’s inequality, the probability we are interested in is at most

Pr

[
n∑
`=1

X` ≥ n/2

]
= Pr

[
n∑
`=1

X` − E

[
n∑
`=1

X`

]
≥ n/2− E

[
n∑
`=1

X`

]]

≤ exp

(
−

2 (n/2− E[
∑n
`=1X`])

2

n

) (7)

Recall that α = 1/2−f(m)−ε
1−f(2)−f(m) . It is easy to verify that

E

[
n∑
`=1

X`

]
= αn · (1− f(2)) + (1− α)n · f(m)

= n (α · (1− f(2)− f(m)) + f(m))

= n

(
1/2− f(m)− ε
1− f(2)− f(m)

· (1− f(2)− f(m)) + f(m)

)
= n/2− εn.

Plugging this into Equation (7) proves the lemma.
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Event 3

Lemma 9. The probability that x? beats xi but loses to xj , where xi beats xj in σ, is at most 2m · exp (−cn), for some
constant c.

Proof. Let Yk be the number of voters that put alternative xk above alternative x?. By Hoeffding’s inequality,

Pr[|Yk − E[Yk]| ≥ t] ≤ 2 exp

(
−2t2

n

)
,

which, combining with a union bound, gives

Pr[∃k : |Yk − E[Yk]| ≥ t] ≤ 2m · exp

(
−2t2

n

)
.

We pick t large enough for the above probability to be vanishing, and small enough so that if xk is above x?, then xk−1
is also above x? (i.e., the confidence intervals for different Yk’s don’t overlap). For the latter property, we simply need
to pick 2t ≤ mink |E[Yk] − E[Yk+1]|. To see this most clearly, notice that if we know that ∀j, |Yj − E[Yj ]| ≤ t, where
2t ≤ mink |E[Yk]− E[Yk+1]|, we get the following series of inequalities:

Yj ≤ E[Yj ] + t ≤ E[Yj+1]− 2t+ t = E[Yj+1]− t ≤ Yj+1,

that is, Yj and Yj+1 don’t overlap.

We break Yk into Y 1
k and Y 2

k , denoting the number of Type 1 and Type 2 voters, respectively, who put alternative xk above
alternative x?. Clearly, Yk = Y 1

k + Y 2
k . For a type 1 voter, the probability that this voter puts xk above x? is equal to

f(k + 1) = 1 + k
1−φk −

k+1
1−φk+1 . For a type 2 voter, the probability of this event is equal (by symmetry) to the probability

that x1 and xm−k+1 are swapped, i.e., f(m− k + 1) = 1 + m−k
1−φm−k −

m−k+1
1−φm−k+1 .

In order to bound mink |E[Yk]− E[Yk+1]|, we prove the following two claims.

Claim 2. For all k = 1, ...,m− 2, E[Y 1
k ]− E[Y 1

k+1] ≥ cn, for a constant c = c(φ,m) > 0.

Proof. Note that E[Y 1
k ] = αnf(k+1) and E[Y 1

k+1] = αnf(k+2). Therefore, E[Y 1
k ]−E[Y 1

k+1] = αn(f(k+1)−f(k+2)).
Since α > 1/2 (Lemma 11), we have that

E[Y 1
k ]− E[Y 1

k+1] >
n

2
(f(k + 1)− f(k + 2))

=
n

2

(
k

1− φk
− 2(k + 1)

1− φk+1
+

k + 2

1− φk+2

)
≥ n

2
· min
t∈{1,...,m−2}

(
t

1− φt
− 2(t+ 1)

1− φt+1
+

t+ 2

1− φt+2

)
.

The second factor on the right hand side is the minimum of m− 2 constants that depend only on φ and m, hence it is itself a
constant that depends only on φ and m. Moreover, this constant, which is equal to f(t+ 1)− f(t+ 2) for the minimizer t,
is greater than 0 by Lemma 10.

Claim 3. For all k = 1, ...,m− 2, E[Y 2
k ]− E[Y 2

k+1] ≥ 0.

Proof. Note that E[Y 2
k ] = (1−α)n(1−f(m−k+1)) and E[Y 2

k+1] = (1−α)n(1−f(m−k)). Therefore, E[Y 2
k ]−E[Y 2

k+1] =
(1− α)n(f(m− k)− f(m− k + 1)) > 0 because f(k) strictly decreases with k by Lemma 10.

Putting together Claims 2 and 3, we have that

E[Yk]− E[Yk+1] = E[Y 1
k ]− E[Y 1

k+1] + E[Y 2
k ]− E[Y 2

k+1] ≥ n

2
c(φ,m) · n.



Statistical Foundations of Virtual Democracy

Because m and φ are constants it suffices to set t = c(φ,m) · n:

Pr[∃k : |Yk − E[Yk]| ≥ t] ≤ 2m · exp

(
−2t2

n

)
= 2m · exp (−cn) ,

for some constant c.

Putting It All Together

The total probability that the pairwise comparison graph has a cycle is at most 2m exp(−n2
(

1−φ
1+φ

)2
) + 2m exp (−cn), via

a union bound on Event 1 and Event 3. Thus, the probability that we get an acyclic pairwise comparison graph where x? is
not ranked first is at least, by taking into account Event 2, is at least

1−

(
2m exp(−n

2

(
1− φ
1 + φ

)2

) + 2m exp (−cn) + exp
(
−2ε2n

))
,

where ε and c are constants (since φ and m are constants), and thus this probability goes to 1 as n grows to infinity. This
concludes the proof of Theorem 2.

Proofs of Lemmas

Lemma 10. Let
f(k) , 1 +

k − 1

1− φk−1
− k

1− φk
.

Then f(k) > f(k + 1) for all k = 2, . . . ,m− 1 and φ ∈ (0, 1).

Proof. It holds that

f(k)− f(k + 1) =

(
1 +

k − 1

1− φk−1
− k

1− φk

)
−
(

1 +
k

1− φk
− k + 1

1− φk+1

)
=

k − 1

1− φk−1
− 2k

1− φk
+

k + 1

1− φk+1

= φk−1(1− φ)
k(1− φ)(1 + φk)− 1− φ+ φk(φ+ 1)

(1− φk−1)(1− φk)(1− φk+1)
.

Note that because φ ∈ (0, 1), in order to show that f(k)− f(k + 1) > 0, it suffices to show that

h(k) , k(1− φ)(1 + φk)− 1− φ+ φk(φ+ 1) > 0.

Indeed,

h(k) = −(k − 1)φk+1 + (k + 1)φk − (k + 1)φ+ (k − 1)

= (1− φ)
(
(k − 1)φk − 2φk−1 − 2φk−2 − · · · − 2φ+ (k − 1)

)
= (1− φ)

(
(k − 1)φk − 2

k−1∑
i=1

φk−i + (k − 1)

)
= (1− φ)2

(
−(k − 1)φk−1 − (k − 3)φk−2 − · · ·+ (k − 5)φ2 + (k − 3)φ+ (k − 1)

)
= (1− φ)2

(
−

k∑
i=1

(k − (2i− 1))φk−i

)
= (1− φ)2

(
(k − 1)φk−2 + 2(k − 2)φk−3 + 3(k − 3)φk−4 + · · ·+ (k − 2)(k − (k − 2))φ+ (k − 1)

)
= (1− φ)3

(
k−1∑
i=1

i(k − i)φk−i−1
)
,

which is clearly positive for all k ≥ 2.
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Lemma 11. For any φ ∈ (0, 1), for all m > 2, and given ε = f(2)−f(m)
4 , α = 1/2−f(m)−ε

1−f(2)−f(m) > 1/2.

Proof. We first prove that

1− f(2)− f(m) =
1

1 + φ
−
(

1 +
m− 1

1− φm−1
− m

1− φm

)
> 0. (8)

Indeed,

1− f(2)− f(m) > 1− f(2)− f(3)

=
1

1 + φ
−
(

1 +
2

1− φ2
− 3

1− φ3

)
=

2 + φ

1 + φ+ φ2
− 1.

To establish Equation (8) it suffices to show that 2+φ
1+φ+φ2 > 1, or, equivalently, 1 > φ2, which is true for all φ ∈ (0, 1).

Now, we have

1/2− f(m)− f(2)−f(m)
4

1− f(2)− f(m)
=

1/2− f(m)− f(2)−f(m)
2 + f(2)−f(m)

4

1− f(2)− f(m)

=
1

2
· 1− f(2)− f(m)

1− f(2)− f(m)
+

1

4
· f(2)− f(m)

1− f(2)− f(m)

>
1

2
,

where the last transition follows from f(2) > f(m) and Equation (8).
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C. Additional Empirical Results
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(a) φ = 0.4
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(b) φ = 0.5
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(c) φ = 0.6
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(d) φ = 0.7
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(e) φ = 0.8
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(f) φ = 0.9

Figure 2. p = 0.7 mixture of Mallows, n = 100 voters, m = 40 alternatives

0 5 10 15 20 25 30 35 40
Average Borda score difference

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Av
er

ag
e 

er
ro

r p
ro

ba
bi

lit
y

(a) φ = 0.4
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(b) φ = 0.5
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(c) φ = 0.6
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(d) φ = 0.7
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(e) φ = 0.8
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(f) φ = 0.9

Figure 3. p = 0.5 mixture of Mallows, n = 100 voters, m = 40 alternatives


